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1 Proof of Theorem 3.1

We begin with two Lemmas. For simplicity, in the appendix, weuse “
∑

” to denote the sum

over all design points{(xi, yj , zk), i, j, k = 1, 2, . . . , n}, unless otherwise mentioned.

Lemma 1 Under the conditions stated in Theorem 3.1, we have, fori1, i2, i3 = 0, 1, 2,
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whereνi1i2i3 =
∫ ∫ ∫

ui1vi2si3K(u, v, s) dudvds, for i1, i2, i3 = 0, 1, 2. �

Proof of Lemma 1This is a straightforward generalization of Proposition 2 in Qiu (2009)

from 2-D to 3-D cases.�

Lemma 2 Under the conditions in Theorem 3.1, we have
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If (x, y, z) ∈ Jh∗

n
\Sǫ, then we have
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a.s.

wheref−(x, y, z) is the smaller one of the two one-sided (due to JLS) limits off at(x, y, z),

(x̃, ỹ, z̃) is some point around(x, y, z) that satisfies (i) it is a continuity point off that is on

the same side of the JLS as(x, y, z), and (ii) dE((x̃, ỹ, z̃), (x, y, z)) ∼ O(1/n), C(x, y, z),

Cx(x, y, z), Cy(x, y, z), Cz(x, y, z) are absolute jump magnitudes off(x, y, z) and its first

orderx, y andz partial derivatives,φ1(x, y, z), φ2(x, y, z) andφ3(x, y, z) are three constants

satisfying
√

φ2
1(x, y, z) + φ2

2(x, y, z) + φ2
3(x, y, z) = O(1/h∗

n) a.s.,

γ1(x, y, z), γ2(x, y, z) andγ3(x, y, z) are three constants between−1 and1, andφ0(x, y, z)

is some constant between 0 and 1.�

Proof of Lemma 2When(x, y, z) ∈ ΩJ̄ ,h∗

n
, by the Taylor’s expansion, for any(xi, yj , zk) ∈

O∗(x, y, z), we have
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So, we have
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By (3), (10), andLemma 1, we have
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a.s. (11)

Under the conditions in Theorem 3.1, it is clear that (11) is uniformly true for (x, y, z) ∈

ΩJ̄ ,h∗

n
. This an easy application of Lemma 1.

Now, if (x, y, z) ∈ Jh∗

n
\Sǫ andn is large enough so thath∗

n < ǫ, thenO∗(x, y, z) is

divided into two partsI1 andI2 by the JLS. Without loss of generality, let us assume that

there is a positive jump fromI1 to I2 at (x, y, z). Then, when(xi, yj, zk) ∈ I1, we have

ξijk = f(xi, yj , zk) + εijk

= f−(x, y, z) + (xi − x)f ′
x(x̃, ỹ, z̃) + (yj − y)f ′

y(x̃, ỹ, z̃) + (zk − z)f ′
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+ O((h∗
n)

2) + εijk
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Similarly, when(xi, yj , zk) ∈ I2, we have

ξijk = f(xi, yj , zk) + εijk

= f−(x, y, z) + (xi − x)f ′
x(x̃, ỹ, z̃) + (yj − y)f ′

y(x̃, ỹ, z̃) + (zk − z)f ′
z(x̃, ỹ, z̃)

+ C(x, y, z) + (xi − x)Cx(x, y, z) + (yj − y)Cy(x, y, z) + (zk − z)Cz(x, y, z)

+ O((h∗
n)

2) + εijk

where(x̃, ỹ, z̃) is some point inI1 that satisfies the conditions stated in Lemma 2. By (3) and

the above two expressions, we have



â(x, y, z)

b̂(x, y, z)
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From the above expressions, it is obvious thatγ1(x, y, z), γ2(x, y, z) andγ3(x, y, z) are con-

stants between0 and 1, andφ0(x, y, z) is a constant between 0 and 1. Without loss of

generality, letCx(x, y, z), Cy(x, y, z) andCz(x, y, z) denote absolute jump magnitudes of

f ′
x, f ′

y andf ′
z, thenγ1(x, y, z), γ2(x, y, z) andγ3(x, y, z) are constants between−1 and1.

By similar arguments to those in Qiu and Yandell (1997) it is not difficult to check that

√
φ1(x, y, z)2 + φ2(x, y, z)2 + φ3(x, y, z)2 = O(1/h∗

n) a.s. So, Lemma 2 is proved.�

Proof of Theorem 3.1For a design point(x, y, z) ∈ ΩS̄,ǫ, if it is more thanh∗
n away

from any JLS, then at least one ofO∗(xN1
, yN1

, zN1
) andO∗(xN2

, yN2
, zN2

) is located in a

same continuous region as(x, y, z). So, we have

δ(x, y, z) ≤ ‖β̂(x, y, z)− β̂N1
(x, y, z)‖ = O (h∗

n) + o

(
βn log n

n(h∗
n)

2

)
a.s.

The above expression is a direct conclusion of Lemma 2. Usingthe fact thatχ2
3,αn

=

O(− logαn), the expression (8) and Lemma 1, it is not difficult to check that the threshold

valueun = O(n
√
− logαn

(nh∗

n)
5/2 ) a.s. The fact thatχ2

3,αn
= O(− logαn) can be proved easily by us-

ing χ2
3,αn

≤ 3χ2
1,αn/3

and the Mill’s inequality regarding normal tail probabilities. So, under

the condition that (nh∗

n)
7/2

n2
√
− logαn

= o(1), we haveδ(x,y,z)
un

= o(1) a.s. resultingδ(x, y, z) < un

a.s. (i.e.,(x, y, z) is not detected as an edge point) whenn is large enough, and this is

uniformly true for all(x, y, z) ∈ ΩS̄,ǫ ∩ ΩJ̄ ,h∗

n
. Therefore,

sup
(x,y,z)∈D̂n

⋂
ΩS̄,ǫ

inf
(x′,y′,z′)∈D

⋂
ΩS̄,ǫ

dE((x, y, z)
T , (x′, y′, z′)T ) = O(h∗

n) a.s. (12)

On the other hand, if(x, y, z) is a non-singular point on a JLS, then by Lemma 2, we

have

δ(x, y, z) ∼ C(x, y, z)
√

φ1(x, y, z)2 + φ2(x, y, z)2 + φ3(x, y, z)2 +O(h∗
n) + o(

βn log n

n(h∗
n)

2
) a.s.
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Since
√

φ1(x, y, z)2 + φ2(x, y, z)2 + φ3(x, y, z)2 = O(1/h∗
n) a.s., by the the condition that

√
− logαn/(nh∗

n)
3 = o(1), we haveδ(x, y, z) > un a.s. So,(x, y, z) would be detected as an

edge pixel whenn is large enough. Sincemin(x,y,z)∈D
⋂

ΩS̄,ǫ
C(x, y, z) > 0 (see the definition

of singular points in Section 3), the above result is uniformly true for(x, y, z) ∈ D
⋂

ΩS̄,ǫ.

Therefore,

sup
(x,y,z)∈D

⋂
ΩS̄,ǫ

inf
(x′,y′,z′)∈D̂n

⋂
ΩS̄,ǫ

dE((x, y, z)
T , (x′, y′, z′)T ) = O(h∗

n) a.s. (13)

By (12) and (13), Theorem 3.1 is proved.�

2 Proof of Theorem 3.2

Lemma 3 Besides the conditions in Theorem 3.1, let us further assume that (x, y, z) ∈

Jhn\Sǫ, the JLS has unique tangent plane at(x∗, y∗, z∗), the point onD that is closest to

(x, y, z), and the bandwidthhn satisfies the conditions thathn = o(1), 1/(nhn) = o(1),

h∗
n/hn = o(1), andh̆n = chn wherec > 0 is a constant. Then, the local plane fitted by

the algorithm in Section 2.2.1 converges almost surely to the tangent plane of the JLS at

(x∗, y∗, z∗) both in normal direction and pointwise asn → ∞. �

Proof of Lemma 3 Assume that the normal direction of the tangent plane of the JLS

at (x∗, y∗, z∗) is (ρx∗
, ρy∗ , ρz∗)

T with
√

ρ2x∗
+ ρ2y∗ + ρ2z∗ = 1. Without loss of generality, we

further assume that(ρx∗
, ρy∗ , ρz∗)

T = (0, 0, 1)T and thatn is large enough so thathn < ǫ.

So, the equation of the tangent plane of the JLS at(x∗, y∗, z∗) is z = z∗ and any nonsingular

point on the JLS inO(x, y, z) satisfiesz = z∗ + O(h2
n). Therefore, the gradient direction

at any point on JLS inO(x, y, z) can be written as(O(h2
n), O(h2

n), 1 + O(h2
n))

T . Now, if
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(x∗, y∗, z∗) ∈
(
Jh∗

n
\Sǫ

)
∩O(x, y, z), then

β̂
∗
(x∗, y∗, z∗) =

(
b̂(x∗, y∗, z∗)

‖β̂(x∗, y∗, z∗)‖
,

ĉ(x∗, y∗, z∗)

‖β̂(x∗, y∗, z∗)‖
,

d̂(x∗, y∗, z∗)

‖β̂(x∗, y∗, z∗)‖

)T

.

The expressions of̂b(x∗, y∗, z∗), ĉ(x∗, y∗, z∗), d̂(x∗, y∗, z∗) andβ̂(x∗, y∗, z∗) can be obtained

from Lemma 2. From Lemma 1, it is easy to check thatφ3(x
∗, y∗, z∗) ∼ O(n3(h∗

n)
4)

O(n3(h∗

n)
5)

= O( 1
h∗

n
)

a.s. Since the gradient direction at any point of the JLS inO(x, y, z) can be written as

(O(h2
n), O(h2

n), 1 + O(h2
n))

T , from the expressions ofφ1(x
∗, y∗, z∗) andφ2(x

∗, y∗, z∗) in

Lemma 2, we can see that both of them are of the orderO(n3(h∗

n)
3h2

nh
∗

n)
O(n3(h∗

n)
5)

= O
(

h2
n

h∗

n

)
a.s. Then,

we havêβ
∗
(x∗, y∗, z∗) = (O(h2

n), O(h2
n), 1+O(h2

n))
T a.s. So, the matrixG = (gi1,i2 , i1, i2 =

1, 2, 3) defined in (5) has the property that

gi1,i2 = O(h2
n) a.s., if (i1, i2) 6= (3, 3),

g3,3 = 1 +O(h2
n) a.s.

SinceG is a real symmetric matrix, the eigenvalues ofG areτ +2
√
p cos γ, τ −√

p(cos γ +

√
3 sin γ) andτ − √

p(cos γ −
√
3 sin γ), where3τ = trace(G), 2q = det(G − τI), 6p is

the sum of squares of the elements of(G − τI), andγ = 1
3
tan−1

√
p3−q2

q
with 0 ≤ γ ≤ π.

Therefore, we have,τ = 1
3
+ O(h2

n) a.s.,6p = 2
3
+ O(h2

n) a.s.,q = 1
27

+ O(h2
n) a.s. and

γ = O(h2
n) a.s. and thus the three eigenvalues ofG are of the orders1 +O(hn), O(hn), and

O(hn), a.s., respectively. The eigenvector corresponding to a eigenvalueλ can be found by

finding the solution fore = (e1, e2, e3)
T from the two equationsGe = λe ande′e = 1. If
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λ = λ1 with λ1 being the largest eigenvalue ofG, we have

e1 = η

(
g1,2g2,3 − g1,3(g2,2 − λ1)

(g1,1 − λ1)(g2,2 − λ1)− g1,2g2,1

)
,

e2 = η

(
g1,3g2,1 − g2,3(g1,1 − λ1)

(g1,1 − λ1)(g2,2 − λ1)− g1,2g2,1

)
,

e3 = η,

whereη is such thate21 + e22 + e23 = 1. After combining this result and the results about

the elements ofG andλ1, we havee1 = O(hn) a.s.,e2 = O(hn) a.s. ande3 = 1 +

O(hn) a.s., from which we havee converges to(0, 0, 1)T a.s., asn → ∞. Therefore, the

normal direction of the fitted plane by the algorithm in Section 2.2.1 converges to the normal

direction of the JLS at(x∗, y∗, z∗) almost surely. From Theorem 3.1, it is clear that the center

of D̂n ∩ O(x, y, z) converges almost surely to some point on the tangent plane ofthe JLS at

(x∗, y∗, z∗), and the convergence rate isO(hn). This concludes the proof ofLemma 3.

Lemma 4 Besides the conditions in Theorem 3.1, let us further assume that (x, y, z) ∈

Jhn\Sǫ , the JLS has two different one-sided tangent planes at some point (x∗, y∗, z∗) ∈

O(x, y, z), and the bandwidthhn satisfies the conditions thathn = o(1), 1/(nhn) = o(1),

h∗
n/h

3
n = o(1), andh̆n = chn wherec > 0 is a constant. Then, the two planes fitted by the

algorithm in Section 2.2.2 converges almost surely to the two one-sided tangent planes of

the JLS at(x∗, y∗, z∗).

Proof of Lemma 4Without loss of generality we can assume that two different one-sided

tangent planes at(x∗, y∗, z∗) arex = x∗ andy−y∗ = κ(x−x∗) whereκ is a constant, which

are labeledP1 andP2 respectively. They intersect at a straight lineL and clearly(x∗, y∗, z∗) ∈

L. Let us consider a planeS that passesL and separatesP1 andP2 in O(x, y, z). Then,S di-

videsO(x, y, z) into two partsN1(x, y, z) andN2(x, y, z), and it dividesD ∩O(x, y, z) into
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two partsD ∩N1(x, y, z) andD ∩N2(x, y, z). From the proof ofLemma 3, we see that if a

point (x∗, y∗, z∗) is more thanh∗
n away fromL and(x∗, y∗, z∗) ∈ (Jhn\Sǫ) ∩ N1(x, y, z),

then β̂
∗
(x∗, y∗, z∗) = (1 + O(h2

n), O(h2
n), O(h2

n))
T a.s., which converges to the normal

direction ofP1 asn → ∞. Likewise, if (x∗, y∗, z∗) is more thanh∗
n away fromL and

(x∗, y∗, z∗) ∈ (Jhn\Sǫ)∩N2(x, y, z), thenβ̂
∗
(x∗, y∗, z∗) =

(
κ+O(h2

n)√
1+κ2

, 1+O(h2
n)√

1+κ2
, O(h2

n)
)T

a.s.

which converges to the normal direction ofP2 asn → ∞. Define,

m1 = number of elements in̂Dn ∩N1(x, y, z) that are more thanh∗
n away fromL.

m2 = number of elements in̂Dn ∩N2(x, y, z) that are more thanh∗
n away fromL.

m3 = number of elements in̂Dn ∩O(x, y, z) that are at mosth∗
n away fromL.

Sincem is the number of points in̂Dn∩O(x, y, z) andh∗

n

h3
n
= o(1), we havem3

m
= O

(
h∗

n

hn

)
=

o(h2
n) a.s. Similarly we can show thatm1

m
andm2

m
are strictly between0 and1 whenn is large

enough. Then the matrixG has the properties that

g1,1 =
1

m

(
m1 +

κ2m2

1 + κ2
+m3ζ

)
+O(h2

n) a.s.

g1,2 = g2,1 =
1

m

(
κ2m2

1 + κ2
+m3ζ

)
+O(h2

n) a.s.

g2,2 =
1

m

(
m2

1 + κ2
+m3ζ

)
+O(h2

n) a.s.

g3,3 =
m3ζ

m
+O(h2

n) a.s. (14)

g1,3 = g3,1 =
m3ζ

m
+O(h2

n) a.s.

g2,3 = g3,2 =
m3ζ

m
+O(h2

n) a.s.

whereζ is a number between−1 and1. Consequently, whenn is sufficiently large|g1,1|,

|g1,2|, |g2,2| > 0 a.s. and|g1,3|, |g2,3| and |g3,3| are all of the ordero(1) a.s. If λ is an
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eigenvalue ofG, then we havedet(G − λI) = 0. Combining this with (14), we have

(g3,3 − λ) ((g1,1 − λ)(g2,2 − λ)− g1,2g2,1) = O(h2
n) a.s. Therefore, whenn is large enough,

one solution ofλ isO(h2
n) a.s. and the other two solutions differ from0 by at least a non-zero

constant because of the Cauchy-Schwarz inequality that|g1,1g2,2 − g1,2g2,1| > 0. Now, pro-

ceeding similarly as in the proof ofLemma 3, we can check that the eigenvector correspond-

ing to the smallest eigenvalue ofG is (O(h2
n), O(h2

n), 1 + O(h2
n))

T a.s., which converges to

(0, 0, 1)T , the direction ofL.

Now, we can check that

β
∗
=

(
m1

m
+

m2κ

m
√
1 + κ2

+O(h2
n) + o(h2

n),
m2

m
√
1 + κ2

+O(h2
n) + o(h2

n), O(h2
n) + o(h2

n)

)T

a.s.

So, the orthogonal direction of the planeP defined in Section 2.2.2 is

~l =

(
− m2

m
√
1 + κ2

+O(h2
n) + o(h2

n),
m1

m
+

m2κ

m
√
1 + κ2

+O(h2
n) + o(h2

n), O(h2
n) + o(h2

n)

)T

a.s.

The inner product of this orthogonal direction witĥβ(x∗, y∗, z∗) is




− m2

m
√
1+κ2

+O(h2
n) + o(h2

n) a.s., if (x∗, y∗, z∗) ∈ D̂n ∩N1(x, y, z) and is more thanh∗
n away fromL.

m1

m
√
1+κ2

+O(h2
n) + o(h2

n) a.s., if (x∗, y∗, z∗) ∈ D̂n ∩N2(x, y, z) and is more thanh∗
n away fromL.

whenn is large enough the first number is negative and the second number is positive almost

surely. Define

G1(x, y, z) = {(x∗, y∗, z∗) : (x∗, y∗, z∗) ∈ D̂n ∩O(x, y, z) and~l
T
β̂(x∗, y∗, z∗) ≤ 0}.

G2(x, y, z) = {(x∗, y∗, z∗) : (x∗, y∗, z∗) ∈ D̂n ∩O(x, y, z) and~l
T
β̂(x∗, y∗, z∗) > 0}.

Then, whenn is large enough,G1(x, y, z) includes all points that are more thanh∗
n away

from L and in D̂n ∩ N1(x, y, z) andG2(x, y, z) includes all points that are more thanh∗
n
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away fromL and inD̂n ∩ N2(x, y, z). By Theorem 3.1 and the fact thatm3

m
= o(h2

n), the

center ofG1(x, y, z) would converge almost surely to some point onP1 and the center of

G2(x, y, z) would converge almost surely to some point onP2 and both convergence rates

would beO(hn). Lemma 4 follows from this result and the results about convergence of β̂
∗
’s

in the first paragraph of this proof.

Lemma 5: Besides the conditions in Lemma 4 onf and certain procedure parameters, we

further assume that̃hn = o(1), hn

h̃n
= o(1), andD∩O(x, y, z) is a circular cone, then the local

cone fitted by the algorithm described in Section 2.2.3 converges pointwise toD∩O(x, y, z)

almost surely.

Proof of Lemma 5: Without loss of generality, let us assume that the central axis of

the true cone is parallel to the x-axis with a vertex atv, and the angle between the central

axis and any generatrix of the cone isθ. In such cases, the direction of the central axis is

βC = (1, 0, 0)T . From Lemma 2, for a given detected edge pixel(x∗
l , y

∗
l , z

∗
l ) in O(x, y, z),

if it is more than h∗

n

sin θ
away fromv, then the angle between̂βl

∗
and the central axis of the

cone isθ + O(h∗
n) a.s. Therefore, the sample variance, denoted asσ̃2

n, of the inner products

of {β̂l

∗
, l = 1, 2, . . . ,m} andβC isO((h∗

n)
2) a.s. For a given directioñβ, if h∗

n/(β̃−βC) =

o(1), thenσ̃2
n would have the property that(h∗

n)
2/σ̃2

n = o(1), which is uniformly true for all

suchβ̃. So, the direction minimizing̃σ2
n among all possible directions is(1, O(h∗

n), O(h∗
n))

a.s. Therefore, the estimated direction of the central axisof the true cone, as described in

item (i) of the algorithm in Section 2.2.3, has the property that θ̂ = θ +O(h∗
n) a.s.

From item (iii) of the algorithm in Section 2.2.3, planẽP divides Õ(x, y, z) into two

parts. Let us definẽO1(x, y, z) to be the part where the vertexv of the cone lies, and the

11



other part is denoted as̃O2(x, y, z). It is clear that the distance of the center of the detected

edge pixels inÕ1(x, y, z) from P̃ is O(hn), and the center of the detected edge pixels in

Õ2(x, y, z) from P̃ is of the order̃hn. So, the center of̂Dn∩Õ1(x, y, z), denoted as(c∗x, c
∗
y, c

∗
z)

in Section 2.2.3, is withinO(h∗
n) from the central axis of the true cone, because by Theorem

3.1 all the detected edge pixels are withinO(h∗
n) from the true JLSs.

Suppose, the estimated vertex location isv̂. By the fact that the detected edge pixels are

within O(h∗
n) from the true JLSs (cf., Theorem 3.1), the orthogonal distance between the

fitted cone and the detected edge pixels inO(x, y, z) isO(‖v̂ − v‖) +O(h∗
n) a.s. Moreover,

by the algorithm in Section 2.2.3,̂v is chosen by minimizing the orthogonal distance. By

similar arguments to those in the first paragraph of the proof, we have‖v̂− v‖ = O(h∗
n) a.s.

By this result and the results obtained in the previous paragraphs, the fitted cone converges

pointwise toD ∩O(x, y, z) almost surely.

Proof of Theorem 3.2From the first part ofLemma 2, it is obvious that‖f̂ − f‖ΩJ̄,hn
=

O(h2
n), a.s., under the conditions stated in the theorem. Now, let us consider a given point

(x, y, z) ∈ Jhn ∩ Sǫ in the following three cases.

Case I:The JLS has unique tangent plane at any of its points inO(x, y, z).

Assume that(x∗, y∗, z∗) is the nearest point on the JLSs to(x, y, z). From the proof of

Lemma 3, it can be seen that the local plane fitted by the algorithm in Section 2.2.1 converges

almost surely to the tangent plane of the JLSs at(x∗, y∗, z∗). By Lemma 4, the two half-planes

fitted by the algorithm in Section 2.2.2 also converges almost surely to the tangent plane at

(x∗, y∗, z∗). So does the fitted cone by the algorithm in Section 2.2.3, as justified byLemma

5.
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Recall thatO1(x, y, z) andO2(x, y, z) are the two parts ofO(x, y, z) separated by the true

JLS, withO1(x, y, z) containing the point(x, y, z). Similarly, let us defineE1(x, y, z) to be

the part ofO(x, y, z) separated by the estimated JLS that contains the point(x, y, z). From

the first paragraph of the proof ofLemma 3, we know that the number of design points in

E1(x, y, z)
⋂

O1(x, y, z) andE1(x, y, z)
⋂

O2(x, y, z) are of ordersO(n3h3
n) andO(n3h5

n),

a.s., respectively. By expression (3), we have

f̂(x, y, z) =

∑

(xi,yj ,zk)∈O1(x,y,z)∩E1(x,y,z)

w∗(xi, yj , zk)f(xi, yj , zk)

∑

(xi,yj ,zk)∈O1(x,y,z)∩E1(x,y,z)

w∗(xi, yj , zk)
.
|O1(x, y, z) ∩ E1(x, y, z)|

|E1(x, y, z)|

+

∑

(xi,yj ,zk)∈O2(x,y,z)∩E1(x,y,z)

w∗(xi, yj, zk)f(xi, yj , zk)

∑

(xi,yj ,zk)∈O2(x,y,z)∩E1(x,y,z)

w∗(xi, yj , zk)
.
|O2(x, y, z) ∩ E1(x, y, z)|

|E1(x, y, z)|

= (f(x, y, z) +O(hn)) .
(
1 +O(h2

n)
)
+O(h2

n) a.s. (15)

= f(x, y, z) +O(hn) a.s.,

wherew∗(xi, yj , zk) denote the weights in the LLK estimator defined in (3), and|A| denotes

the number of design points in the regionA.

Case II: The JLS has two different one-sided tangent planes at some ofits point(x∗, y∗, z∗)

in O(x, y, z).

FromLemma 4, the two fitted half-planes by the algorithm in Section 2.2.2converges al-

most surely to the two one-sided tangent planes with rateO(hn). Therefore,RSS2(x, y, z)/m =

O(h2
n), a.s. However, it is obvious that the fitted plane and cone by the algorithms described

in Sections 2.2.1 and 2.2.3 both do not converge to the two one-sided tangent planes; further,

RSS1(x, y, z)/m andRSS3(x, y, z)/m would converge almost surely to two positive con-
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stants. So, whenn is large enough, we haveBIC2(x, y, z) < min(BIC1(x, y, z), BIC3(x, y, z)),

a.s. Consequently, the two fitted half-planes by the algorithm in Section 2.2.2 will be se-

lected for estimating the JLS inO(x, y, z) by the BIC procedure (6). From the proof of

Lemma 4, we can see that|O1(x, y, z) ∩ E1(x, y, z)|/|E1(x, y, z)| = 1 + O(h2
n) a.s., and

|O2(x, y, z) ∩ E1(x, y, z)|/|E1(x, y, z)| = O(h2
n) a.s. Therefore, by similar arguments to

(15), we havêf(x, y, z) = f(x, y, z) +O(hn) a.s.

Case III: D ∩O(x, y, z) is a circular cone.

By Lemma 5 and similar arguments to those in Case II, we can show that the BIC proce-

dure (6) would select the fitted cone by the algorithm in Section 2.2.3 for estimating the JLS

in O(x, y, z), and consequentlŷf(x, y, z) = f(x, y, z) +O(hn) a.s.�
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