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Abstract

Three-dimensional (3-D) images are becoming increasingly popular in image applications, such as

magnetic resonance imaging (MRI), functional MRI (fMRI), and other image applications. Observed 3-D

images often contain noise that should be removed beforehand for improving the reliability of subsequent

image analyses. In the literature, most existing image denoising methods are for 2-D images. Their direct

extensions to 3-D cases generally can not handle 3-D images efficiently, because the structure of 3-D images

is often substantially more complicated than that of 2-D images. For instance, edge locations are surfaces

in 3-D cases, which are much more challenging to handle, compared to edge curves in 2-D cases. In this

paper, we propose a novel 3-D image denoising procedure, based on nonparametric estimation of a 3-D

jump surface from noisy data. One important feature of this method is its ability to preserve edges and

major edge structures, such as intersections of two edge surfaces, pyramids, pointed corners, and so forth.

Both theoretical arguments and numerical studies show that it works well in various applications. Software

and proofs are available online as supplemental material.

Key Words: 3-D image denoising, cones, edges, edge structure, eigenvalue, eigenvector, jump-

preserving surface estimation, local smoothing, nonparametric regression.

1 Introduction

Three-dimensional (3-D) images are becoming increasingly popular in applications. For instance,

in magnetic resonance imaging (MRI) and functional MRI (fMRI), to study the biological mecha-

nism of a 3-D object (e.g., a patient’s head), people traditionally acquire a set of two-dimensional
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(2-D) images from slices of the 3-D object. Then, the 3-D object is reconstructed from the 2-D

images, which is a research area called 3-D image reconstruction in the literature (e.g., Sonka et

al. 2008, Chapters 11 and 12). 3-D image reconstruction is technically challenging, and the re-

constructed 3-D image often contains substantial error in estimating the true 3-D image. Thanks

to the rapid progress in image acquisition techniques, we can now acquire 3-D images directly in

certain applications, including MRI and fMRI. However, observed 3-D images often contain noise

due to hardware imperfections and other reasons. Noise removal is important for the reliability of

subsequent image analyses. This paper focuses on noise removal in 3-D images.

In the literature, most image denoising methods are for analyzing 2-D images. These meth-

ods include Markov random field (MRF) modeling (e.g., Geman and Geman 1984, Besag 1986,

Godtliebsen and Sebastiani 1994), local median and other robust filtering methods (e.g., Sun et

al. 1994, Hillebrand and Müller 2007), bilateral filtering methods (e.g., Chu et al. 1998, Tomasi

and Manduchi 1998), adaptive smoothing algorithms (e.g., Saint-Marc et al. 1991, Polzehl and

Spokoiny 2000, Takeda et al. 2007, Takeda and Milanfar 2009), diffusion filtering methods (e.g.,

Perona and Malik 1990, Barash 2002), wavelet transformation methods (e.g., Chang et al. 2000,

Portilla et al. 2003), jump surface estimation methods (e.g., Qiu 1998, Gijbels et al. 2006, Qiu and

Mukherjee 2010), among many others. See Buades et al. (2005) and Qiu (2007) for an overview

on this topic.

Some 2-D image denoising procedures have been generalized for analyzing 3-D images. For

instance, 3-D image denoising based on minimization of Total Variation (TV) is popular in the

computer science literature (e.g., Keeling 2003, Wang and Zhou 2006). The TV approach was

first suggested by Rudin et al. (1992) for denoising 2-D images, and one particular algorithm

to accomplish that method is due to Chambolle (2004). Several MATLAB programs based on

Chambolle’s algorithm have been developed recently for denoising 3-D images (e.g., Getreuer

2007). MATLAB programs for 3-D image denoising using anisotropic diffusion are also available

(e.g., Lopes 2007). Other 3-D image denoising procedures include the ones based on 3-D wavelet

transformations (e.g., Weickert et al 1998, Hostalkova et al. 2007, Coupe 2008a, Woiselle et al.

2008), non-local means (e.g., Coupe 2008b), distance-weighted Wiener filtering (e.g., Lu et al.

2005), and so forth.
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Besides noise removal, another important requirement for image denoising procedures is that

they should preserve important image structures, such as edges and major edge features. We

notice that the structure of a typical 3-D image is much more complicated than that of a 2-D

image. For instance, edge locations are surfaces in 3-D cases and they usually have much more

complicated structure than the edge curves in 2-D cases. Besides planar parts, an edge surface

can have complicated structures, such as intersections of two or more edge surfaces, pyramids,

pointed corners, and so forth. See Figure 1 for a demonstration. Most existing image denoising

procedures mentioned above can preserve edges at places where the curvature of the edge surfaces

is small (i.e., the planar parts). At places where the curvature of the edge surfaces is large (e.g.,

intersections of two or more edge surfaces, pyramids, and pointed corners), however, the edge

features would be blurred or rounded by them. One major reason why this would happen is that

the edge features are hidden in the observed image intensities, making them too complicated to

be described or measured mathematically, and difficult to accommodate in the image denoising

process. In our opinion, major edge features are an important part of the image under study,

because they often represent major characteristics of the image objects and are easier to capture

our visual attention, compared to those relatively planar parts of the edge surfaces. Therefore,

they should be well preserved during image denoising. In other words, a good image denoising

procedure should preserve not only the planar parts of the edge surfaces but also the major edge

features, although the latter goal is much more challenging than the former.

Figure 1: Different structures of edge surfaces.

In this paper, we propose a 3-D image denoising procedure which can preserve edges and

major edge features well. Our procedure consists of three major steps, briefly outlined below. First,

edge pixels are detected in the whole design space by an edge detector. Second, in a neighborhood

of a given pixel, the underlying edge surface is estimated from the detected edge pixels by an

3



algorithm that takes into account three possible scenarios of the edge surface. Finally, observed

image intensities located on the same side of the estimated edge surface, as the given pixel, are

averaged by the local linear kernel smoothing procedure for estimating the true image intensity at

the given pixel.

The remaining part of the article is organized as follows. Our proposed 3-D image denoising

procedure is described in detail in Section 2. Some of its statistical properties are discussed in

Section 3. In Section 4, we present some numerical examples to evaluate its numerical perfor-

mance. Some remarks conclude the article in Section 5. Proofs of the two theorems in Section 3

are provided online as supplementary material.

2 Methodology

We present our proposed methodology in three parts. Section 2.1 describes a 3-D edge detection

procedure based on local linear kernel (LLK) smoothing. Local approximation of edge surfaces

and local image denoising are described in Section 2.2. Data driven parameter selection is dis-

cussed in Section 2.3.

2.1 3-D edge detection by LLK smoothing

As discussed in Section 1, the first step of the proposed 3-D image denoising procedure is to detect

edge pixels of a 3-D image using an edge detector. In the literature, there are many edge detectors

for analyzing 2-D images (cf., e.g., Canny 1986, Qiu and Yandell 1997, Sun and Qiu 2007). These

edge detectors can generally be extended for analyzing 3-D images. Theoretically speaking, any

reasonable 3-D edge detector can be used in the first step of our 3-D image denoising procedure.

In this paper, we introduce a 3-D edge detector based on LLK smoothing, which can be regarded

as a modification of the 2-D edge detector in Qiu and Yandell (1997). Because it is numerically

convenient and efficient for detecting edges, it is used in all numerical examples of the paper.
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Assume that a 3-D image follows the regression model

ξijk = f(xi, yj, zk) + εijk, for i, j, k = 1, 2, . . . , n, (1)

where {(xi, yj, zk) = (i/n, j/n, k/n), i, j, k = 1, 2, . . . , n} are the equally spaced design points

(or pixels) in the design space Ω = [0, 1]× [0, 1]× [0, 1], {εijk} are i.i.d. random errors with mean

0 and unknown variance σ2, f(x, y, z) is an unknown regression function denoting the image

intensity function, and N = n3 is the sample size. We further assume that there exists a partition

{Λl, l = 1, 2, . . . , s} of the design space Ω such that: (i) each Λl is a connected region in Ω; (ii)⋃s
l=1 Λl = Ω; (iii) f(x, y, z) is continuous in Λl\∂Λl, for l = 1, 2, . . . , s, where ∂Λl is the boundary

point set of Λl, and (iv) there exist at most a finite number of line segments {`l, l = 1, 2, . . . , s∗}

in
⋃s
i=1 ∂Λi such that for each line segment `l there are Λl1 ,Λl2 ∈ {Λl, l = 1, 2, . . . , s} satisfying

`l ⊆ ∂Λl1

⋂
∂Λl2 and for any (x∗, y∗, z∗) ∈ `l

lim
(x,y,z)→(x∗,y∗,z∗),(x,y,z)∈Λl1

f(x, y, z) = lim
(x,y,z)→(x∗,y∗,z∗),(x,y,z)∈Λl2

f(x, y, z).

Then, we call D := [
⋃s
l=1 ∂Λl]

⋂
Ω the jump location surfaces (JLSs) of f(x, y, z). Obviously,

JLSs describe the places where f has jumps. So, they also describe edge surfaces.

To detect edge pixels at a given point (x, y, z) ∈ Ω, let us consider its spherical neighborhood

O∗(x, y, z) = {(u, v, w) : (u, v, w) ∈ Ω,
√

(u− x)2 + (v − y)2 + (w − z)2 ≤ h∗n},

where h∗n is a bandwidth parameter. InO∗(x, y, z), a 3-D plane is fitted using the local linear kernel

(LLK) smoothing by solving the minimization problem

min
a,b,c,d

n∑
i,j,k=1

{ξi,j,k − [a+ b(xi − x) + c(yj − y) + d(zk − z)]}2K

(
xi − x
h∗n

,
yj − y
h∗n

,
zk − z
h∗n

)
, (2)

where K is a 3-D density kernel function defined in a unit ball. The solution to (a, b, c, d) of the

minimization problem (2) is denoted as (â(x, y, z), b̂(x, y, z), ĉ(x, y, z), d̂(x, y, z)). Then â(x, y, z)

is the LLK estimator of f(x, y, z), and (̂b(x, y, z), ĉ(x, y, z), d̂(x, y, z)) are LLK estimators of

(f ′x(x, y, z), f ′y(x, y, z), f ′z(x, y, z)). It is not difficult to check that
â(x, y, z)

b̂(x, y, z)

ĉ(x, y, z)

d̂(x, y, z)

 =


w000 w100 w010 w001

w100 w200 w110 w101

w010 w110 w020 w011

w001 w101 w011 w002



−1

∑
ξijkKijk∑

ξijk(xi − x)Kijk∑
ξijk(yj − y)Kijk∑
ξijk(zk − z)Kijk

 , (3)
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where Kijk = K(xi−x
h∗n

,
yj−y
h∗n

, zk−z
h∗n

), wi1i2i3 =
∑

(xi − x)i1(yj − y)i2(zk − z)i3Kijk, for i1, i2, i3 =

0, 1, 2, and
∑

is the sum over all design points.

The estimated gradient vector β̂(x, y, z) = (̂b(x, y, z), ĉ(x, y, z), d̂(x, y, z))T provides an es-

timate of the direction that the underlying regression function f increases the fastest. So, if its

magnitude is larger, f would be steeper around (x, y, z), and it is more likely that (x, y, z) is an

edge pixel. However, when f is steep but continuous in O∗(x, y, z), β̂(x, y, z) can also have a

relatively large magnitude. To remove this slope effect, we consider two neighboring design points

(xN1, yN1, zN1) and (xN2, yN2, zN2) along the direction of β̂(x, y, z). Their spherical neighbor-

hoods of size h∗n do not overlap with O∗(x, y, z), but are adjacent to O∗(x, y, z) on either side.

Intuitively, if (x, y, z) is on a JLS, then (xN1, yN1, zN1) and (xN2, yN2, zN2) would be on two dif-

ferent sides of the JLS. Based on this intuition, we define the following jump detection criterion:

δ(x, y, z) = min{‖β̂(x, y, z)− β̂N1
(x, y, z)‖, ‖β̂(x, y, z)− β̂N2

(x, y, z)‖},

where β̂N1
(x, y, z) and β̂N2

(x, y, z) are the estimated gradients in the neighborhoods of (xN1, yN1, zN1)

and (xN2, yN2, zN2), respectively, and ‖ · ‖ is the Euclidean norm. If there is no jump in the three

neighborhoods, then β̂(x, y, z), β̂N1
(x, y, z) and β̂N2

(x, y, z) should be close to each other. Hence,

δ(x, y, z) is small. On the other hand, if (x, y, z) is on a JLS, then δ(x, y, z) would be relatively

large, due to the jump. Therefore, δ(x, y, z) can be used for detecting jumps. The point (x, y, z) is

then detected as a jump point if

δ(x, y, z) > un, (4)

where un is a threshold parameter.

2.2 Local Approximation to the Underlying Jump Location Surfaces

As discussed in Section 1, JLSs of a 3-D image could have a number of different structures (cf.,

Figure 1). To preserve the major edge structures, we consider estimation of the underlying JLS in

the following neighborhood of a given point (x, y, z) ∈ Ω:

O(x, y, z) = {(u, v, w) : (u, v, w) ∈ Ω,
√

(u− x)2 + (v − y)2 + (w − z)2 ≤ hn},
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where hn is a bandwidth that could be different from h∗n used in edge detection (2). To this end,

the following three cases are considered. (i) The underlying JLS in O(x, y, z) is planar, and can be

well approximated by a local plane. (ii) The JLS inO(x, y, z) contains a ridge or valley, and can be

well approximated by two crossing half-planes. (iii) The JLS contains a pointed part in O(x, y, z),

and can be approximated reasonably well by a cone. See Figure 2 for a demonstration of these

three basic edge structures. In reality, the JLSs may have more complicated structures than the

ones considered here. For instance, they may contain a pyramid, saddle points, or an elliptically

pointed part. However, with the three basic structures, the major edge features can be preserved

well, which is supported by the numerical examples presented in Section 4. In the next four parts,

we describe our proposals to estimate the three basic edge structures from the detected edge pixels,

and to choose one of them for estimating the underlying JLS.

Figure 2: Three basic edge structures used for approximating the underlying JLS in a spherical

neighborhood of a given design point. In each plot, the dots denote the detected edge pixels,

shaded surface denotes approximation of surface and the arrows point to its normal direction.

2.2.1 Approximation to the JLS in O(x, y, z) by a local plane

In cases when the underlying JLS is planar inO(x, y, z) (cf., the left panel of Figure 1), we suggest

approximating it by a local plane constructed as follows.

(i) The plane passes the center (cx, cy, cz) of the detected edge pixels in O(x, y, z).

(ii) Its normal direction is determined by the eigenvector of the largest eigenvalue of

G =
1

m
ΨΨT , (5)
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where Ψ = (β̂
∗
1, β̂

∗
2, . . . , β̂

∗
m), and {β̂

∗
l , l = 1, 2, . . . ,m} denote estimated gradient direc-

tions (with unit lengths) at all m detected edge pixels in O(x, y, z).

See the left panel of Figure 2 for a demonstration, where the dots denote the detected edge pixels,

the arrows denote the direction determined by the eigenvector of the largest eigenvalue of G, and

the shaded plane denotes the plane for approximation. Lemma 3 in the supplementary file shows

that the approximation plane converges almost surely to the true tangent plane of f at (x, y, z)

under some regularity conditions.

2.2.2 Approximation to the JLS in O(x, y, z) by two crossing half-planes

In cases when the underlying JLS has a ridge or valley inO(x, y, z) (cf., the middle panel of Figure

1), we suggest approximating it by two crossing half-planes as follows.

(i) Calculate the eigenvector corresponding to the smallest eigenvalue of G, which should be a

good estimate of the direction of the ridge/valley contained in the underlying JLS, because

the JLS has the smallest variation along that direction.

(ii) Determine the plane P that passes (cx, cy, cz) along the estimated ridge/valley direction ob-

tained in step (i) and along β
∗

as well, where β
∗

is the average of {β̂
∗
l , l = 1, 2, . . . ,m}.

(iii) Divide all detected edge pixels in O(x, y, z) into two groups as follows. We first determine

the direction that is orthogonal to the plane P , and then determine the two groups of the

detected edge pixels based on the signs of their inner products with the orthogonal direction.

Those detected edge pixels with non-negative inner products belong to one group, and those

with negative inner products belong to the other group.

(iv) For each group of the detected edge pixels, determine a plane that passes the center of that

group of pixels in the direction orthogonal to the averaged gradient direction within that

group of pixels.

(v) The two crossing half-planes are then obtained from the two planes computed in step (iv).

The subspace of O(x, y, z) formed by them should contain (cx, cy, cz).
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2.2.3 Approximation to the JLS in O(x, y, z) by a cone

In cases when the underlying JLS contains a pointed part in O(x, y, z) (cf., the right panel of

Figure 1), we suggest approximating it by a cone, which can be uniquely determined by specifying

its central axis, its vertex, and the half cone angle (i.e., the angle between the central axis and a

straight line on the lateral surface), as follows.

(i) The direction of the central axis of the cone is estimated by the direction (1, d2, d3)T that

minimizes the sample variance of its inner products with {β̂
∗
l , l = 1, 2, . . . ,m}. Since the

angle between the central axis of the cone and the normal direction at any point on the

lateral surface of the cone is a constant, this estimate should be reasonable to use. Simple

calculations show that d2 = (Ψ23Ψ13 − Ψ33Ψ12)/(Ψ22Ψ33 − Ψ2
23) and d3 = (Ψ12Ψ23 −

Ψ22Ψ13)/(Ψ22Ψ33−Ψ2
23), where Ψj1j2 is the sample covariance of the (j1, j2)th components

of {β̂
∗
l , l = 1, 2, . . . ,m}, for j1, j2 = 1, 2, 3.

(ii) The half cone angle is estimated by the complement of the averaged angle between the

direction of the central axis specified in step (i) and {β̂
∗
l , l = 1, 2, . . . ,m}, which is denoted

as θ̂.

(iii) To specify the location of the central axis, let us consider a sphere Õ(x, y, z) that is centered

at (x, y, z) and has radius h̃n > hn. The plane P̃ passing (cx, cy, cz) and having the normal

direction (1, d2, d3)T would divide Õ(x, y, z) into two parts. Centers of the detected edge

pixels in these parts are then calculated, and the one closer to P̃ is denoted as (c∗x, c
∗
y, c
∗
z).

Then, the line passing (c∗x, c
∗
y, c
∗
z) along the direction (1, d2, d3)T is used as the central axis

of the cone. In all numerical examples presented in Section 4, we choose h̃n = 3hn.

(iv) The vertex location (vx, vy, vz) of the cone is estimated by minimizing the orthogonal dis-

tance between the cone and the detected edge pixels in O(x, y, z). After some algebraic

manipulations, the estimator can be calculated by

(v̂x, v̂y, v̂z) = (c∗x + β
∗
1t, c

∗
y + β

∗
2t, c

∗
z + β

∗
3t),

where β
∗
1, β

∗
2, and β

∗
3 are three components of β

∗
, t is one of [

∑
dltl/(tan θ̂||β∗||) +∑

t2l ]/
∑
tl and [

∑
dltl/(tan θ̂||β∗||) −

∑
t2l ]/(−

∑
tl) that minimizes

∑
(dl cos θ̂ − |t −
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tl|||β
∗|| sin θ̂)2,

tl =
β
∗
1(x∗l − cx) + β

∗
2(y∗l − cy) + β

∗
3(z∗l − cz)

||β∗||2
,

dl =
√

(x∗l − c∗x − β
∗
1tl)

2 + (y∗l − c∗y − β
∗
2tl)

2 + (z∗l − c∗z − β
∗
3tl)

2,

(x∗l , y
∗
l , z
∗
l ) denotes the l-th detected edge pixel inO(x, y, z), and

∑
is over all detected edge

pixels in O(x, y, z).

2.2.4 Selection of the local surface

In the previous three parts, we have discussed how to approximate the underlying JLS inO(x, y, z)

using one of the three basic surfaces shown in Figure 2. In practice, we need to choose one of the

three surfaces based on observations in O(x, y, z) for estimating f(x, y, z). To this end, various

model selection criteria, including the Akaike Information Criterion (AIC), Bayesian Information

Criterion (BIC), and so forth, have been considered. For instance, by the BIC, the fitted surface

minimizing the following BIC criterion should be chosen:

BIC(x, y, z) = m log

(
RSS(x, y, z)

m

)
+ k log(m), (6)

where RSS(x, y, z) denotes the sum of squares of the orthogonal distances from the individual

detected edge pixels to the fitted surface in question, m is the number of detected edge pixels in

O(x, y, z), and k is the total number of parameters in the model of the surface. For the local plane,

the two crossing half-planes, and the cone, their numbers of parameters are 3, 6, and 7, respectively.

By the AIC, the second term on the right side of (6) should be replaced by 2k.

In our numerical studies, we tried both AIC and BIC methods, and found that results with

the BIC method are usually better in terms of the mean squared error (MSE) of the estimated f .

This might be consistent with the findings in Nishii (1984) that the probability of choosing the

true model by the BIC tends to 1 when the sample size increases, as long as the true model is

included in the candidate set. In the current problem, most part of the true JLSs should be well

approximated by one of the three basic surfaces considered. For this reason, we use the BIC in all

numerical examples presented in Section 4.
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2.3 Proposed 3-D Image Denoising Procedure

After the underlying JLS is approximated by a local surface in the neighborhood O(x, y, z),

O(x, y, z) can be divided into two parts by the approximation surface, denoted as O1(x, y, z) and

O2(x, y, z). Without loss of generality, we assume that (x, y, z) is contained in O1(x, y, z). Then,

f(x, y, z) can be estimated by the solution to a, denoted as f̂(x, y, z), of the following minimiza-

tion problem:

min
a,b,c,d

∑
(xi,yj ,zk)∈O1(x,y,z)

{ξijk − [a+ b(xi − x) + c(yj − y) + d(zk − z)]}2K

(
xi − x
hn

,
yj − y
hn

,
zk − z
hn

)
.

(7)

From (2) and (7), f̂(x, y, z) is a weighted average of the observations whose design points are

located on the same side of the approximation surface in O(x, y, z) as the given point (x, y, z).

Intuitively, as long as the the approximation surface estimates the underlying JLS well, f̂(x, y, z)

should preserve edges and major edge features well.

For a real image, there are regions where f is smooth. In these regions, the number of detected

edge pixels should be small. Also, in such regions, a relatively larger bandwidth is prefered to

increase the noise removal ability of the procedure. So, before estimating f using (7), we suggest

counting the number of detected edge pixels in O(x, y, z). If the number is large so that a potential

JLS is likely in O(x, y, z) (e.g., larger than or equal to (nhn)2/4), then estimate f using (7). Other-

wise, consider a larger spherical neighborhood Ŏ(x, y, z) with bandwidth h̆n > hn. In Ŏ(x, y, z),

if the number of detected edge pixels is still smaller than (nh̆n)2/4, then it is unlikely to have a

JLS in Ŏ(x, y, z) and we suggest estimating f(x, y, z) simply by the conventional LLK estimator

constructed from all observations in Ŏ(x, y, z). If the number of detected edge pixels in Ŏ(x, y, z)

is larger than or equal to (nh̆n)2/4, then it is possible to have a JLS in Ŏ(x, y, z), but the JLS is

unlikely to be in O(x, y, z). In such cases, we suggest estimating f(x, y, z) by the conventional

LLK estimator constructed in O(x, y, z). By this modification, procedure (7) is used only when

the number of detected edge pixels in O(x, y, z) is relatively large. To do so, there are at least

two benefits. One is that much computation is saved, because the conventional LLK estimator is

much easier to compute, compared to the one-sided estimator obtained by (7). The other benefit

is that the estimated f would be more efficient, because it is constructed from all observations
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in O(x, y, z) or Ŏ(x, y, z), instead of from part of observations in O(x, y, z), in cases when the

number of detected edge pixels in O(x, y, z) is small. Considering the fact that most points in

the design space are continuity points of f , these benefits are substantial. Regarding h̆n, based on

our numerical experience, we can simply choose h̆n = chn with c ∈ [1.25, 2]. In all numerical

examples considered in Section 4, we choose c = 1.75 and the results are satisfactory. Now, we

can summarize the proposed 3-D image denoising procedure as follows.

Proposed 3-D Image Denoising Procedure

• Detect edge pixels by the procedure described in Section 2.1.

• For a given pixel (x, y, z), count the number of detected edge pixels in O(x, y, z). If this

number is smaller than (nhn)2/4, then consider a larger spherical neighborhood Ŏ(x, y, z)

with bandwidth h̆n. If the number of detected edge pixels in Ŏ(x, y, z) is still smaller than

(nh̆n)2/4, then define f̂(x, y, z) to be the conventional LLK estimate in Ŏ(x, y, z). Oth-

erwise, define f̂(x, y, z) to be the conventional LLK estimate in O(x, y, z). Continue the

denoising procedure for the next pixel.

• If the number of detected edge pixels in O(x, y, z) is larger than or equal to (nhn)2/4, then

define f̂(x, y, z) by (7), after the underlying JLS in O(x, y, z) is approximated by one of

the three basic local surfaces, as discussed in Sections 2.2.1–2.2.4. Continue the denoising

procedure for the next pixel.

2.4 Selection of Procedure Parameters

In the proposed 3-D image denoising procedure, there are three parameters h∗n, un, and hn (cf., ex-

pressions (2), (4), and (7)). They should be chosen properly because performance of the proposed
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image denoising procedure would depend on their values. To choose un, we notice that

P (δ(x, y, z) > un)

≤ P (‖β̂(x, y, z)− β̂N1(x, y, z)‖ > un)

= P
(

(̂b(x, y, z)− b̂N1(x, y, z))2 + (ĉ(x, y, z)− ĉN1(x, y, z))2 + (d̂(x, y, z)− d̂N1(x, y, z))2 > u2
n

)
= E

{
P
(

(̂b(x, y, z)− b̂N1(x, y, z))2 + (ĉ(x, y, z)− ĉN1(x, y, z))2+

(d̂(x, y, z)− d̂N1(x, y, z))2 > u2
n

∣∣∣ b̂(x, y, z), ĉ(x, y, z), d̂(x, y, z)
)}

.

For fixed b̂(x, y, z), ĉ(x, y, z), and d̂(x, y, z), ((̂b(x, y, z)−b̂N1(x, y, z))2+(ĉ(x, y, z)−ĉN1(x, y, z))2+

(d̂(x, y, z)− d̂N1(x, y, z))2)/σ2
N1 approximately follows the χ2

3 distribution, under the assumption

that there are no jumps in O∗(x, y, z)
⋃
O∗(xN1, yN1, zN1)

⋃
O∗(xN2, yN2, zN2), where σ2

N1 =

Var(̂bN1(x, y, z)). From expressions in (3), we have

σ2
N1 = σ2

∑
(xi − xN1)2K2

N1

{(
∑

(xi − xN1)KN1}2
,

where KN1 = K
(
xi−xN1

h∗n
,
yj−yN1

h∗n
,
zk−zN1

h∗n

)
. Therefore, a natural choice for un is

un = σ̂

√
χ2

3,αn

∑
(xi − xN1)2K2

N1

(
∑

(xi − xN1)2KN1)2
, (8)

where χ2
3,αn

is the 1 − αn quantile of the χ2
3 distribution and σ̂ is a consistent estimator of σ. For

simplicity, we can define σ̂ to be the residual mean squares of the conventional LLK estimator of f

defined in O∗(x, y, z), and αn can be specified beforehand to be a small number, say, αn = 0.001.

To choose h∗n and hn, we suggest using the cross-validation (CV) procedure with the following

CV score:

CV (h∗n, hn) =
1

n3

n∑
i,j,k=1

(
ξijk − f̂−i,−j,−k(xi, yj, zk)

)2

, (9)

where f̂−i,−j,−k(xi, yj, zk) is the estimate of f(xi, yj, zk) when we do not include the (i, j, k)-th

pixel (xi, yj, zk) in all subsequent steps of the proposed image denoising procedure after edge

detection. Then, h∗n and hn are chosen to be the minimizer of CV (h∗n, hn). Note that, when

computing f̂−i,−j,−k(xi, yj, zk), the (i, j, k)-th pixel is still used in edge detection, which is for

simplifying computation. By (9), we only need to detect edges once in the whole design space.

Based on our numerical experience, it would not change the value of f̂−i,−j,−k(xi, yj, zk) much
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to include the (i, j, k)-th pixel or not in edge detection. In the statistical literature, there are some

alternative methods for choosing smoothing parameters like h∗n and hn, including the Mallow’s Cp,

plug-in algorithms, bootstrap, and so forth (e.g., Marron 1988, Loader 1999, Hall and Robinson

2009). The CV method is used here mainly because of its simplicity, which is especially relevant

for 3-D image analysis where computation is generally extensive.

3 Some Statistical Properties

In this section, we discuss some statistical properties of the estimated image intensity function f̂ .

In our description, a point (x, y, z) on the JLSs is called a singular point if one of the following

conditions is satisfied. (i) There exists some constant ν > 0 such that, for any 0 < ν̃ < ν,

the spherical neighborhood of (x, y, z) with diameter ν̃ is divided into more than two connected

regions by the JLSs. (ii) There exists a direction along which the JLSs do not have the one-sided

directional tangent line at (x, y, z). (iii) The jump magnitude of f at (x, y, z) is 0. (iv) f does not

have a tangent plane at (x, y, z), and (x, y, z) is neither on a ridge/valley of the JLSs nor a vertex

of a circular cone (cf., the middle and right panels of Figure 2). All other points on the JLSs are

called nonsingular points. Also, we define

Ωε = [ε, 1− ε]× [ε, 1− ε]× [ε, 1− ε],

Jε = {(x, y, z) : (x, y, z) ∈ Ω, dE((x, y, z), (x∗, y∗, z∗)) ≤ ε, for some (x∗, y∗, z∗) ∈ D},

Sε = {(x, y, z) : (x, y, z) ∈ Ω, dE((x, y, z), (x∗, y∗, z∗)) ≤ ε, for a singular point (x∗, y∗, z∗) in D},

ΩJ̄ ,ε = Ωε\Jε,

ΩS̄,ε = Ωε\Sε,

where ε is a small positive constant, dE denotes the Euclidean distance, and D denotes the set of

points on the JLSs. Let D̂n = {(xi, yj, zk) : δ(xi, yj, zk) > un} be the set of all detected edge

pixels. Then, we have

Theorem 3.1 Assume that f has continuous first order partial derivatives over (0, 1)× (0, 1)×
(0, 1) except on the JLSs, and its first order partial derivatives have one-sided limits at non-

singular points of the JLSs on both sides of a given JLS; h∗n = o(1), 1/(nh∗n) = o(1), and
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log2(n)/n3(h∗n)6 = O(1); E|ε4
111| < ∞; the kernel function K is a Lipschitz-1 continuous,

isotropic, trivariate density function; and αn is chosen such that (i) αn = o(1), (ii) (nh∗n)7/2/{n2
√
− logαn} =

o(1) and (iii)
√
− logαn/(nh∗n)3 = o(1). Then, for any small constant ε > 0, dH(D

⋂
ΩS̄,ε, D̂n

⋂
ΩS̄,ε) =

O(h∗n) a.s., where dH(A,B) denotes the Hausdorff distance between two point sets A and B, de-

fined by

dH(A,B) = max

{
sup

(x,y,z)∈A
inf

(x′,y′,z′)∈B
dE((x, y, z), (x

′, y′, z′)), sup
(x,y,z)∈B

inf
(x′,y′,z′)∈A

dE((x, y, z), (x
′, y′, z′))

}
�

Theorem 3.2: Besides the conditions in Theorem 3.1, if we further assume that hn = o(1),

1/(nhn) = o(1), h∗n/h
3
n = o(1), and h̆n = chn where c > 0 is a constant, then ‖f̂ − f‖ΩJ̄,hn

=

max(x,y,z)∈ΩJ̄,hn
|f̂(x, y, z) − f(x, y, z)| = O(h2

n) a.s. For any small constant ε > 0, when

(x, y, z) ∈ Jhn\Sε, h̃n = o(1) and hn
h̃n

= o(1), we have f̂(x, y, z) = f(x, y, z) + O(hn) a.s.

�

Theorem 3.1 establishes the almost sure consistency of the detected edge pixels. If we choose

h∗n = O(n−1/4), αn = O(e−n
2
), and all other conditions in the theorem are satisfied, then we

have dH(D
⋂
Dε, D̂n

⋂
Dε) = O(n−1/4) a.s. Theorem 3.2 says that the estimated image intensity

function is uniformly strong consistent in the whole design space excluding a small region around

the design border and the true JLSs. At a given point around the true JLSs, it is pointwise strong

consistent, as long as the point in question is a small distance away from any singular points of the

JLSs. Proofs of the above two theorems are given in a supplementary file.

4 Numerical Examples

In this section, we present some numerical results regarding the performance of the proposed 3-D

image denoising procedure (denoted as NEW), in comparison with four existing methods that are

commonly used in practice, including an anisotropic diffusion method (denoted as AD, cf., Lopes

2007), a method based on total variation minimization (denoted as TV, cf., Rudin et al. 1992,

Getreuer 2007), a method based on optimized non-local means (denoted as ONLM, cf., Coupe

et al. 2008b), and the conventional local median filtering method (denoted as MED). For the TV
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method, the code by Getreuer (2007) interprets a 3-D image as a 2-D image with vector-valued

image intensities. Here, we have modified it by minimizing a TV criterion constructed from a

3-D image directly for 3-D image denoising. In this method, there is a regularization parameter to

choose. The AD method is accomplished by an iterative algorithm that contains two parameters:

the diffusion parameter κ and the number of iterations of the algorithm. The ONLM method has

two bandwidth parameters to choose. The median filtering method denoises the image by using

the sample median of the observations in a spherical window to estimate the true image intensity

at the central pixel of the window. It has one parameter to choose, which is the bandwidth of the

spherical window. Our proposed denoising method NEW has three parameters h∗n, un and hn to

choose.

The numerical study includes two artificial 3-D images and a real 3-D MRI test image. First,

we consider the following two true image intensity functions

f1(x, y, z) = −(x− 0.5)2 − (y − 0.5)2 − (z − 0.5)2 +

I (max(I(|x− 0.5| ≤ 0.25)I(|y − 0.5| ≤ 0.25)I(|z − 0.5| ≤ 0.25),

I((x− 0.5)2 + (y − 0.5)2 ≤ 0.152)I(|z − 0.5| ≤ 0.35)) = 1
)
,

f2(x, y, z) =
1

4
sin(2π(x+ y + z) + 1) +

1

4
+ I

(
max(I((x− 0.5)2 + (y − 0.5)2 ≤ 1

4
(z − 0.5)2)

I(z ≤ 0.5)I(z ≥ 0.2), I((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 ≤ 0.42)

I((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 > 0.22)I(z < 0.45)) = 1
)
.

Their edge surfaces are shown in the two plots of Figure 3. Basically, f1 contains a cube

with a solid cylinder in the middle, and its background and foreground are variable but smooth.

From the left panel of Figure 3, we can see that the JLSs of f1 contain planes, intersections of

two planes, intersections of three planes, smooth non-linear surfaces, and intersections of a plane

and a smooth non-linear surface. From the right panel of Figure 3, we can see that f2 contains a

half hollow hemisphere and a cone. The two objects are separated, although they are close to each

other. The foreground of f2 has a fixed intensity level, and its background has a variable intensity

level. Therefore, jump sizes are different at different places of the JLSs.

We then apply the five image denoising procedures to the 3-D noisy images generated from
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Figure 3: The left and right panels show the jump location surfaces of f1 and f2, respectively.

model (1) when f equals f1 or f2, n = 64 or 128 (denoting two different image resolutions),

ε111 ∼ N(0, σ2) with σ = 0.1, 0.2 or 0.3 (representing low, medium and high noise levels).

Because procedures ONLM, TV, AD and MED do not have corresponding data-driven parameter

selection algorithms yet, to make a fair comparison, we search their procedure parameters by

minimizing the MISE value estimated by the sample mean of

ISE(f̂ , f) =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

(
f̂(xi, yj, zk)− f(xi, yj, zk)

)2

over 100 replications, for each combination of f , σ and n, where f̂ denotes the denoised image of

the related denoising method.

The MISE criterion provides us a measure of the overall performance of a denoising procedure.

But, it can not tell us how well the JLSs are preserved by the denoising procedure. Hall and Qiu

(2007) defined a measure of the jump size (JS) of a 2-D image. A discretized version of its 3-D

generalization can be written as follows. For the true image intensity function f , its JS can be

measured by

JS(f) =
1

(n− 2)3

n−1∑
i=2

n−1∑
j=2

n−1∑
k=2

|f(x′i, y
′
j, z
′
k)− f(x′′i , y

′′
j , z
′′
k)|,

where (x′i, y
′
j, z
′
k) and (x′′i , y

′′
j , z
′′
k) are two pixels on two different sides of the pixel (xi, yj, zk)

along the x−, y−, z−direction, or a diagonal direction that is closest to the gradient direction

of f at (xi, yj, zk). Obviously, if (xi, yj, zk) is an edge pixel, then |f(x′i, y
′
j, z
′
k) − f(x′′i , y

′′
j , z
′′
k)|

is close to the jump magnitude of f at (xi, yj, zk). Otherwise, |f(x′i, y
′
j, z
′
k) − f(x′′i , y

′′
j , z
′′
k)| is

close to 0. So, JS(f) is a reasonable measure of the accumulative jump magnitude of f along the

JLSs. For a denoised image f̂ , we can compute JS(f̂) similarly, by using the estimated gradient
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directions of f . Then, EP (f̂) = (JS(f) − JS(f̂))/JS(f) would be a reasonable measure of

edge-preservation (EP) for the denoising method in question. In the numerical examples, after we

denoise images by the NEW method and all other competing methods, we calculate this measure

using the neighborhood size 0.0234 when n = 64 and 0.0117 when n = 128 to calculate the

gradient directions. For MRI images we used it to be 0.0117. The choices of this neighborhood

size seem reasonable if we compare them with the choice of h∗n in different images listed in Tables

1–3 below.

The numerical results for f1 and f2 are presented in Tables 1 and 2, respectively. From Table

1, it can be seen that the proposed method NEW is uniformly better than the competing methods

TV, AD, and MED in both MISE and EP, although the MISE values of the methods NEW and TV

are almost the same in cases when σ = 0.1. Compared to the method ONLM, the method NEW

performs better in terms of MISE in cases when σ = 0.2 and 0.3, and performs similarly in terms

of MISE in cases when σ = 0.1. In terms of EP, it seems that ONLM is better when σ is small (i.e.,

σ = 0.1 when n = 64, and σ = 0.1 or 0.2 when n = 128). Similar conclusions can be made from

the results presented in Table 2, except that the methods NEW, TV and ONLM perform similarly

in this example in terms of MISE, but the method NEW is much better than the other two methods

in terms of EP.

One realization of f1 is generated from model (1) with n = 128, ε111 ∼ N(0, σ2), and σ = 0.2.

Three cross sections of this realization at z = 0.5, z = 0.1875, and x = 0.4688 are shown in the

first column of Figure 4. The corresponding cross sections of the denoised images by TV, AD,

ONLM, MED and NEW are shown in the 2–6 columns. In the denoising methods, their parameters

are chosen to be the ones shown in the part with n = 128 and σ = 0.2 of Table 1. Similarly, three

cross sections of a realization of f2 at x = 0.5, x = 0.8125, and x = 0.6562, from model (1) with

n = 128, ε111 ∼ N(0, σ2), and σ = 0.2, along with the cross sections of the denoised images

of the five methods, are shown in Figure 5. From the two figures, it can be seen that TV, ONLM

and MED tend to blur the edges at some places, the denoised image by AD seems to contain some

scattered noise, and the denoised image by NEW preserves the edges well and removes noise well.

To better see the results, for the three slices of the denoised images shown in Figure 5, we present

the differences between them and the corresponding slices of the true image in Figure 6. From the
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Table 1: In each entry, the first line presents the estimated MISE value from 100 simulations and

the corresponding standard error of ISE (in parenthesis), the second line presents the measure of

edge-preservation EP and its standard error, and the third line presents the searched procedure

parameter values. This table considers the case when f = f1.

n=64 n=128

Method σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

.0003 (.0000) .0009 (.0000) .0018 (.0000) .0001 (.0000) .0004 (.0000) .0008 (.0000)

TV .1011 (.0023) .1909 (.0037) .2480 (.0050) .1053 (.0013) .1930 (.0019) .2737 (.0024)

11.0 6.0 4.5 11.0 6.0 4.0

.0006 (.0000) .0035 (.0000) .0082 (.0001) .0003 (.0000) .0020 (.0000) .0048 (.0000)

AD -.0310 (.0022) -.0457 (.0050) .1109 (.0089) -.0246 (.0009) -.0632 (.0021) .1719 (.0040)

.18 , 6 .4 , 4 .6 , 4 .18 , 8 .38 , 5 .6 , 5

.0003 (.0000) .0012 (.0000) .0032 (.0001) .0001 (.0000) .0006 (.0000) .0015 (.0000)

ONLM -.0082 (.0025) .0408 (.0054) .1191 (.0075) -.0070 (.0013) .0140 (.0026) .0421 (.0035)

10 , 2 10 , 2 10 , 2 10 , 2 10 , 2 10 , 2

.0022 (.0000) .0033 (.0000) .0055 (.0001) .0008 (.0000) .0019 (.0000) .0033 (.0000)

MED .1615 (.0023) .2757 (.0039) .3214 (.0051) .1579 (.0010) .3789 (.0014) .4667 (.0016)

.0313 .0359 .0359 .0189 .0250 .0250

.0003 (.0000) .0008 (.0000) .0012 (.0001) .0001 (.0000) .0003 (.0000) .0005 (.0000)

NEW .0224 (.0025) .0369 (.0049) .0464 (.0075) .0199 (.0015) .0251 (.0027) .0277 (.0038)

.023 , 13 , .037 .023 , 22 , .050 .028 , 22 , .053 .012 , 24 , .025 .012 , 44 , .028 .014 , 44 , .028
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Table 2: In each entry, the first line presents the estimated MISE value from 100 simulations and

the corresponding standard error of ISE (in parenthesis), the second line presents the measure of

edge-preservation EP and its standard error, and the third line presents the searched procedure

parameter values. This table considers the case when f = f2.

n=64 n=128

Method σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

.0006 (.0000) .0015 (.0000) .0023 (.0000) .0003 (.0000) .0006 (.0000) .0010 (.0000)

TV .1648 (.0025) .2375 (.0046) .3563 (.0058) .1795 (.0013) .3077 (.0022) .3504 (.0029)

13.0 7.5 4.5 12.0 6.0 4.5

.0007 (.0000) .0038 (.0000) .0087 (.0001) .0004 (.0000) .0022 (.0000) .0052 (.0000)

AD .0153 (.0031) .1111 (.0067) .1418 (.0066) .0085 (.0017) .1709 (.0041) .1880 (.0033)

.22 , 4 .4 , 4 .75 , 3 .18 , 7 .4 , 5 .72 , 4

.0006 (.0000) .0014 (.0000) .0024 (.0000) .0003 (.0000) .0006 (.0000) .0009 (.0000)

ONLM .1264 (.0029) .2146 (.0048) .2529 (.0067) .1795 (.0017) .2308 (.0031) .2564 (.0045)

3 , 2 4 , 2 5 , 2 5 , 3 5 , 3 6 , 3

.0011 (.0000) .0026 (.0000) .0038 (.0000) .0006 (.0000) .0014 (.0000) .0022 (.0000)

MED .1918 (.0028) .3793 (.0042) .5019 (.0049) .2735 (.0015) .4530 (.0021) .5726 (.0020)

.0313 .0406 .0500 .0203 .0250 .0297

.0006 (.0000) .0013 (.0000) .0019 (.0000) .0002 (.0000) .0006 (.0000) .0008 (.0000)

NEW .0625 (.0035) .1016 (.0066) .2007 (.0099) .0477 (.0022) .0873 (.0045) .1568 (.0065)

.023 , 9 , .031 .023 , 16 , .038 .028 , 18 , .053 .012 , 20 , .019 .014 , 22 , .028 .014 , 34 , .033
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images in this figure, we can see that the method NEW is indeed better in preserving edges than

the four competing methods, which is consistent with the results of EP shown in Table 2.

Figure 4: The first column presents three cross sections of an image generated from model (1) with

f = f1, n = 128, ε111 ∼ N(0, σ2), and σ = 0.2. Columns 2–6 show denoised images by TV,

AD, ONLM, MED and NEW, respectively, when their procedure parameters are chosen to be the

corresponding ones listed in Table 1.

Next, we consider a magnetic resonance image (MRI) of a human brain with 128× 128× 52

pixels. Its image intensity levels range from 0 to 809. I.i.d. noise from the distribution N(0, σ2) is

added to the image, where σ is chosen to be 40, 70, or 100. The parameters of the four denoising

procedures are chosen in the same way as those in the examples of Tables 1 and 2. The results are

shown in left-side portion of Table 3 and in Figure 7. From Table 3, we can see that the proposed

procedure NEW outperforms all three competing methods in all cases in terms of both the MISE

and the edge preservation measure EP. In Figure 7, the first two rows present two cross-sections of

a noisy version of the 3-D MRI image when σ = 40 (1st column), and their denoised versions by

procedures TV, AD, ONLM, MED, and NEW (columns 2–6). The third and fourth rows and the

fifth and sixth rows present the corresponding results when σ = 70 and 100, respectively. In order

to see the detail better, in the seventh row, we zoom out the upper-middle portion of the images in
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Figure 5: The first column presents three cross sections of an image generated from model (1) with

f = f2, n = 128, ε111 ∼ N(0, σ2), and σ = 0.2. Columns 2–6 show denoised images by TV,

AD, ONLM, MED and NEW, respectively, when their procedure parameters are chosen to be the

corresponding ones listed in Table 2.

the fourth row. From the images in this figure, it seems that procedure NEW preserves edges better

than the competing methods, which is consistent with results in Table 3.

We also consider the case when the noise level is different at different places of the image. In

practice, the noise level is often higher in the foreground (i.e., the central part of the image with the

image objects) and lower in the background. To mimic this situation, the following variable noise

level is considered:

σ(x, y, z) = 25 + 50 exp

[
−(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

4

]
.

The denoising methods are executed in the same way as before, and the results are presented in

the right-side portion of Table 3 and in Figure 8. From the table and the figure, we can see that the

proposed procedure NEW performs relatively well in this case too.

In Section 2.4, a cross-validation (CV) procedure is proposed for choosing the parameters of

the proposed procedure NEW. Next, we apply NEW to all examples discussed above in the same as

described, except that un is chosen by (8) with αn = 0.001 and h∗n and hn are chosen by minimizing
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Table 3: In each entry, the first line presents the estimated MISE value from 100 simulations and

the corresponding standard error of ISE (in parenthesis), the second line presents the measure of

edge-preservation EP and the corresponding standard error, and the third line presents the searched

procedure parameter values.

Gaussian Noise Variable Noise

Method σ = 40 σ = 70 σ = 100 variable σ

374.0 (1.0) 737.5 (2.2) 1063.6 (3.4) 756.4 (2.5)

TV .3021 (.0015) .4788 (.0020) .5350 (.0025) .4647 (.0021)

.05 .025 .018 .025

456.2 (1.3) 971.8 (3.0) 1525.0 (4.8) 997.5 (3.1)

AD .2574 (.0016) .4042 (.0021) .4440 (.0018) .4223 (.0022)

110 , 2 190 , 2 700 , 1 200 , 2

403.8 (1.2) 764.5 (2.8) 1129.1 (4.6) 785.2 (2.8)

ONLM .2264 (.0013) .3158 (.0019) .3494 (.0024) .3289 (.0019)

6 , 1 10 , 1 16 , 1 11 , 1

642.7 (1.6) 1065.9 (2.7) 1472.1 (4.1) 1093.9 (2.8)

MED .2120 (.0013) .4241 (.0018) .4727 (.0023) .4200 (.0019)

.0078 .0117 .0141 .0117

371.3 (1.1) 669.7 (2.2) 949.5 (3.9) 700.0 (2.5)

NEW .1899 (.0017) .2529 (.0026) .3128 (.0038) .2574 (.0029)

.012,8000,.012 .012,12000,.014 .012,16000,.017 .012,12500,.014
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Figure 6: The five columns show the differences between the three slices of the denoised images

shown in Figure 5 and the corresponding slices of the true image, for methods TV, AD, ONLM,

MED and NEW, respectively. Pixels at which the estimation is greater than (less than) the true

intensity value are darker (lighter), and the majority of errors are small (gray).

the CV score defined in (9). The results based on 100 replications are presented in Table 4. From

this table and Tables 1–3, we can see that (i) results of NEW with its parameters selected by CV are

close to results of NEW with its parameters selected optimally by minimizing the estimated MISE

in all cases, and (ii) when its parameters chosen by CV, NEW still outperforms TV and MED in all

cases, outperforms AD when σ = 0.2 or 0.3, and is comparable with AD when σ = 0.1. The three

cross sections of its denoised image in the case of Figure 4 are shown in the first column of Figure

9, the three cross sections of its denoised image in the case of Figure 5 are shown in the second

column, and the cross sections of its denoised images corresponding to rows 2, 4 and 6 of Figure

7 are shown in the third column. Comparing Figure 9 with Figures 4, 5, and 7, we can see that the

denoised images of NEW when its parameters are chosen by CV are indeed similar to its denoised

images when its parameters are chosen optimally by minimizing the estimated MISE.
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Figure 7: The first two rows present two cross-sections of a noisy version of the 3-D MRI image

when σ = 40 (1st column), and their denoised versions by procedures TV, AD, ONLM, MED,

and NEW (columns 2–6). The third and fourth rows and the fifth and sixth rows present the

corresponding results when σ = 70 and 100, respectively. Images in the seventh row zoom out the

upper-middle portion of the images in the fourth row. Procedure parameters are chosen to be the

ones listed in Table 3.
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Figure 8: The first two rows present two cross-sections of a noisy version of the 3-D MRI image

when σ = 25+50 exp{−[(x−0.5)2 +(y−0.5)2 +(z−0.5)2]/4} (1st column), and their denoised

versions by procedures TV, AD, ONLM, MED, and NEW (columns 2–6). Images in the third row

zoom out the upper-middle portion of the images in the second row. Procedure parameters are

chosen to be the ones listed in Table 3.

5 Concluding Remarks

We have presented an image denoising procedure in the framework of jump regression analysis.

The new procedure can preserve edges and major edge structures. Numerical examples show that

it performs well in various cases. However, 3-D image denoising is a challenging task. From

the construction of the proposed method, it can be seen that this method would not work well at

places where two or more edge surfaces cross or at other singular points of the JLSs. It would

not efficiently preserve edge structures that are more complicated than the ones shown in Figure 2

either, although such structures might be less important in describing image objects. The current

denoising procedure requires explicit detection of JLSs before estimating the true image intensity

function. In practice, it might be more convenient to use a 3-D denoising procedure without explicit

detection of the JLSs. All these issues need to be addressed in our future research.

26



Table 4: Simulation results of the procedure NEW when its parameters are chosen by (8) with

αn = 0.001 and by minimizing the CV score defined in (9).

n=64 n=128

σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

.0003 (.0000) .0008 (.0000) .0013 (.0001) .0002 (.0000) .0004 (.0000) .0006 (.0000)

f1 -.0096 (.0028) -.0136 (.0055) .0132 (.0073) .0129 (.0016) .0124 (.0027) .0161 (.0037)

.034 , .041 .034 , .038 .034 , .056 .014 , .027 .014 , .027 .014 , .028

.0006 (.0000) .0013 (.0000) .0020 (.0000) .0002 (.0000) .0007 (.0000) .0008 (.0000)

f2 .0650 (.0036) .1332 (.0061) .1956 (.0103) .0479 (.0024) .0812 (.0049) .1723 (.0065)

.023 , .034 .031 , .047 .031 , .053 .016 , .020 .012 , .025 .017 , .031

σ = 40 σ = 70 σ = 100 variable σ

435.9 (1.3) 729.0 (2.2) 1024.6 (4.4) 763.6 (2.6)

MRI .1752 (.0018) .1921 (.0031) .2727 (.0039) .1877 (.0033)

.012 , .014 .012 , .014 .012 , .017 .012 , .014

Supplemental Materials

Proofs of the two theorems in Section 3 and R-packages for executing the proposed method are

provided online as supplemental materials. They are briefly described below.

Proofs.pdf: A pdf file containing the proofs of the two theorems in Section 3.

readme.txt: Readme file that explains how to use the R-packages provided in supplemental ma-

terials.

denoise-1.0.tar.gz: This R-package denoises 3-D images. It also calculates performance measures

MISE and JS when the true image is known. In this package, users can specify the values of

the three procedure parameters h∗n, un and hn.

denoiseautothresh-1.0.tar.gz: This R-package denoises 3-D images. It also calculates perfor-

mance measures MISE and JS when the true image is known. In this package, un is chosen

to be the one given in (8) of Section 2.4 with αn = 0.001.
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Figure 9: The first column shows the cross sections of the denoised image of NEW in the case

of Figure 4, the second column shows the cross sections of the denoised image of NEW in the

case of Figure 5, and the third column shows the cross sections of the denoised images of NEW

corresponding to rows 2, 4 and 6 of Figure 7. In this example, procedure parameters of NEW are

chosen by CV.

denoisecv-1.0.tar.gz: This R-package calculates the CV-score defined by (9) in Section 2.4. It can

be used for selecting the parameters h∗n and hn by the CV procedure.
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