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In recent years, 3D printing gets more and more popular in manufacturing industries.

Quality control of 3D printing products thus becomes an important research problem. However,

this problem is challenging due to the facts that (i) the surface of a product from 3D printing can

have arbitrary shape, even when the 3D printing process is in-control, (ii) surface observations

of the product obtained from a laser scanner may not have regularly spaced locations, and (iii)

the overall geometric positions of 3D printing products might be all different, making proper

comparison among different products difficult. In this paper, we propose a Phase I control chart

for monitoring products from 3D printing that addresses all these challenges. Numerical studies

show that it works well in practice.
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1 Introduction

Statistical process control (SPC) charts have been used widely in manufacturing industries, for

monitoring production processes so that they work stably and satisfactorily (Qiu, 2014). The

ultimate goal of SPC charts is to distinguish common cause variation, mainly due to noise, from

special cause variation, due to systematic problems of the related production process, such as

defective raw materials, improper operation of the workers, improperly adjusted machines, and so

forth. When a special cause variation is detected, a signal should be given and the production

process should be stopped immediately for engineers to find the root causes.

Traditional control charts, including the Shewhart, cumulative sum (CUSUM), exponentially

weighted moving average (EWMA) and change-point detection (CPD) charts, are for monitoring

one or more quality variables (Shewhart, 1931; Page, 1954; Roberts, 1959; Hawkins et al., 2003).

Recently, monitoring of the relationship between two or more variables, called profile monitoring,
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finds more and more applications. Early profile monitoring methods are based on linear or para-

metric modeling (e.g., Jin and Shi, 1999; Kang and Albin, 2000; Kim et al., 2003). More recent

methods are more flexible without the parametric assumptions (e.g., Zou et al., 2008; Qiu et al.,

2010).

This paper is motivated by the following profile monitoring problem. Figure 1 shows a 3D

printer and a product. The top of the product is a curvy surface, while other sides are all flat.

For this product, we are mainly concerned about the shape of its top surface. To measure the

top surface, the product can be held firmly by a device, and then a laser scanner can scan the

surface from its top. Although the scanner usually scans the product from the left side to the

right side and from the top to the bottom, the observation locations are not regularly spaced in

columns and rows. Instead, they are usually irregularly spaced. Also, different products may not

be geometrically matched up well, in the sense that relative positions between the products and

the laser scanner could be all different, and the products may have different thickness (i.e., the

height from the bottom to the top surface), orientation, etc., although such difference is usually

quite small. Therefore, the current profile (i.e., the top surface of the product) monitoring problem

has at least the following three challenges: (i) the top surface has a complicated shape and it is

difficult to describe using a parametric model, even when the 3D printing process is in-control (IC),

(ii) the surface observation locations obtained by a laser scanner are not regularly spaced, and

(iii) the overall geometric positions of 3D printing products might be all different, making proper

comparison among different products difficult.

Figure 1: A 3D printer (left) and a product (right).

In the literature, we have not found any existing methods for handling the specific profile
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monitoring problem described above. One related but different problem was discussed in Colosimo

et al. (2014), where cylindrical surfaces were considered and modeled by a Gaussian process model

with a constant mean function, homogeneous covariance function and a joint normal distribution

of the observations. See also related discussions in Xia et al. (2008); del Castillo et al. (2013). But,

the monitoring problem considered there is totally different from the current problem, described

below. 1) The true surfaces considered there are cylindrical and can be described by a radial

model. Therefore, the difference between the actual radius and the nominal radius can be modeled,

and it might be reasonable to assume that the mean difference is a constant (cf., expression (7)

in Colosimo et al. (2014)). In the current problem, the surfaces are rather arbitrary and do not

have a constant mean. 2) Geometric alignment of different observed surfaces is critically important

in the current problem. In Colosimo et al. (2014), because the surfaces are cylindrical, this was

achieved by first aligning the centers of different observed surfaces and then maximizing the cross-

correlation between roundness profiles of the surfaces. Such a registration approach is appropriate

for cylindrical surfaces, but cannot be applied to general surfaces that need to be handled in the

current paper. 3) A typical scanned top surface of a 3D product considered in this paper would

contain several hundred thousand observations. The Gaussian process model used in Colosimo

et al. (2014) may not be feasible to handle data of this size. Another related research problem is

about wafer surface monitoring (Wang et al., 2014), where a wafer surface is modeled by a Gaussian

Kriging model in which the overall mean surface is assumed to be a linear plan and the spatial

observations are assumed to follow a spatially homogeneous Gaussion process. It should be pointed

out that the Gaussian Kriging model might be appropriate for describing wafer surfaces. But, from

the right panel of Figure 1, it can be seen that the top surface of a 3D printing product is usually

nonlinear and the assumption of a spatially homogeneous Gaussion process is difficult to justify

either. Also, geometric alignment of different observed surfaces is not considered in that paper.

In this paper, we propose a novel Phase I charting scheme for monitoring products from 3D

printing, as described above. More specifically, we focus on monitoring the top surfaces of 3D

printing products, as demonstrated in Figure 1, since the shape of the top surfaces is often our

major concern in many 3D printing applications. Our proposed method is mainly for cases when

these surfaces are continuous, although discontinuous surfaces can also be handled after some

proper modifications (cf., a related discussion in Section 2.2 below). Because each typical observed

surface would involve a large amount of observations, the Gaussian process method considered in
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the literature may not be feasible for this problem. In Phase I SPC, we mainly want to understand

the variability in a collected sample of surface data, identify out-of-control (OC) observed surfaces,

and so forth. See a recent paper Shi et al. (2016) on a related but different problem. Our proposed

method can address all three challenges discussed earlier about the related surface profile monitoring

problem. The method is described in detail in Section 2. Its performance is evaluated in Section

3. A real-data example is discussed in Section 4. Some remarks conclude the article in Section 5.

2 Phase I Monitoring of Spatial Surface Data

2.1 Model description

Let (xij , yij , zij) be the jth spatial observation of the ith surface under consideration, for j =

1, 2, . . . , Ni and i = 1, 2, . . . , n, where (xij , yij) is the location of the observation in the (x, y) plane,

and zij is the height of the ith surface at (xij , yij), measured by the laser scanner described in

Section 1. Then, a nonparametric model for describing the observed data is

zij = gi(xij , yij) + εij , for j = 1, 2, . . . , Ni, i = 1, 2, . . . , n, (1)

where gi(x, y) is the true regression function for describing the ith surface, and εij ’s are random

errors with mean 0 and variance σ2. As described in Section 1, even when the 3D printing system

is IC and all products are non-defective, the geometric positions of different products still need to

be adjusted, due mainly to the fact that the relative positions between the laser scanner and the

top surfaces of the products might be different from product to product, the bottom parts (i.e.,

foundations) of different products might be (slightly) different in their height and orientation, and

so forth. So, the geometric positions of the surfaces of different products are mis-matched in such

cases (cf., Figure 2 for a demonstration), and it is critically important to align their positions well

before we can check whether they are the same or not in a meaningful way. If we regard each surface

as an image, with the height of the surface at a given position as the image intensity, then the above

position alignment problem is equivalent to the image registration problem in the literature (cf.,

Bhagalia et al., 2009; Pan et al., 2009; Xing and Qiu, 2011; Qiu and Xing, 2013).

In the image registration literature, people use both parametric (Denton et al., 1999) and

nonparametric (Xing and Qiu, 2011) models for describing the geometric transformation involved.

The most popular parametric model is the so-called rigid-body transformation, under which the
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Figure 2: Demonstration of two top surfaces of two products, which need to be geometrically

aligned.

Euclidean distance between any two pixels on an image will not change after the transformation.

In the current surface alignment problem, we believe that rigid-body transformations are the most

relevant ones, because the misalignment among different observed surfaces is mainly due to the

relative position move between the laser scanner and the 3D printing products. So, that type of

transformations is considered here. Besides the rigid-body transformations, another type of com-

monly used parametric transformations uses the so-called affine motion models, by which scales

in different surfaces are allowed to be different (Qiu and Nguyen, 2008). Nonparametric trans-

formations do not assume specific parametric forms. Therefore, they are more flexible than their

parametric counterparts. Commonly used nonparametric image registration methods include those

free-form deformation techniques, diffeomorphic image registration methods, and nonparametric lo-

cal smoothing methods (Tustison et al., 2009; Beg et al., 2005; Qiu and Xing, 2013). These methods

will not be considered here because of their complexity and heavy computing burden. Regarding

the way to estimate the geometric transformation in image registration, there are two general ap-

proaches for that purpose: feature-based and intensity-based methods. By a feature-based method,

we need to first select a number of corresponding features in the two images, respectively, and then

find a geometrical transformation to best match the two sets of features (Althof et al., 1997; Davis

et al., 1997, e.g.,). To this end, landmarks or control points are often the preferred features and

they can be selected manually or automatically by a computer. Other commonly used features
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include edge lines or curves, which are often detected by gradient-based methods, and regions,

centroids or templates, which are usually determined by ways of thresholding and segmentation.

For comprehensive surveys, see Brown (1992); Zitova and Flusser (2003). One specific feature-

based image registration method is based on the Iterative Closest Point (ICP) algorithm (Besl and

McKay, 1992; Yang et al., 2013). This method assumes that the geometric transformation has a

parametric form. To use this method, two sets of features need to be extracted from the two related

images. Then, the ICP algorithm alternates between estimating the parameters in the geometric

transformation and searching for the optimal pointwise correspondence between the two sets of

features. However, it is well demonstrated that this method suffers from the following drawbacks:

(i) the inconvenience in extracting the related features, (ii) the heavy dependence on the quality of

initialization in the algorithm, and (iii) the risk to obtain local minima instead of global minima

in parameter estimation. In practice, however, feature-based methods may not be convenient to

use. First, feature selection is often a time-consuming and challenging process with much arbitrari-

ness involved. Second, it is often difficult to determine the number of needed features. The more

features we select, the higher accuracy we could possibly achieve for estimating the geometrical

transformation. But at the same time more effort is required. For these reasons, recent image

registration research focuses more on estimating the geometric transformation based directly on

the observed image intensities of the two images (i.e., the intensity-based), which is also adopted

in this paper.

Without loss of generality, assume that the first surface is the reference surface, and all other

surfaces need to be geometrically matched to it. Then, the rigid-body transformations have the

following expression: 
x1

y1

z1

 = Ri


xi

yi

zi

+ Ti, for i = 2, 3, . . . , n, (2)

where (x1, y1, z1) is a point on the first surface, (xi, yi, zi) is the corresponding point on the ith

surface, Ti = (Tix, Tiy, Tiz) is the translation in the x, y, and z directions, Ri is the rotation matrix

with the expression

Ri =


1 0 0

0 cosαi sinαi

0 − sinαi cosαi




cosβi 0 − sinβi

0 1 0

sinβi 0 cosβi




cos θi sin θi 0

− sin θi cos θi 0

0 0 1

 , (3)
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and Ai = (αi, βi, θi) are rotating angles along the x, y, and z axes. The transformation comprising

the right-hand-side of (2) is denoted as G(xi, yi, zi;Ti,Ai) = (G1(xi, yi, zi;Ti,Ai), G2(xi, yi, zi;Ti,Ai),

G3(xi, yi, zi;Ti,Ai)).

2.2 Surface estimation and registration

The major idea in our proposed procedure for estimating the rigid-body transformations G(xi, yi, zi;Ti,Ai)

is to make the individual surfaces gi defined in (1) as close to each other as possible after the trans-

formations. Therefore, we need to properly estimate gi first. To this end, since it is reasonable

to assume that gi’s are continuous surfaces in most 3D printing applications, we suggest using the

Nadaraya-Watson local constant kernel (LCK) smoothing procedure (Qiu, 2005, sec. 2.3) here. If

the surfaces could have jumps or other singularities, then some jump-preserving surface estimation

procedures can be considered (Kang and Qiu, 2014; Mukherjee and Qiu, 2011). For a given location

(x, y), let us consider its circular neighborhood

O(x, y) = {(u, v) : (u, v) ∈ Ω and
√

(u− x)2 + (v − y)2 ≤ h}

where h > 0 is a bandwidth parameter that should be predetermined, and Ω is the design space.

Then, the LCK estimator of gi(x, y), donated as ĝi(x, y), is defined as

ĝi(x, y) =

∑
(xij ,yij)∈O(x,y) zijK(

xij−x
h ,

yij−y
h )∑

(xij ,yij)∈O(x,y)K(
xij−x

h ,
yij−y

h )
, for i = 1, 2, . . . , n, (4)

where K is a two-dimensional, circularly symmetric, kernel function.

As a side note, besides the kernel smoothing procedure considered here, there are several other

smoothing approaches in the literature, including regression and smoothing splines, and so forth

(cf., Qiu 2005, Section 2.5). Smoothing splines may not be appropriate for the current problem

because of its extensive computation. As pointed out earlier, a typical observed surface in the

current problem has several hundred thousand observations. Its smoothing spline estimator would

be difficult to compute in such cases. In order to use a regression spline approach, appropriate knots

or basis functions need to be determined in advance. Usually, the knots should be chosen at places

of a given surface with large curvature. This task, together with determination of the number of

knots, are often difficult to achieve. As a comparison, the LCK estimator defined in (4) is easy

to compute. The estimator ĝi(x, y) is computed from all observations in the local neighborhood

O(x, y) only, the number of which is usually much smaller than the total number of observations
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in the entire surface since the bandwidth h is often chosen small. That is the main reason why it

is adopted here.

To estimate the six parameters in the transformation G(xi, yi, zi;Ti,Ai), one natural approach

is to consider the following minimization procedure:

min
Ti,Ai

∫∫
Ω

[ĝi(G1(x, y, ĝi(x, y);Ti,Ai), G2(x, y, ĝi(x, y);Ti,Ai))− ĝ1(x, y)]2 dx dy, i = 2, 3, . . . , n.

(5)

In practice, we need to discretize the related functions for computing the integration in (5). To

this end, let {(x̃i′j′ , ỹi′j′), i′ = 1, 2, . . . , ñx, j
′ = 1, 2, . . . , ñy} be an equally spaced grid that covers

the entire design space Ω. Then, we can consider the following discretized version of (5):

min
Ti,Ai

ñx∑
i′=1

ñy∑
j′=1

[
ĝi(G1(x̃i′j′ , ỹi′j′ , ĝi(x̃i′j′ , ỹi′j′);Ti,Ai), G2(x̃i′j′ , ỹi′j′ , ĝi(x̃i′j′ , ỹi′j′);Ti,Ai))

−ĝ1(x̃i′j′ , ỹi′j′)
]2
, for i = 2, 3, . . . , n. (6)

In (6), the squared difference can be replaced by the absolute difference.

There are 6 parameters in (6). To search for their optimal values simultaneously may not be

feasible in practice, due mainly to the heavy computing burden. However, the surface registration

problem has the following special property: two well-aligned surfaces should share a same center

(e.g., Audette et al., 2000; Colosimo et al., 2014). Based on this property, the three translation

parameters can be determined first, by aligning the centers of the two related surfaces. Namely, we

define their estimates by

T̂ix =
1

N1

N1∑
j=1

x1j−
1

Ni

Ni∑
j=1

xij , T̂iy =
1

N1

N1∑
j=1

y1j−
1

Ni

Ni∑
j=1

yij , T̂iz =
1

N1

N1∑
j=1

z1j−
1

Ni

Ni∑
j=1

zij . (7)

Then, Ti can be estimated by T̂i = (T̂ix, T̂iy, T̂iz), and we only need to estimate the three rotation

parameters. To this end, we consider using the following iterative searching algorithm.

• Set the initial values for Ai = (αi, βi, θi) to be A
(0)
i = (0, 0, 0).

• In the kth iteration, for k ≥ 1, evaluate the objective function

ñx∑
i′=1

ñy∑
j′=1

[
ĝi(G1(x̃i′j′ , ỹi′j′ , ĝi(x̃i′j′ , ỹi′j′); T̂i,Ai), G2(x̃i′j′ , ỹi′j′ , ĝi(x̃i′j′ , ỹi′j′); T̂i,Ai))− ĝ1(x̃i′j′ , ỹi′j′)

]2
at 27 possible values of Ai with each component being the value obtained in the previous

iteration or that value ±dk, where dk is a constant depending on k. The minimizer is denoted

as A
(k)
i .
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• The procedure stops if max(|α(k)
i − α

(k−1)
i |, |β(k)

i − β(k−1)
i |, |θ(k)

i − θ
(k−1)
i |) < ε, where ε > 0 is

a given small number.

The resulting estimates are denoted as Âi = (α̂i, β̂i, θ̂i). From the above algorithm, we can see

that it stops when the searched values in the two consecutive iterations are close to each other,

controled by the pre-specified constant ε. When ε is chosen small enough, Âi should be close to a

local optimum of the objective function, since it is obtained from the search among 27 neighboring

values of Ai. Because the true values of Ai are usually small in reality (i.e., the directional difference

between the two related surfaces is small) and we set the initial value of Ai to be (0, 0, 0) in the

algorithm, the estimate Âi should provide a good approximation to the true value of Ai in most

cases. In the above algorithm, there are several parameters to choose, including the bandwidth h

in (4), the sequence of parameters {dk} and the constant ε. Based on our numerical experience, we

suggest choosing h ∈ [0.1, 0.2], dk = dk−1/2 (i.e., the bisection search), d0 = 10o, and ε = 0.001. In

the numerical examples presented in the next section, they are chosen that way. In that setup, the

algorithm converges quite fast (within 10 to 20 iterations in all cases considered there).

2.3 Phase I surface monitoring

After surface estimation and registration, we are ready for Phase I surface monitoring. To this end,

we need to use n geometrically aligned estimated surfaces, denoted as {ĝ∗i (x, y), i = 1, 2, . . . , n},

where ĝ∗1(x, y) = ĝ1(x, y), and for i = 2, . . . , n,

ĝ∗i (x, y) = ĝi(G1(x, y, ĝi(x, y); T̂i, Âi), G2(x, y, ĝi(x, y); T̂i, Âi)).

In the above expression, (G1(x, y, ĝi(x, y); T̂i, Âi), G2(x, y, ĝi(x, y); T̂i, Âi)) is the point on the sur-

face ĝi(x, y) that matches the point (x, y) on the surface ĝ1(x, y) (cf., the definition of G(xi, yi, zi;Ti,Ai)

at the end of Section 2.1). So, ĝ∗i (x, y) is the ith estimated surface that has been aligned to ĝ1(x, y).

Next, we discuss Phase I surface monitoring based on these geometrically aligned estimated sur-

faces. First, the IC surface, denoted as g(0)(x, y), can be estimated by ĝ(0)(x, y) = 1
n

∑n
i=1 ĝ

∗
i (x, y).

Then, a natural charting statistic can be defined as

QART = max
i=1,2,...,n

1

ñxñy

ñx∑
i′=1

ñy∑
j′=1

∣∣∣ĝ∗i (x̃i′j′ , ỹi′j′)− ĝ(0)(x̃i′j′ , ỹi′j′)
∣∣∣ , (8)

where the subscript “A”, “R” and “T” denotes the “absolute value” norm used in the above

definition, and rotation and translation considered in the surface registration, respectively. The
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chart gives a signal when

QART > cART , (9)

where cART > 0 is a control limit. Note that the construction of QART did not take into account

the possible spatial correlation of the surface observations. As discussed in Section 1, some authors

used different Gaussian process models for describing such spatial correlation for surface monitoring,

which is difficult to justify in practice. In the statistical literature, some existing research confirms

that statistics which ignore the data correction, such as the one in (8), should still be statistically

consistent for estimating the corresponding parameter (the mean absolute difference between the

two surfaces ĝ∗i and g(0) in the case of (8)), under some regularity conditions (Brabanter et al.,

2011; Choi et al., 2013, e.g.,), although they would loss some efficiency in such cases. In the next

section, we will provide a numerical example to show that the chart based on QART has certain

power to handle correlated data.

Obviously, when all products are IC, the charting statistic QART in (8) does not depend on

gi(x, y), for i = 1, 2, . . . , n, and g(0)(x, y) because g∗i (x, y) = g(0)(x, y) in such cases and QART

is based on g∗i (x, y) − g(0)(x, y), where g∗i (x, y) denotes the ith aligned surface. So, it is pos-

sible to obtain the empirical IC distribution of QART based on the following bootstrap proce-

dure (Chatterjee and Qiu, 2009). Randomly select ñxñy elements with replacement from the set

{ĝ∗i (x̃i′j′ , ỹi′j′)− ĝ(0)(x̃i′j′ , ỹi′j′), i
′ = 1, 2, . . . , ñx, j = 1, 2, . . . , ñy, i = 1, 2, . . . , n} and calculate their

mean absolute value. Repeat this n times, and the maximum of the n mean absolute values is used

as an approximation to QART . This entire process is then repeated for B times, and the (1− α)th

quantile of the B approximations of QART can then be used as the control limit value cART , where

α is a given nominal IC false alarm rate (FAR). This bootstrap procedure is appropriate to use

in applications when g(0)(x, y) is unknown but we have an IC sample of n observed surfaces. In

simulation studies, g(0)(x, y) is known. So, we can obtain the empirical distribution of QART by

performing B repeated simulations, in each of which a value of QART can be computed based on

n simulated IC surfaces. Again, we can use the (1 − α)th quantile of the B calculated values of

QART as the control limit value cART .
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3 Simulation

In this section, we present some numerical results regarding the performance of the proposed

method. Besides the chart QART defined in (8)-(9), we also consider the following six alternative

methods:

• the chart with L2 norm in (6) and (8) (i.e., the absolute value is replaced by the squared

value) and with both rotation and translation in surface registration, denoted as QSRT ,

• the chart with the L2 norm in (6) and (8) and with translation in surface registration (i.e.,

rotation is ignored), denoted as QST ,

• the chart with the L2 norm in (6) and (8) and without surface registration, denoted as QS ,

• the chart with L1 norm in (6) and (8) and with translation only in surface registration,

denoted as QAT ,

• the chart with L1 norm in (6) and (8) and without surface registration, denoted as QA,

• and the Gaussian-Kriging method proposed by Wang et al. (2014).

The alternative chart QSRT is considered here to see whether it makes difference to use L2 norm in

(6) and (8), instead of the L1 norm. In the alternative charts QST , QS , QAT , and QA, either the

rotation or both the rotation and translation of the geometric transformation are ignored. They are

considered here to investigate the consequence when the geometric mislignment exists among the

observed surfaces but part or the entire geometric misalignment is ignored. The Gaussian process

approach is the most popular one in the surface monitoring literature and it can accommodate

certain spatial data correlation. Therefore, the one by Wang et al. (2014) is also considered in this

study. In the methods QSRT , QST , QS , QART , QAT , and QA, we choose the Epanechnikov kernel

function K(u, v) = (1−u2−v2)I(u2 +v2 ≤ 1) and h = 0.1 in the LCK estimation (4). More details

about the Gaussing-Kriging method will be given in Section 3.3.

In the simulation, we consider the design space Ω = [−10, 10]× [−10, 10], the IC surface

g(0)(x, y) = xy exp

{
−
(

1.5x

10

)2

−
(

3y

10

)2
}

+ 5,
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and the following four OC surfaces

g(1)(x, y) = g(0)(x, y) + r1xy exp

{
−
(

1.5x

10

)2

−
(

3y

10

)2
}
I(x > 0, y > 0),

g(2)(x, y) = g(0)(x, y) + r2xy exp

{
−
(

1.5x

10

)2

−
(

3y

10

)2
}
,

g(3)(x, y) = g(0)(x, y) + η(x2 + y2)/102,

g(4)(x, y) = g(0)(x, y) + δ,

where r1 = 0.12, 0.24, r2 = 0.04, 0.2, η = 0.3, 1, and δ = 0.5, 2. The above four types of OC surfaces

represent 4 different geometric misalignments with g(0)(x, y). The OC surface g(1)(x, y) is different

from the IC surface g(0)(x, y) in the upper-right quadrant only, g(2)(x, y) is different from g(0)(x, y)

in the entire design space with the difference small in the central and border regions of the design

space, g(3)(x, y) is also different from g(0)(x, y) in the entire design space with the difference large

in the border regions of the design space, and g(4)(x, y) is different from g(0)(x, y) by a constant in

the design space. We expect that the charts with surface registration will perform well in the first

three cases, and perform badly in the last case. The plot of g(0)(x, y) is shown in Figure 3, and the

plots of the four OC surfaces when r1 = 0.12, r2 = 0.04, η = 0.3 and δ = 0.5 are shown in Figure

4.

Figure 3: The IC surface g(0)(x, y).

The observed surfaces are generated from model (1) with the random errors εij generated

i.i.d. from the N(0, 0.152) distribution. The observation locations {(xij , yij)} for the n surfaces
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Figure 4: The four OC surfaces g(1)(x, y) (upper-left panel), g(2)(x, y) (upper-rightt panel), g(3)(x, y)

(lower-left panel), and g(4)(x, y) (lower-right panel), when r1 = 0.12, r2 = 0.04, η = 0.3 and δ = 0.5.
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are generated in two steps as follows. First, an equally spaced grid is generated in Ω with the

distance between two consecutive horizontal or vertical lines to be 0.1. Each grid point is then

moved horizontally by sh and vertically by sv, where sh and sv are two independent random

numbers generated from the N(0, 0.022) distribution. The set of the resulting disturbed grid points

is called a disturbed grid. Second, for the ith observed surface, generate an integer number Ni

from the U(15000, 16000) distribution as the number of observations of that surface. Then, the

observation locations {(xij , yij), j = 1, 2, . . . , Ni} are obtained by randomly selecting Ni points

without replacement from the disturbed grid. After the n observed surfaces are obtained, the first

one is centralized as the reference surface. Namely, the observations of the reference surface arex1j −
Ni∑
j=1

x1j , y1j −
Ni∑
j=1

y1j , z1j −
Ni∑
j=1

z1j

 .

Each of the remaining n − 1 observed surfaces is rotated α, β and θ degrees in the x, y, and z

axes, respectively, where (α, β, θ) are independent random numbers generated from the U [−3, 3]

distribution, and moved by Tx, Ty and Tz along the three axes, where (Tx, Ty, Tz) are independent

random numbers generated from the U [−1, 1] distribution.

3.1 IC performance of the six procedures based on (6) and (8)

In this part, we compare the IC performance of the six procedures QSRT , QST , QS , QART , QAT , and

QA that are based on (6) and (8). By the procedure described at the end of Section 2, the control

limit values of the six related charts considered in this part are computed in the setup described

above, based on 10,000 repeated simulations for the nominal IC FAR α = 0.05 and n = 10 or

30. They are presented in Table 1. Note that the values of n considered here are relatively small,

compared to those in the conventional SPC literature, because the number of 3D printing products

of the same type is usually small. From the table, we can see that control limits increase slightly

when n increases from 10 to 30.

Table 1: Control limits of the six charts when α = 0.05 and n = 10 or 30.

n QSRT QART QST QAT QS QA

10 0.0279 0.1235 0.1769 0.3401 2.0463 1.2223

30 0.0327 0.1328 0.1889 0.3504 2.2082 1.2421

The IC performance of a control chart is evaluated by the actual IC FAR, defined to be the
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proportion of the repeated simulations in which at least one signal is obtained, in the case when all

surfaces are IC in each simulation. The actual IC FAR values calculated based on 1,000 simulations

are presented in Table 2, when the nominal FAR is α = 0.05 and n = 10 or 30. From the table, it

can be seen that i) the charts QART , QAT and QS are the most reliable ones among all six charts

since their actual IC FAR values are the closest to the nominal IC FAR value 0.05, and ii) the

charts QSRT and QA are reasonably good although the chart QSRT seems to be a bit conservative.

Table 2: Actual IC FAR values of the six charts based on (6) and (8) when α = 0.05 and n = 10

or 30.

n QSRT QART QST QAT QS QA

10 0.040 0.052 0.047 0.051 0.050 0.056

30 0.033 0.047 0.055 0.047 0.048 0.041

3.2 OC performance of the six procedures based on (6) and (8)

Next, we evaluate the OC performance of the six charts QSRT , QST , QS , QART , QAT , and QA

in terms of the following three criteria. The first criterion, called alarm probability (AP), is the

proportion of the repeated simulations in which at least one signal is obtained, in the case when

one or more surfaces are OC in each simulation (cf., Yeh et al., 2009). The second criterion, called

fraction correctly classified (FCC), is defined to be the proportion of surfaces used in all repeated

simulations that are correctly classified as IC or OC by a chart (cf., Chen et al., 2015). For instance,

if there are 10 IC surfaces and 5 OC surfaces used in a numerical study, and a specific chart gives

signals to 2 IC surfaces and 4 OC surfaces, then its FCC is (8+4)/(10+5) = 0.8. The last criterion,

called false positive proportion (FPP), is the proportion of false signals among all signals given by

a chart. In the above toy example, the FPP is 2/6 = 0.333. Obviously, the larger the first two

criteria or the smaller the third criterion, the better.

The simulation was performed in cases when n = 10 or 30. But, the conclusions are similar in

these two cases. So, only the results when n = 30 are presented here. In such cases, the number of

OC surfaces, denoted as n1, is assumed to be 1, 2, 3, 6, and 9, and they are the 2nd, 4th, 6th, . . . ,

(2n1)th surfaces in a sample.

In cases when the OC surface is g(1)(x, y), the computed OC performance criteria based on
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1000 replicated simulations are presented in Table 3. From the table, it can be seen that when

the surface shift is in a quadrant of the design space only, (i) QART performs the best among all

methods in terms of all three criteria, (ii) with QSRT is slightly worse than QART , (iii) QST and

QAT perform better than QS and QA, and (iii) QS and QA perform the worst. This example

demonstrates the importance of surface registration before surface monitoring. It can be seen from

the table that AP can increase quite significantly and FPP can decrease considerably as well when

surface registration is considered, although the improvement in terms of FCC is less dramatic.

Table 3: Computed values of the OC performance criteria when the OC surface is g(1)(x, y) and

n = 30. Numbers in bold denote the best performance.

Criteria n1 r1 QSRT QART QST QAT QS QA

AP 1 0.12 0.089 0.159 0.143 0.120 0.050 0.057

0.24 1.000 1.000 0.226 0.200 0.052 0.059

2 0.12 0.100 0.198 0.132 0.126 0.047 0.044

0.24 1.000 1.000 0.278 0.243 0.049 0.044

3 0.12 0.117 0.219 0.169 0.153 0.045 0.050

0.24 1.000 1.000 0.343 0.284 0.046 0.041

6 0.12 0.130 0.258 0.162 0.169 0.057 0.057

0.24 1.000 1.000 0.443 0.392 0.068 0.066

9 0.12 0.116 0.213 0.182 0.169 0.047 0.047

0.24 1.000 1.000 0.428 0.395 0.066 0.070

FCC 1 0.12 0.968 0.970 0.963 0.963 0.965 0.965

0.24 0.999 0.998 0.966 0.965 0.965 0.965

2 0.12 0.935 0.938 0.930 0.930 0.932 0.932

0.24 0.999 0.999 0.935 0.934 0.932 0.932

3 0.12 0.902 0.906 0.897 0.897 0.899 0.899

0.24 0.999 0.999 0.904 0.902 0.899 0.899

6 0.12 0.803 0.807 0.798 0.798 0.799 0.799

0.24 0.999 0.999 0.809 0.806 0.799 0.799

9 0.12 0.702 0.704 0.700 0.700 0.699 0.699

0.24 0.999 0.999 0.708 0.705 0.700 0.699

FPP 1 0.12 0.293 0.232 0.892 0.905 0.922 0.969

0.24 0.034 0.054 0.562 0.609 0.893 0.887

2 0.12 0.306 0.206 0.805 0.821 0.915 0.944

0.24 0.014 0.022 0.427 0.489 0.800 0.780

3 0.12 0.233 0.154 0.752 0.713 0.854 0.852

0.24 0.010 0.015 0.373 0.425 0.792 0.784

6 0.12 0.220 0.156 0.646 0.638 0.678 0.781

0.24 0.004 0.007 0.281 0.333 0.600 0.699

9 0.12 0.246 0.215 0.514 0.503 0.660 0.772

0.24 0.003 0.004 0.294 0.352 0.479 0.628
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The corresponding results when the OC surface is g(2)(x, y), g(3)(x, y), or g(4)(x, y) are presented

in Tables 4-6, respectively. From the tables, it can be seen that the surface registration is generally

helpful in cases with g(2)(x, y) and g(3)(x, y), and it is not helpful at all in cases when g(x, y) =

g(4)(x, y). Remember that g(4)(x, y) has a constant shift from the IC surface g(0)(x, y) and their

shapes are exactly the same. Such a constant shift would be removed in the surface registration

stage. Consequently, surface monitoring after surface registration would perform worse in such

cases, compared to surface monitoring without surface registration. Therefore, these results are all

reasonable.

3.3 Comparison with the Gaussing-Kriging method and cases with correlated

data

In this part, we compare the numerical performance of the six procedures QSRT , QST , QS , QART ,

QAT , and QA with the Gaussian-Kriging method proposed by Wang et al. (2014). For the Gaussian-

Kriging method, we consider two different versions: one without surface registration and the other

with surface registration, denoted as GK and GKR, respectively. In this example, we consider

two scenarios. The first scenario (denoted as S1) is that the IC and OC surfaces are g(0)(x, y) and

g(1)(x, y) considered in Sections 3.1 and 3.2, and the observed surface data are independent. In the

second scenario (denoted as S2), surface observations are generated from the following model:

zij = gi(xij , yij) + Z(xij , yij) + εij , for j = 1, 2, . . . , Ni, i = 1, 2, . . . , n,

where zij , gi(xij , yij) and εij are defined as in model (1) and Z(x, y) is a Gaussian process satisfying

the conditions that

1) E(Z(x, y)) = 0,

2) For any two points (x1, y1) and (x2, y2) in the design space,

Cov(Z(x1, y1), Z(x2, y2)) = 0.12 exp

{
−(x1 − x2)2

0.02
− (y1 − y2)2

0.02

}
,

3) For any n points (x1, y1), (x2, y2), . . . , (xn, yn), (Z(x1, y1), Z(x2, y2), · · · , Z(xn, yn)) has a mul-

tivariate normal distribution.

The above covariance function is the same as that used in Wang et al. (2014). In this scenario, the

IC and OC surfaces are still assumed to be g(0)(x, y) and g(1)(x, y).
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Table 4: Computed values of the OC performance criteria when the OC surface is g(2)(x, y) and

n = 30. Numbers in bold denote the best performance.

Criteria n1 r2 QSRT QART QST QAT QS QA

AP 1 0.04 0.054 0.102 0.162 0.142 0.037 0.033

0.2 1.000 1.000 0.830 0.766 0.065 0.052

2 0.04 0.060 0.122 0.124 0.116 0.057 0.049

0.2 1.000 1.000 0.936 0.901 0.075 0.065

3 0.04 0.070 0.129 0.130 0.119 0.059 0.061

0.2 1.000 1.000 0.971 0.948 0.078 0.063

6 0.04 0.083 0.162 0.146 0.115 0.056 0.057

0.2 1.000 1.000 0.975 0.961 0.127 0.082

9 0.04 0.097 0.170 0.140 0.131 0.055 0.049

0.2 1.000 1.000 0.960 0.949 0.151 0.117

FCC 1 0.04 0.966 0.967 0.962 0.962 0.965 0.966

0.2 0.999 0.998 0.988 0.986 0.965 0.966

2 0.04 0.933 0.934 0.930 0.930 0.932 0.932

0.2 0.999 0.999 0.981 0.976 0.932 0.932

3 0.04 0.900 0.901 0.896 0.897 0.898 0.898

0.2 0.999 0.999 0.969 0.960 0.900 0.899

6 0.04 0.801 0.803 0.798 0.798 0.799 0.799

0.2 0.999 0.999 0.917 0.902 0.801 0.800

9 0.04 0.701 0.703 0.699 0.699 0.699 0.699

0.2 0.999 0.998 0.808 0.793 0.702 0.701

FPP 1 0.04 0.691 0.490 0.912 0.902 0.974 0.943

0.2 0.037 0.046 0.154 0.180 0.783 0.789

2 0.04 0.516 0.040 0.886 0.891 0.847 0.857

0.2 0.014 0.022 0.080 0.079 0.659 0.764

3 0.04 0.520 0.391 0.863 0.860 0.873 0.904

0.2 0.010 0.014 0.064 0.068 0.518 0.640

6 0.04 0.322 0.228 0.719 0.734 0.726 0.768

0.2 0.005 0.007 0.036 0.041 0.414 0.489

9 0.04 0.371 0.293 0.639 0.638 0.633 0.731

0.2 0.002 0.008 0.066 0.070 0.358 0.400
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Table 5: Computed values of the OC performance criteria when the OC surface is g(3)(x, y) and

n = 30. Numbers in bold denote the best performance.

Criteria n1 η QSRT QART QST QAT QS QA

AP 1 0.3 0.222 0.639 0.130 0.123 0.044 0.047

1 1.000 1.000 0.670 0.746 0.116 0.166

2 0.3 0.294 0.766 0.144 0.131 0.049 0.052

1 1.000 1.000 0.839 0.897 0.179 0.272

3 0.3 0.324 0.795 0.123 0.129 0.074 0.085

1 1.000 1.000 0.860 0.913 0.227 0.340

6 0.3 0.247 0.677 0.132 0.132 0.068 0.084

1 1.000 1.000 0.866 0.919 0.319 0.509

9 0.3 0.181 0.478 0.150 0.165 0.068 0.088

1 1.000 1.000 0.755 0.842 0.344 0.582

FCC 1 0.3 0.972 0.986 0.963 0.963 0.965 0.965

1 0.999 0.999 0.983 0.987 0.968 0.969

2 0.3 0.942 0.969 0.929 0.930 0.932 0.932

1 0.999 0.998 0.969 0.975 0.937 0.940

3 0.3 0.911 0.946 0.897 0.897 0.899 0.899

1 0.999 0.998 0.949 0.958 0.905 0.909

6 0.3 0.807 0.843 0.797 0.798 0.800 0.800

1 0.999 0.999 0.862 0.880 0.809 0.818

9 0.3 0.704 0.720 0.698 0.699 0.700 0.700

1 0.999 0.999 0.744 0.761 0.710 0.716

FPP 1 0.3 0.155 0.078 0.922 0.920 0.915 0.912

1 0.034 0.043 0.175 0.140 0.392 0.278

2 0.3 0.104 0.042 0.890 0.866 0.840 0.717

1 0.017 0.022 0.093 0.074 0.208 0.193

3 0.3 0.062 0.029 0.824 0.752 0.747 0.689

1 0.010 0.016 0.080 0.063 0.186 0.157

6 0.3 0.167 0.044 0.759 0.699 0.561 0.525

1 0.003 0.005 0.072 0.058 0.144 0.141

9 0.3 0.175 0.080 0.662 0.617 0.438 0.476

1 0.002 0.003 0.113 0.091 0.170 0.235
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Table 6: Computed values of the OC performance criteria when the OC surface is g(4)(x, y) and

n = 30. Numbers in bold denote the best performance.

Criteria n1 δ QSRT QART QST QAT QS QA

AP 1 0.5 0.039 0.052 0.114 0.098 0.116 0.177

2 0.027 0.044 0.123 0.119 0.811 0.873

2 0.5 0.033 0.046 0.111 0.107 0.168 0.267

2 0.031 0.048 0.118 0.111 0.947 0.974

3 0.5 0.038 0.055 0.130 0.127 0.173 0.311

2 0.037 0.057 0.142 0.124 0.987 0.994

6 0.5 0.039 0.058 0.113 0.109 0.291 0.493

2 0.036 0.061 0.129 0.113 0.998 1.000

9 0.5 0.033 0.044 0.143 0.121 0.311 0.551

2 0.020 0.033 0.121 0.118 1.000 1.000

FCC 1 0.5 0.965 0.965 0.963 0.963 0.968 0.969

2 0.966 0.965 0.962 0.962 0.992 0.994

2 0.5 0.932 0.932 0.930 0.930 0.936 0.940

2 0.932 0.932 0.930 0.930 0.985 0.989

3 0.5 0.899 0.898 0.897 0.897 0.903 0.909

2 0.899 0.898 0.896 0.896 0.980 0.985

6 0.5 0.799 0.799 0.798 0.798 0.808 0.816

2 0.799 0.799 0.798 0.798 0.955 0.968

9 0.5 0.700 0.700 0.698 0.698 0.708 0.716

2 0.700 0.699 0.698 0.698 0.914 0.936

FPP 1 0.5 0.950 0.963 0.977 0.972 0.388 0.337

2 0.963 0.932 0.993 0.992 0.043 0.048

2 0.5 0.939 0.957 0.914 0.926 0.254 0.196

2 0.938 0.942 0.892 0.872 0.032 0.036

3 0.5 0.921 0.909 0.824 0.863 0.237 0.143

2 1.000 0.933 0.886 0.899 0.018 0.025

6 0.5 0.821 0.793 0.744 0.758 0.170 0.170

2 0.784 0.823 0.711 0.703 0.017 0.021

9 0.5 0.600 0.587 0.646 0.674 0.211 0.225

2 0.800 0.758 0.708 0.714 0.027 0.036

Control limit values of all related charts considered in this part are computed in the above

setup based on 2,500 repeated simulations for the nominal IC FAR of α = 0.05. Because similar

conclusions can be made in cases when n = 10 and n = 30, we only present the results when n = 30.

The actual IC FAR values calculated based on 1,000 simulations are presented in Table 7. From

the table, it can be seen that: i) in S1, the charts QART , QAT and QS are the most reliable ones

among all eight charts, since their actual IC FAR values are the closest to the nominal level of 0.05,

and the charts QSRT , GK and GKR seem the most unreliable ones; and ii) in S2, the charts QSRT
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and QAT are quite reliable, while the charts QART , QA and GKR seem a little unreliable.

Table 7: Actual IC FAR values of the eight charts when α = 0.05 and n = 30.

Scenario QSRT QART QST QAT QS QA GK GKR

S1 0.033 0.047 0.055 0.047 0.048 0.041 0.067 0.028

S2 0.050 0.059 0.054 0.047 0.054 0.045 0.046 0.072

Table 8 present the results regarding the OC performance of the eight charts in cases S1 abd

S2 when there is only one OC surface among n surfaces and when r1 = 0.12 or 0.24 in g(1)(x, y).

From the table, we can see that: i) QSRT , QART and GKR perform reasonably well in S1 in all

three measures, ii) GK does not work well, as expected, because it did not take into account surface

registration, and iii) in S2 when the surface data are correlated, it seems that most charts perform

worse, compared to their performance in S1, and the charts QSRT and QART perform relatively

well, especially when r1 = 0.24.

Table 8: Computed values of the OC performance criteria when the OC surface is g(1)(x, y) and

n = 30.

Scenario Criteria r1 QSRT QART QST QAT QS QA GK GKR

S1 AP 0.12 0.089 0.159 0.143 0.120 0.050 0.057 0.038 1.000

0.24 1.000 1.000 0.226 0.200 0.052 0.059 0.043 1.000

FCC 0.12 0.968 0.970 0.963 0.963 0.965 0.965 0.965 0.996

0.24 0.999 0.998 0.966 0.965 0.965 0.965 0.965 0.993

FPP 0.12 0.293 0.232 0.892 0.905 0.922 0.969 1.000 0.097

0.24 0.034 0.054 0.562 0.609 0.893 0.887 1.000 0.066

S2 AP 0.12 0.044 0.037 0.070 0.063 0.048 0.043 0.045 0.054

0.24 0.114 0.133 0.103 0.096 0.041 0.037 0.048 0.048

FCC 0.12 0.965 0.966 0.965 0.965 0.965 0.965 0.965 0.965

0.24 0.968 0.969 0.967 0.966 0.966 0.965 0.965 0.965

FPP 0.12 0.878 0.846 0.836 0.838 0.940 0.958 1.000 1.000

0.24 0.342 0.299 0.472 0.545 0.930 0.925 1.000 1.000

4 A Real-Data Example

In this section, we illustrate the application of the proposed surface monitoring chart using a real 3D

printer and its products. The 3D printer used here is the Makerbot Replicator 2 that is owned by

the Marston Science Library of the University of Florida, and its photo was shown in the left panel
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of Figure 1. A NextEngine 3D scanner is also used for generating surface observations, as described

in Section 1. Before the 3D printer can print products, we need to provide the specification of the

shape of an product. In this example, the IC product looks like the one shown in the right panel of

Figure 1, with the design space to be [−30, 30]× [−30, 30] (in mm2) and the z values (i.e., heights

at different (x, y) positions) in the range [10, 30] mm. The top surface of the designed IC product is

shown in Figure 5(b). We then let the 3D printer print 18 different IC products. For each product,

the number of observations generated by the laser scanner ranges between 141,000 and 158,500. A

small portion of the (x, y) positions of the observations of one product is shown in Figure 5(a). It

can be seen that these positions are indeed irregularly spaced, as discussed in Section 1.

Figure 5: (a) A portion of all observation locations of a typical 3D printing product. (b) The top

surface of the designed IC product for the 3D printer.

Next, we let the 3D printer print 6 OC products with different types of shifts. Their top surfaces

are shown in Figure 6, together with the top surfaces of 3 IC products for comparison purposes. The

first OC product just has a constant shift, as g(4)(x, y) used in the simulation examples discussed

in Section 3. The remaining 5 OC products have shifts with different shapes and sizes, with the

second, fourth, and sixth ones having relatively large shifts, and the third and fifth ones having

relatively small shifts.

We then use the six control charts QSRT , QART , QST , QAT , QS and QA for monitoring these

products. For each of them, their control limits are obtained by a bootstrap re-sampling procedure
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Figure 6: Surfaces in the first column are from three IC products and the ones in the second and

third columns are from the OC products. The labels of the surfaces specify their positions in the

sequence of all 24 products for Phase I monitoring.
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described as follows. First, we randomly select 24 surfaces with replacement from the 18 IC surfaces.

From each selected surface, we randomly select 15,000 observations without replacement as the

resample surface. From the resulting 24 resample surfaces, we can calculate the related charting

statistic value using a formula like (8). This process is then repeated for B = 1, 000 times. The

0.95 quantile of the 1,000 values of the charting statistic is used as the control limit. The kernel

function and the related bandwidth used in (4) are chosen to be the same as those in Section 3.

For monitoring the total of 24 products, the positions of the 6 OC products in the sequence are

randomly selected. They are placed at the 10th, 11th, 14th, 17th, 20th and 23rd places, respectively.

The six control charts are shown in Figure 7. From the plots in that figure, it can be seen that (i)

the first OC products can not be detected by all six methods, (ii) QSRT and QART can detect 4 out

of the remaining 5 OC products, with the 5th OC product undetected, (iii) QST can detect 4 OC

products while QAT can detect 3, and (iv) QS and QA cannot detect any OC products. Result (i)

when the shift is a constant can be explained in the same way as that in Section 3 about cases with

g(4)(x, y). Result (ii) shows that QSRT and QART perform well in this example. The OC product

that they cannot detect is the one with a relatively small shift size. Result (iii) shows that QST

and QAT also perform reasonably well. One explanation is that the orientation changes in the OC

products might be quite small in this example. Result (iv) shows that surface monitoring without

surface registration in advance is not effective at all, which is consistent with the results in Section

3.

5 Conclusions and Future Research

We have discussed quality control for the products of 3D printing in this paper, which has become

an important research problem as 3D printing gets more and more popular in recent years. It has

been demonstrated that quality control of 3D printing products is challenging due mainly to the

complexity of their shapes, irregularity of the locations of observations obtained by laser scanners,

and geometric misalignment among different products. In the previous sections, we have discussed

a new Phase I monitoring scheme that is effective for monitoring the top surfaces of 3D printing

products. One important finding is that this method is reliable only when the top surfaces of

different products are properly aligned beforehand.

There are still many issues that need to be addressed in our future research. For instance, the
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Figure 7: Phase I control charts for 3D printing surfaces. (a) QSRT , (b) QART , (c) QST , (d) QAT ,

(e) QS , and (f) QA.

current method is for Phase I process monitoring only. Control charts for Phase II online process

monitoring need to be developed in the future. Also, in the current method, surface estimation,

surface registration, and surface monitoring are finished in separate procedures. It might simplify

its application if we can combine these procedures and finish all these tasks in a single procedure.

Furthermore, in the current method, the three translation parameters are estimated using a simple

center alignment procedure (7), before the three rotation parameters are estimated by a searching

algorithm, for simplifying the overall computation. It may increase the accuracy of the parameter

estimates if we estimate the six parameters simultaneously, which will be studied in our future

research.
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