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The 3D printing technique becomes popular in recent years. Monitoring the quality of

its products is thus important. In the literature, there is little existing research on this topic

yet, partly because it is a challenging problem with complex data structures. In this paper,

we propose a nonparametric control chart for Phase II monitoring of the top surfaces of 3D

printing products. The top surfaces are focused in this paper because they are our major concern

regarding the quality of 3D printing products in some applications. Such surfaces are often free-

form surfaces. Our proposed method is based on local kernel estimation of free-form surfaces.

Before Phase II monitoring, observed data from different products are first geometrically aligned,

to account for possible movement between the products and a laser scanner during the data

acquisition stage. Numerical studies show that the proposed method works well in practice.

Keywords: Image registration; Local smoothing; Nonparametric Regression; Process moni-

toring; Statistical process control; Surface estimation.

1 Introduction

The 3D printing is a process of synthesizing a 3D product formed by successive layers of material

under computer control (Evans 2012). It has been used to create car parts, smartphone cases,

fashion accessories, medical equipment, and artificial organs. Since the first functional 3D printer

was created by Chuck Hull in 1984, this technology has come a long way ever since then. Then, a

natural question arises: how can we monitor the quality of 3D printing products? This paper tries

to make a contribution in answering this question.

Figure 1 shows a 3D printer, a 3D printing product, a laser scanner, and the observed data

of a product’s top surface. Before printing the product, users need to provide its designed shape

to a computer system. Then, the printer prints the product under the control of the computer

system. After a product is printed, the laser scanner generates the observed data of the product’s

shape surface, with the product fixed at a rotatable holder placed before the scanner. For the
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product shown in Figure 1, we are mainly concerned about its curvy top surface, which is a free-

form surface, because the quality of the product is reflected by the surface shape in this case. So,

we only scan that surface. Its observed data are shown in the bottom-right panel of Figure 1.

The data and the related devices shown in Figure 1 reveal several important features of the quality

control problem for 3D printing products, which are briefly described below. i) The relative position

between the laser scanner and the product can change from product to product, and the geometric

deviation can involve directions, partly because the product holder is rotatable. Therefore, when

monitoring the product’s surface or shape, it is important to geometrically align the positions of the

observed data of different products in advance. ii) The data volume is generally large. This requires

computationally efficient statistical methods for analyzing the data and for monitoring the printing

process. iii) The design points of the observed data may not be equally spaced and the shape of

the product surface could be complicated. Therefore, the surface may not be described well by a

parametric model, and our statistical methods should be able to accommodate unequally spaced

design points. These features indicate that monitoring of 3D printing products is challenging.

Figure 1: A 3D printer (top-left), a 3D printing product (top-right), a laser scanner (bottom-left),

and the observed data of a product surface (bottom-right).
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The process monitoring problem described above for 3D printing products is related to profile

monitoring in the literature, where the observed top surface of a 3D printing product can be

regarded as a profile. Early profile monitoring methods are based on linear or parametric modeling

(e.g., Jin and Shi, 1999; Kang and Albin, 2000; Kim et al., 2003, Yeh et al. 2009). Recent methods

are more flexible without requiring the parametric assumptions (e.g., Zou et al., 2008; Qiu et

al., 2010). These methods are all univariate in the sense that the profile denotes the relationship

between a response variable and a predictor. Multiple profile monitoring is under rapid development

recently (e.g., Paynabar et al., 2013, 2016), which concerns the relationship between a predictor

and multiple responses. Both the univariate and multiple profile monitoring problems discussed

above are different from the current 3D printing monitoring problem in that the former focuses

mainly on curve profiles while the latter is about surface profiles. In the literature, there are

some recent discussions about surface profile monitoring. For instance, Wang et al. (2014) used

a Gaussian-Kriging model to describe round wafer surface data and then proposed a Shewhart T 2

chart for surface monitoring. Colosimo et al. (2014) considered cylindrical surfaces and modeled

them by a Gaussian process model that was also considered by some other papers, including Xia et

al. (2008). These surface monitoring problems are substantially different from the current problem

in the following sense. First, the Gaussian process models are used in these methods for describing

the observed surfaces and their spatial data correlation. The Gaussian process models usually

assume that observations at different locations are normally distributed and data correlation is

spatially homogeneous (cf., Wang et al. 2014), which are difficult to verify in the current problem.

Second, geometric alignment of different observed surfaces is not considered in Wang et al. (2014).

In Colosimo et al. (2014), geometric alignment of different surfaces is based on the assumed

cylindrical surface structure. It is achieved by first aligning the centers of different surfaces and

then maximizing the cross-correlation between roundness profiles of the surfaces. This registration

approach cannot be used in the current problem with free-form surfaces.

Recently, Zang and Qiu (2017) discussed Phase I monitoring of 3D printing products, where the

focus is on detecting outliers among a given set of 3D printing products using a Shewhart chart.

In this paper, we propose a nonparametric CUSUM chart for Phase II online monitoring of 3D

printing products. Our method focuses mainly on monitoring the top surfaces of the products since

they are often our concern regarding the 3D printing quality in many applications. Our method

will be described in detail in Section 2. Its performance is evaluated by simulation examples in
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Section 3. A real-data example is discussed in Section 4. Some remarks conclude the article in

Section 5.

2 Phase II Monitoring of Free-Form Surfaces in 3D Printing

Our proposed Phase II online monitoring procedure has three major components. i) Surface registra-

tion: all observed top surfaces of 3D printing products are geometrically aligned. ii) Nonparametric

surface estimation: The IC top surface and other IC quantities are estimated from an IC dataset,

using a nonparametric local kernel smoothing procedure. iii) Online process monitoring: a Phase

II nonparametric CUSUM chart is then constructed for online monitoring of 3D printing products.

These components are described in detail below.

2.1 Surface estimation and registration

From the introduction of data acquisition in Section 1 (cf., Figure 1), we can see that the relative

positions between the laser scanner and individual 3D printing products could change from product

to product. Therefore, different observed surfaces should be geometrically aligned before surface

monitoring. This is similar to the image registration problem in the image processing literature

if the height of a surface at a given point is regarded as the image intensity (cf., Bhagalia et al.,

2009; Pan et al., 2009; Xing and Qiu, 2011). Image registration is mainly for estimating a geometric

transformation to geometrically match one image to another. Both parametric (Denton et al., 1999)

and nonparametric (Qiu and Xing, 2013) transformations have been considered in the literature. In

the current surface registration problem, the transformation for describing the geometric movement

is rigid-body in the sense that the Euclidean distance between any two points on a surface will not

change after the transformation, which can be described by the following expression:

(x(1), y(1), z(1))′ = R(x(2), y(2), z(2))′ + T, (1)

where (x(1), y(1), z(1))′ and (x(2), y(2), z(2))′ are the corresponding points on the two images, T =

(Tx, Ty, Tz)
′ describes location shifts in the x, y, and z directions, R is a rotation matrix with the
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expression

R =


1 0 0

0 cosα sinα

0 − sinα cosα




cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ




cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , (2)

and A = (α, β, θ)′ are rotating angles along the x, y, and z axes. To register the two surfaces,

we need to estimate the parameters T and A in the above transformation from the two observed

surfaces, which is briefly discussed below.

Assume that observations of two observed surfaces follow the model

zij = gi(xij , yij) + εij , for j = 1, 2, . . . , Ni, i = 1, 2, (3)

where gi(x, y) is the true regression function for describing the ith surface, {(xij , yij)} are design

points in the design space Ω, and εij ’s are random errors with mean 0 and variance σ2. In the statis-

tical literature (Qiu 2005, Chapter 2), there are two types of nonparametric smoothing methods for

estimating regression surfaces: the global smoothing approaches (e.g., smoothing splines) and the

local smoothing approaches (e.g., kernel smoothing). By a global smoothing approach, all available

observations are used in estimating a regression surface at a specific location. So, its computation

is extensive. As a comparison, to estimate the regression surface at a specific location by a local

smoothing approach, only those observations located in a neighborhood of the given location are

used. Thus, its computation is relatively simple and fast. For this reason and the facts that the

number of observations for each surface in the current problem is often large and the surface shape

could be complex (cf., the related discussion in Section 1), we choose to estimate gi(x, y) using the

following Nadaraya-Watson (NW) kernel smoothing procedure (Qiu 2005, Section 2.3): for i = 1, 2,

ĝi(x, y) =

Ni∑
j=1

zijK

(
xij − x
h

,
yij − y
h

)/ Ni∑
j=1

K

(
xij − x
h

,
yij − y
h

)
, (4)

where K is a two-dimensional, circularly symmetric kernel function with a unit circular support,

and h > 0 is a bandwidth. Because the NW estimator ĝi(x, y) weightedly averages observations in

the local circular neighborhood of (x, y) with radius determined by h for estimating gi(x, y) and

observations outside the neighborhood is not involved, its computation is fast. Then, T and A can

be estimated by

min
T,A

ñx∑
i′=1

ñy∑
j′=1

∣∣ĝ2(x̃∗i′j′ , ỹ∗i′j′)− ĝ1(x̃i′j′ , ỹi′j′)∣∣ , (5)
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where {(x̃i′j′ , ỹi′j′), i′ = 1, 2, . . . , ñx, j
′ = 1, 2, . . . , ñy} is an equally spaced grid that covers the entire

design space Ω, and x̃∗i′j′ and ỹ∗i′j′ are the first two components of R(x̃i′j′ , ỹi′j′ , ĝ2(x̃i′j′ , ỹi′j′))
′ + T

that is defined in (1).

There are a total of 6 parameters to estimate in (5), which is computationally intensive. To

simplify the computation, we adopt the suggestion by Audette et al. (2000) that the three transla-

tion parameters can be determined first by aligning the centers of the two related surfaces. Namely,

they can be estimated by

T̂x =
1

N1

N1∑
j=1

x1j−
1

N2

N2∑
j=1

x2j , T̂y =
1

N1

N1∑
j=1

y1j−
1

N2

N2∑
j=1

y2j , T̂z =
1

N1

N1∑
j=1

z1j−
1

N2

N2∑
j=1

z2j . (6)

Then, we can replace T by T̂ = (T̂x, T̂y, T̂z) in (5) and search for the values of the estimates of the

three rotation parameters by the following iterative searching algorithm.

(i) Set the initial values for A = (α, β, θ) to be A(0) = (0, 0, 0).

(ii) In the `th iteration, for ` ≥ 1, evaluate the objective function

ñx∑
i′=1

ñy∑
j′=1

∣∣ĝ2(x̃∗i′j′ , ỹ∗i′j′)− ĝ1(x̃i′j′ , ỹi′j′)∣∣
at all 33 = 27 possible values of A with each component being the value obtained in the

previous iteration or that value ±d`, where d` is a constant depending on `. The minimizer

is denoted as A(`).

(iii) The procedure stops if max(|α(`) − α(`−1)|, |β(`) − β(`−1)|, |θ(`) − θ(`−1)|) < ε, where ε > 0 is a

given small number.

The resulting estimates are denoted as Â = (α̂, β̂, θ̂).

2.2 Phase II online monitoring

For Phase II process monitoring, the true top surface of an IC 3D printing product, denoted as

g(0)(x, y), should be known. In reality, it is usually unknown, and needs to be estimated from an

IC data. Assume that there are m observed surfaces in an IC data. After surface registration with

an observed surface in the IC data, let the surface estimates from the m observed surfaces (cf.,
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(4)) be {g̃∗i (x, y), i = 1, 2, . . . ,m}. Then, we can define ĝ(0)(x, y) = 1
m

∑m
i=1 g̃

∗
i (x, y). Theoretically

speaking, any surface in the IC data can be chosen as the baseline surface with which other surfaces

are registered for computing ĝ(0)(x, y). In practice, the results would not change much if different

baseline surfaces are used. So, for convenience, the first surface can be used as the baseline surface.

Assume that the ith observed surface in a Phase II 3D printing process follows the model

zij = gi(xij , yij) + εij , for j = 1, 2, . . . , Ni, i = 1, 2, . . . , (7)

where the related quantities are defined similarly to those in model (3). So, if the process is IC

at the ith time point and no surface registration is needed, then gi(x, y) = g(0)(x, y). However,

surface registration is necessary in monitoring the 3D printing process, as discussed in Section 1. To

this end, we estimate each Phase II surface by the NW kernel estimation procedure (4), and then

register it with ĝ(0)(x, y). After these surface pre-processing steps, the geometrically aligned and

estimated Phase II surfaces are denoted as {ĝ∗i (x, y), i = 1, 2, . . .}, where ĝ∗i (x, y) = ĝi(x
∗, y∗), x∗

and y∗ are the first two components of R̂i(x, y, ĝ2(x, y)′+ T̂i (cf., (1)), R̂i and T̂i are the estimated

rotation matrix and location shifts in the rigid-body surface registration procedure discussed in the

previous part when matching the ith estimated surface with ĝ(0)(x, y).

Let {(x̃i′j′ , ỹi′j′), i′ = 1, 2, . . . , ñx, j
′ = 1, 2, . . . , ñy} be an equally spaced grid that covers the

entire design space Ω, as in (5). Then, the overall difference between the ith aligned estimated

Phase II surface and ĝ(0)(x, y) can be measured by

ΛART,i =
1

ñxñy

ñx∑
i′=1

ñy∑
j′=1

∣∣∣ĝ∗i (xi′j′ , yi′j′)− g(0)(xi′j′ , yi′j′)
∣∣∣ , (8)

where the subscripts “A”, “R” and “T” denote the absolute value norm used in (8), the rotation and

translation considered in the surface registration, respectively. Thus, a natural CUSUM charting

statistic can be defined by

Q+
ART,i = max

(
0, Q+

ART,i−1 +
ΛART,i − E0(ΛART,i)√

Var0(ΛART,i)
− k
)
, i = 1, 2, . . . , (9)

where Q+
ART,0 = 0, E0(ΛART,i) and Var0(ΛART,i) are the IC mean and variance of ΛART,i, respec-

tively, and k is the allowance constant. The chart gives a signal of surface shift when

Q+
ART,i > cART , (10)

where cART > 0 is a control limit.
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To use the CUSUM chart (9)-(10), we need to determine the quantities E0(ΛART,i), Var0(ΛART,i),

k and cART , which is discussed below. Obviously, when all products are IC, the charting statistic

Q+
ART in (9) does not depend on g(0)(x, y) and gi(x, y) much, for i = 1, 2, . . ., because g∗i (x, y) =

g(0)(x, y) in such cases and Q+
ART is based mainly on g∗i (x, y) − g(0)(x, y), where g∗i (x, y) denotes

the ith aligned surface. Based on this observation, the quantities E0(ΛART,i) and Var0(ΛART,i) can

be approximated using the IC data as follows. For each registered and estimated surface g̃∗i (x, y)

in the IC data (cf., the discussion at the beginning of this part), compute

Λ̃ART,i =
1

ñxñy

ñx∑
i′=1

ñy∑
j′=1

∣∣∣g̃∗i (xi′j′ , yi′j′)− ĝ(0)(xi′j′ , yi′j′)
∣∣∣ , for i = 1, 2, . . . ,m.

Then, E0(ΛART,i) and Var0(ΛART,i) can be approximated by the sample mean and variance of

{Λ̃ART,i, i = 1, 2, . . . ,m}. Regarding k and cART , usually k is chosen beforehand, and then cART is

chosen such that the CUSUM chart (9)-(10) can reach the pre-specified ARL0 value. Commonly

used k values include 0.1, 0.25, 0.5, 0.75 and 1. Once k is chosen, cART can be determined by the

following block bootstrap procedure. First, select one observed surface from the IC data. Without

loss of generality, let us assume that it is the ĩth surface. Then, define the set of IC residuals of

the ĩth surface by

Dĩ = {g̃∗
ĩ
(xi′j′ , yi′j′)− ĝ(0)(xi′j′ , yi′j′), for i′ = 1, 2, . . . , ñx, j

′ = 1, 2, . . . , ñy}.

Second, select ñxñy elements with replacement from Dĩ as the quantities of the ith surface of a

Phase II process used in (8), and calculate the mean of their absolute values as ΛART,i. Then,

the CUSUM charting statistic value Q+
ART,i can be calculated by (9). For a given value of cART ,

continue the above process until a signal is given according to (10). Then, a run length can be

determined. Third, repeat the above two steps for B times and the average of the B run lengths

can be calculated as an approximation to the actual ARL0 value. If this value is smaller than

the assumed ARL0 value, then increase the specified cART value. Otherwise, decrease the specified

cART value. The above three steps are executed recursively until the assumed ARL0 value is reached

within certain precision. In this process for searching for the value of cART , the bisection searching

algorithm or other numerically efficient algorithms can be applied. See a related discussion in

Section 4.2 in Qiu (2014).
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3 Simulation Study

In this section, we present some numerical results regarding the performance of the proposed

method. Besides the chart Q+
ART,i defined in (9)-(10), we also consider the following three alter-

native methods: the chart with L2 norm in (5) and (8) (i.e., the absolute value is replaced by

the square) and with both rotation and translation in surface registration, denoted as Q+
SRT,i, the

chart with L1 norm in (5) and (8) and with translation only in surface registration (i.e. rotation

is ignored), denoted as Q+
AT,i, and the chart with L1 norm in (5) and (8) and without surface

registration, denoted as Q+
A,i. In all these methods, we use the truncated Gaussian kernel function

K(u, v) = exp[−(u2 + v2)/2]I(u2 + v2 ≤ 20) in the NW kernel estimation procedure (4) and the

bandwidth is first chosen to be h = 0.1. The above charts are considered here because (i) Q+
ART,i is

recommended based on our numerical results, and (ii) Q+
AT,i and Q+

A,i are included for demonstrat-

ing the consequence when rotation and translation are present in the geometric transformation (1)

but they are ignored in surface registration.

In the simulation, we consider the design space Ω = [−10, 10]× [−10, 10], the IC surface

g(0)(x, y) = xy exp

{
−
(

1.5x

10

)2

−
(

3y

10

)2
}

+ 5,

and the following three OC surfaces

g(1)(x, y) = g(0)(x, y) + r1xy exp

{
−
(

1.5x

10

)2

−
(

3y

10

)2
}
I(x > 0, y > 0),

g(2)(x, y) = g(0)(x, y) + r2xy exp

{
−
(

1.5x

10

)2

−
(

3y

10

)2
}
,

g(3)(x, y) = g(0)(x, y) + η(x2 + y2)/102,

where r1 = 0.01, 0.03, . . . , 0.21, r2 = 0.005, 0.010, . . . , 0.080, and η = 0.01, 0.03, . . . , 0.29. The OC

surface g(1)(x, y) is different from the IC surface g(0)(x, y) in the upper-right quadrant only, g(2)(x, y)

is different from g(0)(x, y) in the entire design space with the difference small in the central and

border regions of the design space, and g(3)(x, y) is also different from g(0)(x, y) in the entire design

space with the difference large in the border regions of the design space.

The observed surfaces are generated from model (7) with the random errors εij generated

i.i.d. from the N(0, 0.152) distribution. The observation locations {(xij , yij)} for the ith surface

are generated in two steps as follows. First, an equally spaced grid is generated in Ω with the
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distance between two consecutive horizontal or vertical lines being 0.1. Each grid point is then

moved horizontally by sh and vertically by sv, where sh and sv are two independent random

numbers generated from the N(0, 0.022) distribution. The set of the resulting disturbed grid points

is called a disturbed grid. Second, for the ith observed surface, generate an integer number Ni

from the U(15000, 16000) distribution as the number of observations of that surface. Then, the

observation locations {(xij , yij), j = 1, 2, . . . , Ni} are obtained by randomly selecting Ni points

without replacement from the disturbed grid.

In the IC dataset, all observed surfaces are first rotated α, β and θ degrees in the x, y, and

z axes, respectively, where (α, β, θ) are independent random numbers generated from the U [−3, 3]

distribution, and then moved respectively by Tx, Ty and Tz along the three axes, where (Tx, Ty, Tz)

are independent random numbers generated from the U [−1, 1] distribution. All surfaces observed

in the Phase II process are also taken such geometric transformations after they are generated in

the way described in the previous paragraph from an OC model.

When the nominal ARL0 value is set at 20, and k is chosen to be 0.1 or 0.5, the control

limit values of the four CUSUM charts considered in this section are computed based on 5,000

repeated simulations. The results are presented in Table 1. Then, for the three OC surfaces, the

computed ARL1 values based on 2000 replicated simulations, when k equals 0.1 or 0.5 and when

the parameters in the three OC surfaces take various different values, are presented in Tables 2-4.

Numbers in parentheses are standard errors of the ARL1 values. From the tables, we can have

the following conclusions. (i) For the first OC surface that shifts from g(0)(x, y) in the upper-right

quadrant only, both Q+
SRT,i and Q+

ART,i performs well, Q+
AT,i performs much worse than the first two

charts, and Q+
A,i is the worst. (ii) For the second OC surface that shifts from g(0)(x, y) in the entire

design space with their difference small in the central and border regions, the conclusions are similar

to those in (i), except that Q+
ART,i seems to perform better than Q+

SRT,i in this case. (iii) For the

third OC surface that shifts from g(0)(x, y) in the entire design space with their difference large in

the border regions, the advantage of Q+
ART,i over Q+

SRT,i is more obvious, and other conclusions are

similar to those in (i). Therefore, based on this simulation study, we can see that surface registration

is a necessary pre-processing for surface monitoring in cases when geometric misalignment is a real

issue. Also, between Q+
SRT,i and Q+

ART,i, it seems that Q+
ART,i has some advantage. From Tables

2 and 4, it can be noticed that the chart Q+
A,i is biased in certain cases when its ARL1 values

are larger than the nominal ARL0 value. That is because this chart does not consider surface
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registration in advance, and consequently its charting statistic has larger values in the case when

no surface shift is present, compared to certain cases when there are surface shifts (because of the

surface misalignment between the observed surfaces and the IC surface g(0)(x, y)).

Table 1: Control limits of the four CUSUM charts when ARL0 = 20 and k is chosen to be 0.1 or

0.5.

Q+
SRT,i Q+

ART,i Q+
AT,i Q+

A,i

k = 0.1 k = 0.5 k = 0.1 k = 0.5 k = 0.1 k = 0.5 k = 0.1 k = 0.5

2.62 1.49 2.50 1.44 5.75 2.28 2.11 1.18
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In the above examples, the bandwidth h used in surface estimation (cf., (4)) is fixed at 0.1.

As pointed out in Section 2.4 of Qiu (2005), the bandwidth determines how many observations

around a given point (x, y) when we estimate a surface at (x, y). If it is chosen larger, then more

observations will be used and the resulting surface estimate would be smoother. However, more

curved parts of the true surface would be smoothed out as well. So, there is a trade-off between noise

removal ability and estimation bias when we consider different values of h in surface estimation.

In the setup of Table 2, we change the h value from 0.05 to 0.3 with a step of 0.05, the calculated

ARL1 values of the charts Q+
ART,i and Q+

SRT,i when k = 0.1 and r1 = 0.05 are shown in Figure 2.

From the plot, it can be seen that the ARL1 values decrease when h increases in this example, and

the results stabilize when h > 0.2. In the function estimation literature, it has been well discussed

that properties of the estimated function by the kernel smoothing method (e.g., (4)) depend on

many different factors, including the curvature of the true function, the noise level, the sample size,

and the bandwidth (e.g., Qiu 2005).

Figure 2: Calculated ARL1 values of the charts Q+
ART,i and Q+

SRT,i when ARL0 = 20, k = 0.1 and

r1 = 0.05 in the setup of Table 2.

In the examples discussed above, the noise level is fixed at σ = 0.15. When the noise level

increases, performance of the related charts would get worse. To confirm this, we considered cases

15



when σ = 0.5 or 1.0, in the setup of Table 2 with k = 0.1 and r1 = 0.05. The ARL1 values of

the chart Q+
ART,i are 13.70 and 17.31, respectively, when σ = 0.5 and 1.0, both of which are much

larger than the corresponding value 5.30 that are presented in Table 2. In the above examples, the

unequally-spaced design points are generated by using the disturbers sh and sv in the horizontal

and vertical directions, respectively. If the variability of these two disturbers is larger, then the

design points would be more unequally-spaced. Next, we study the impact of the variability of sh

and sv on the performance of the chart Q+
ART,i. For simplicity, let the standard deviations of sh

and sv to be the same as σs. The disturbed grid is still generated in the same way as that in the

example of Table 2. When σs changes from 0.01, 0.02, 0.05 to 0.1, the calculated ARL1 values of

the chart Q+
ART,i are 5.88, 5.84, 5.78 and 5.63, respectively, when k = 0.1 and r1 = 0.05 in the

setup of Table 2. We can see that the variability in the design points actually benefits the chart

Q+
ART,i in the cases considered, although the impact is relatively small.

Next, using the example of Table 2, we compare the proposed control chart Q+
ART,i with the

Gaussian-Kriging (GK) method suggested by Wang et al. (2014) and the Gaussian process (GP)

method discussed in Colosimo et al. (2014). The original GK method provides a Shewhart chart

that is based on a Hotelling’s T 2 statistic, which is denoted as GKS . To make the comparison

fair, we also consider a CUSUM version based on the Hotelling’s T 2 statistic with the allowance

constant chosen to be 0.1. This chart is denoted as GKC . Both GKS and GKC do not consider

surface registration. Their control limits are searched from the IC data such that their ARL0

values equal the nominal ARL0 value, as we did for Q+
ART,i. The original GP method also provides

a Shewhart chart using the Hotelling’s T 2 statistic that is based on the difference between the

predicted surface values of a Phase II surface at the so-called checkpoints and the mean predicted

surface values at the same checkpoints obtained from a set of Phase I IC surfaces. Because the

surface registration procedure discussed in Colosimo et al. (2014) cannot be used in the current

setup, the one discussed in Section 2.1 is used here. In the Phase I IC dataset, we assume that

there are 5,000 observed surfaces. The checkpoints are selected to be the 1,089 equally spaced grid

points with both the x− and y−coordinate values to be {−8,−7.5, . . . , 0, . . . , 7.5, 8}. This chart is

denoted as GPS,ART , where the subscript ART denotes the surface registration procedure discussed

at the end of Section 2.1. To make the comparison fair, we also consider a CUSUM version with

the allowance constant being 0.1, which is denoted as GPC,ART . The control limits of GPS,ART

and GPC,ART are searched from the IC data such that their ARL0 values equal 20, as we did for
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Q+
ART,i. In the same setup as that in Table 2, the calculated ARL1 values of GKS , GKC , GPS,ART

and GPC,ART are presented in Table 5. In the table, some entry values are 200+ because we use

200 as the maximum number of observed surfaces in each simulation to calculate the run length of

a control chart and the chart does not give any signal by the 200th time point. From the table, we

can see that the GP method discussed in Colosimo et al. (2014) has a much better performance,

compared to the method discussed in Wang et al. (2014), in the current example. We also notice

that the ARL1 values of GKS and GKC are even much larger than the nominal ARL0 value in all

cases considered. The bias can be explained by the lack of surface registration in these two charts,

as we observed for the chart Q+
A,i in Tables 2 and 4, and by the fact that they impose several

assumptions on the process distribution (cf., the related description in Section 1) which may not

be valid here. By comparing the results in Tables 2 and 5, it can be seen that our proposed chart

Q+
ART,i has a better performance than the charts considered here in all cases considered.

Table 5: Calculated ARL1 values of the charts GKS , GKC , GPS,ART and GPC,ART in the setup of

Table 2.

r1 0 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21

GKS 19.97 54.59 106.83 200+ 200+ 200+ 200+ 200+ 200+ 200+ 200+ 200+

GKC 19.82 53.56 184.39 200+ 200+ 200+ 200+ 200+ 200+ 200+ 200+ 200+

GPS,ART 20.46 19.81 19.66 16.95 17.22 16.06 13.94 12.18 11.78 10.52 9.26 8.50

GPC,ART 20.31 20.63 19.38 17.47 16.58 14.18 13.12 12.26 10.78 10.77 9.19 8.80

In all above examples, the value of ARL0 is set to be 20, which is relatively small, compared

to the commonly used ARL0 values in the literature. This small value is used here because the

number of the same kind of products produced by a 3D printer is usually small. Next, we consider

an example in the same setup as that in Table 2, except that ARL0 is chosen to be 200. The

calculated ARL1 values of the charts Q+
SRT,i, Q

+
ART,i, Q

+
AT,i, and Q+

A,i are shown in Table 6. From

the table, it can be seen that similar conclusions to those from Table 2 can be made here. More

specifically, the chart Q+
ART,i performs the best for detecting relatively small shifts, the chart Q+

SRT,i

is the best for detecting relatively large shifts, and the charts Q+
AT,i and Q+

A,i do not perform well

in all cases considered.
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4 A Real-Data Example

In this section, we illustrate the proposed Phase II surface monitoring CUSUM chart (9)-(10) using

a real 3D printer and its products. The 3D printer and the laser scanner used here are the ones

shown in Figure 1, owned by the Marston Science Library of the University of Florida. The IC

product looks like the one shown in the upper-right panel of Figure 1, with the design space to be

[−30, 30] × [−30, 30] (in mm2) and the z values (i.e., heights at different (x, y) positions) in the

range [10, 30] mm. The top surface of the designed IC product is shown in the bottom-right panel

of Figure 1. For each product, the number of observations in each observed surface generated by

the laser scanner ranges between 141,000 and 158,500.

The 3D printer then prints 15 products under our careful operation and the observed surfaces

of these 15 products are used as the IC data. We then use the IC data to set up the four related

control charts Q+
SRT,i, Q

+
ART,i, Q

+
AT,i and Q+

A,i. In all charts, we choose k = 0.5 and ARL0 = 20.

The control limits of the charts are determined by the bootstrap procedure with the bootstrap

sample size B = 10, 000, as discussed at the end of Section 2. The calculated control limits of the

charts Q+
SRT,i, Q

+
ART,i, Q

+
AT,i and Q+

A,i are 2.19, 1.83, 1.58 and 1.79, respectively.

Next, we let the 3D printer print 4 IC products and 5 OC products as the Phase II data. The

5 OC products have shifts with different shapes and sizes. All 9 Phase II products are ordered in

the way that the four IC products are placed at the first 4 positions and the 5 OC products are

placed afterwards with their shift sizes increasing over time. The observed top surfaces of the 5 OC

products are shown in Figure 3, along with the top surface of an IC product. All these surfaces are

the original ones without surface registration.

We then use the four CUSUM charts Q+
SRT,i, Q

+
ART,i, Q

+
AT,i and Q+

A,i for monitoring the 9

Phase II products. The four control charts are shown in Figure 4. From the plots in that figure,

it can be seen that (i) both the charts Q+
SRT,i and Q+

ART,i can detect the process shift at the 5th

time point well, and (ii) the charts Q+
AT,i and Q+

A,i both give signals too early because they did not

register the observed surfaces properly in advance and surface registration is important in the 3D

printing application, as discussed in Section 1.
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Figure 3: The first surface is from an IC product, and the remaining surfaces are from 5 OC

products.
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Figure 4: Phase II CUSUM charts for monitoring 3D printing products. (a) Q+
SRT,i, (b) Q+

ART,i,

(c) Q+
AT,i, and (d) Q+

A,i.

5 Conclusion and Future Work

In the previous sections, we have described our proposed CUSUM charts for Phase II online monitor-

ing of the free-form surfaces of 3D printing products. Numerical examples show that the proposed

method performs reasonably well in practice. However, the current method still has some limita-

tions. For instance, in models (3) and (7), the random noise is assumed i.i.d.. In reality, spatial and

temporal correlation might exist. If the spatial-temporal correlation is the same in the IC data and

Phase II data, then our proposed method should still be valid, because its control limit is deter-

mined from the IC data by a bootstrap procedure, although a block bootstrap procedure might be

more appropriate to use in such cases and its efficiency might be improved if the spatial-temporal

correlation can be used in the construction of the control chart. Also, in the current method, only

the top surface of a 3D printing product is monitored. In certain applications, we might want

to monitor the surface of the entire 3D product, which is not discussed in the paper. From the

real-data example in Section 4, we can see that an observed surface in 3D printing usually con-

tains a large number of observations. Therefore, surface registration and surface estimation in the

proposed method involve extensive computation. More computing efficient methods are definitely
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needed. All these issues will be addressed carefully in our future research.
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