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Abstract Image registration (IR) aims to map one image to another of a same scene. With rapid progress in
image acquisition technologies, 3D IR becomes an important problem in magnetic resonance imaging (MRI)
and other applications. In the literature, however, most IR methods are for 2D images and there are only
a limited number of 3D methods available. Because 3D images have much complicated structure than their
2D counterparts, 3D IR is not just a simple generalization of the 2D IR problem. In this paper, we develop a
3D IR method that can handle cases with affine geometric transformations well. By its definition, an affine
transformation maps a line to a line, and it includes rotation, translation and scaling as special cases. In
practice, most geometric transformations involved in IR problems are affine transformations. Therefore, our
proposed method can find many IR applications. It is shown that this method works well in various cases,
including cases when the data size of a 3D image is reduced for different reasons. This latter property makes
it attractive for many 3D IR applications, since 3D images are often big in data size and it is natural to
reduce their size for fast computation.

Keywords Function approximation · Geometric transformation · Image mapping · Iterative algorithm ·
Kernel estimation · Least squares · Performance evaluation

1 Introduction

In many imaging applications, we need to compare two or more images of a same object so that useful
information in the images can be combined and the difference among images can be detected. One such
example is about the comparison of several MRI images [3, 4] of the head of a brain tumor patient that
were taken at different times, so that the tumor growth can be monitored closely. Although those images
are about the same object, pixels on one image may not geometrically match up with the corresponding
ones on the others well, for reasons such as the relative move between the head and the imaging device at
different imaging times. In order to compare two images properly for locating their difference accurately, the
two images should be geometrically matched up first. Image registration (IR) is specifically for this purpose
[29, 17]. It is an indispensable step for many imaging applications, including medical imaging [14], remote
sensing [15], finger print or face recognition [16], image compression [10], video enhancement [13], and so
forth.

In the literature, most IR methods are for analyzing 2D images [5, 6]. These methods can be roughly
divided into two groups: feature-based and intensity-based methods. Feature-based methods first select two
sets of features in the two images under consideration, and then find a geometrical transformation T to
best match the two sets of features [1, 8, 21]. Commonly used features include landmarks or control points
that can be selected manually or automatically by a computer [26], edge lines or curves that are often

Huajun Song
College of Information and Control Engineering, China University of Petroleum (East China)

Peihua Qiu
Department of Biostatistics, University of Florida



2 Huajun Song, Peihua Qiu

detected by gradient-based methods [12], regions, centroid or templates that are usually determined by ways
of thresholding and segmentation [24], and degenerate pixels of the image intensity function [21]. Because
feature extraction is often a time-consuming and challenging task with much arbitrariness involved, recent IR
research focuses more on the search of the transformationT based directly on the observed image intensities of
the two images. Such methods are often called intensity-based image registration (IBIR) methods. Commonly
used IBIR methods include those based on parametric transformation families [9], and more flexible ones
using nonparametric transformation families [2, 18, 22, 23, 25, 27].

In practice, most objects in our real life are 3D. We focused on 2D images in the past because only 2D
images could be acquired at that time. Thanks to the rapid development of image acquisition techniques,
3D images have become more and more popular nowadays in certain applications (e.g., medical imaging).
Consequently, 3D image registration is an important research problem with broad applications. However, 3D
images have much more complicated structure than 2D images. For instance, edge locations are surfaces in
3D images which have more complicated structure than edge curves in 2D images. So far, there does not exist
many 3D image registration methods in the literature yet. Some 2D image registration methods have been
generalized to 3D cases and they were incorporated in the software package 3DSlicer (http://slicer.org/). A
popular 3D IR method is based on the Iterative Closest Point (ICP) algorithm [7, 28]. This is a feature-
based IR method based on the assumption that T has a parametric form. To use such a method, two sets
of features need to be extracted first from the two related images. Then, the ICP algorithm alternates
between estimating the parameters in T and searching for the optimal pointwise correspondence between
the two sets of features. However, it is well-known that this method suffers from the following drawbacks:
(i) the inconvenience in extracting the related features, (ii) the restriction in using a parametric geometric
transformation, (iii) the heavy dependence on the quality of initialization in the algorithm, and (iv) the risk
to obtain local minima instead of global minima.

In this paper, we propose a new 3D image registration method. This method is designed specifically for
cases when the geometric transformation from one image to the other is an affine transformation, implying
that any line on an image will still be a line after the transformation. We focus on affine transformations in
this paper because they are the most common ones in practice. The affine transformation and our proposed
method will be described in detail in Section 2. Some numerical results are presented in Section 3. Several
remarks conclude the article in Section 4.

2 Proposed 3D Image Registration Method

2.1 The model

Mathematically, the 3D IR problem can be described as follows. Let fR(x, y, z) be a reference 3D image, and
fM (x, y, z) be a moved 3D image. Then, the major goal of 3D IR is to find a geometrical transformation
T(x, y, z) = (T1(x, y, z), T2(x, y, z), T3(x, y, z)) such that fM (T(x, y, z)) is as close to fR(x, y, z) as possible.
There are two kinds of affine transformations: uniform and non-uniform. Uniform affine transformation is to
enlarge or shrink image objects by a scale factor that is the same in all directions and at all locations. Most
medical applications belong to this case. As a contrary, the scale factor in a non-uniform affine transformation
depends on the location and/or direction. In this paper, we focus on uniform affine transformations, which
include 3D rotation, translation and uniform scaling as special cases [11]. A uniform affine transformation
has the following expression:

T1(x, y, z) = s(x(cosαcosβ) + y(sinαcosβ)− z(sinβ)) +∆x,

T2(x, y, z) = s(x(cosαsinβsinγ − sinαcosγ) + y(sinαsinβsinγ + cosαcosγ) + z(cosβsinγ)) +∆y, (1)

T3(x, y, z) = s(x(cosαsinβcosγ + sinαsinγ) + y(sinαsinβcosγ − cosαsinγ) + z(cosβcosγ)) +∆z,

where α, β, and γ are three rotation parameters, along the x−, y−, and z−axes, respectively, ∆x,∆y, and
∆z are three translation parameters along the three axes, and s is the scaling factor.

In practice, the true images fR(x, y, z) and fM (x, y, z) are usually not observed, and the observed images
would have noise involved, as described by the following models:

ZM (xi, yj , zk) = fM (xi, yj , zk) + εM (xi, yj , zk),

ZR(xi, yj , zk) = fR(xi, yj , zk) + εR(xi, yj , zk), for i, j, k = 1, 2, . . . , n, (2)
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where (xi, yj , zk) ∈ Ω are the (i, j, k)−th voxels, ZM (xi, yj , zk) and ZR(xi, yj , zk) are the observed reference
and moved images, and εM (xi, yj , zk) and εR(xi, yj , zk) are random noise. Therefore, to solve the 3D IR
problem, we need to estimate the 7 parameters α, β, γ,∆x,∆y,∆z and s in (1) from the observed images
ZM (xi, yj , zk) and ZR(xi, yj , zk), so that {ZM (T(xi, yj , zk))} is as close to {ZR(xi, yj , zk)} as possible.

2.2 Model estimation

First, let us write the transformation T(x, y, z) = (T1(x, y, z), T2(x, y, z), T3(x, y, z)) in the following form:

(T1(x, y, z), T2(x, y, z), T3(x, y, z)) = (x, y, z) + (b(x, y, z), c(x, y, z), d(x, y, z)),

Then, b(x, y, z) = T1(x, y, z) − x, c(x, y, z) = T2(x, y, z) − y, d(x, y, z) = T3(x, y, z) − z, and they denote the
geometric moves along the x−, y−, and z−axes, respectively. It is obvious that estimation of T(x, y, z) is
equivalent to estimation of (b(x, y, z), c(x, y, z), d(x, y, z)). In cases when (b(x, y, z), c(x, y, z), d(x, y, z)) are
small and fM (x, y, z) has the first-order partial derivatives at (x, y, z), by the Taylor’s expansion, we have

fM (T1(x, y, z), T2(x, y, z), T3(x, y, z)) = fM (x, y, z) + f ′

Mx(x, y, z)b(x, y, z)+

f ′

My(x, y, z)c(x, y, z) + f ′

Mz(x, y, z)d(x, y, z) + o(‖ T(x, y, z)− (x, y, z) ‖),
(3)

where f ′

Mx(x, y, z), f
′

My(x, y, z) and f ′

Mz(x, y, z) are the first-order partial derivatives of fM (x, y, z) with

respect to x, y, and z, respectively, and ‖ · ‖ is the Euclidean norm. For the true transformation T(x, y, z) we
have fR(x, y, z) = fM (T(x, y, z)). By (3), fR(x, y, z) can be well approximated by fM (x, y, z) +f ′

Mx(x, y, z)

b(x, y, z) +f ′

My(x, y, z) c(x, y, z)+f ′

Mz(x, y, z)d(x, y, z) in such cases. Therefore, the 7 parameters in (b̂(x, y, z),

ĉ(x, y, z), d̂(x, y, z)) can be chosen such that the approximation error

fR(x, y, z)− [fM (x, y, z) + f ′

Mx(x, y, z)b(x, y, z) + f ′

My(x, y, z)c(x, y, z) + f ′

Mz(x, y, z)d(x, y, z)]

is as small as possible. In reality, however, fR(x, y, z), fM (x, y, z), f ′

Mx(x, y, z), f
′

My(x, y, z), f
′

Mz(x, y, z) are
all unobservable. What observed are ZR(xi, yj , zk) and ZM (xi, yj , zk) in (2) that contain noise. To smooth
out noise when estimating the parameters in (b(x, y, z), c(x, y, z), d(x, y, z)), we can use the least squares (LS)
estimation as follows. For the time being, let us assume that f ′

Mx(x, y, z), f
′

My(x, y, z), f
′

Mz(x, y, z) have been

estimated by f̂ ′

Mx(x, y, z), f̂
′

My(x, y, z), f̂
′

Mz(x, y, z) beforehand. Then, Θ = (α, β, γ,∆x,∆y,∆z, s − 1) can
be estimated by the solution of

min
Θ

n∑
i,j,k=1

[
ZM (xi, yj , zk)− ZR(xi, yj , zk)− f̂ ′

Mx(xi, yj , zk)b(xi, yj , zk)− (4)

f̂ ′

My(xi, yj , zk)c(xi, yj , zk)− f̂ ′

Mz(xi, yj , zk)d(xi, yj , zk)
]2

.

In cases when all parameters α, β and γ are small, sinα ≈ α, sinβ ≈ β, sinγ ≈ γ, cosα ≈ 1, cosβ ≈ 1, and
cosγ ≈ 1. By these results, it can be checked that the LS estimator of Θ, which is the solution of (4), is

Θ̂ = (XTX)−1XTY, (5)

where X is an n3 × 7 design matrix with the [(i− 1)n2 + (j − 1)n+ k]-th row being

(−f̂ ′

Mx(xi, yj , zk)yj + f̂ ′

My(xi, yj , zk)xi, f̂
′

Mx(xi, yj , zk)zk − f̂ ′

Mz(xi, yj , zk)xi,

− f̂ ′

My(xi, yj , zk)zk + f̂ ′

Mz(xi, yj , zk)yj , f̂ ′

Mx(xi, yj , zk), f̂ ′

My(xi, yj , zk)xi, f̂
′

Mz(xi, yj , zk),

xif̂
′

Mx(xi, yj , zk) + yj f̂
′

My(xi, yj , zk) + zkf̂
′

Mz(xi, yj , zk)),

and Y is an n3 dimensional vector with the [(i − 1)n2 + (j − 1)n + k]-th element being ZR(xi, yj , zk) −
ZM (xi, yj , zk).
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To calculate the parameter estimators defined in (4) and (5), we still need to obtain estimators f̂ ′

Mx(x, y, z),

f̂ ′

My(x, y, z), and f̂ ′

Mz(x, y, z). To this end, we use the local linear kernel (LLK) estimation procedure in non-
parametric regression analysis [19], and the LLK estimators are

f̂ ′

Mx =

∑
i,j,k(xi − x)ZM (xi, yj , zk)Kh(

xi−x
h ,

yj−y
h , zk−z

h )
∑

i,j,k(xi − x)2Kh(
xi−x
h ,

yj−y
h , zk−z

h )
,

f̂ ′

My =

∑
i,j,k(yj − y)ZM (xi, yj , zk)Kh(

xi−x
h ,

yj−y
h , zk−z

h )
∑

i,j,k(yi − y)2Kh(
xi−x
h ,

yj−y
h , zk−z

h )
,

f̂ ′

Mz =

∑
i,j,k(zi − z)ZM (xi, yj , zk)Kh(

xi−x
h ,

yj−y
h , zk−z

h )
∑

i,j,k(zk − z)2Kh(
xi−x
h ,

yj−y
h , zk−z

h )
,

(6)

where K is a kernel function with unit circular support, and h > 0 is a bandwidth. As in the literature [19],
we choose K to be K(x, y, z) = (1− x2)(1− y2)(1− z2), which has some good theoretical properties.

2.3 Proposed 3D IR algorithm

The parameter estimators in (5) are derived based on the assumption that T(x, y, z) in (1) is small in the
sense that all parameters in Θ = (α, β, γ,∆x,∆y,∆z, s − 1) are small. So, this algorithm is appropriate to
use only in cases when that assumption is valid. For a general 3D IR problem in which the transformation
may not be small, it is natural to consider an iterative version of that algorithm, based on the intuition that
T(x, y, z) can be divided into many small transformations and each iteration of the algorithm can estimate
one of these small transformations well. The iterative algorithm is described below.

Step 1. Compute estimators f̂ ′

Mx(x, y, z), f̂
′

My(x, y, z), f̂
′

Mz(x, y, z) by (6).

Step 2. Obtain initial parameter estimators by (5). The corresponding estimator of T is denoted as T̂(0).

Step 3. Define Z
(1)
M (xi, yj , zk) = ZM (T̂(0)(xi, yj , zk)). In the next iteration, execute Steps 1 and 2 again,

after {ZM (xi, yj , zk)} are replaced by {Z
(1)
M (xi, yj , zk)}. The resulting estimator of T is denoted as T̂(1).

Step 4. In the vth iteration, the estimator of T is denoted as T̂(v), and the parameter estimators are denoted

as Θ̂(v) = (α̂(v), β̂(v), γ̂(v), ∆̂x
(v)

, ∆̂y
(v)

, ∆̂z
(v)

, ŝ(v)−1). The algorithm stops when max(α̂(v), β̂(v), γ̂(v)) ≤

ε1 , max(∆̂x
(v)

, ∆̂y
(v)

, ∆̂z
(v)

) ≤ ε2, and |ŝ(v)| ≤ ε3, where ε1, ε2, ε3 > 0 are three small numbers.

From the above iterative algorithm and the estimation procedure (4)-(5), we can see that in each iteration,
the algorithm tries to adjust the moved image geometrically so that the image intensities of the adjusted
moved image are closer to those of the reference image, in terms of the sum of squares of their differences.
So, the sequence of the sums of squares would not increase over iterations. This property together with the
stopping rule used in the algorithm would guarantee the convergence of the algorithm, which was confirmed
in our numerical studies.

Also, we want to point out that our method is appropriate to use when all parameters in Θ are relatively
small because of the nature of the Taylor’s expansion that it is based on (cf., expression (3)). In most
applications, the relative move between the imaging device and the imaging objects, or the scaling factor, is
small. So, our method should be relevant.

3 Numerical Study

In this section, we present some numerical results about the proposed 3D IR method described in the previous
section. To this end, we use three popular measures [20], including the root residual mean squares (RRMS),
the correlation coefficient (CC), and the entropy of image difference (EID). RRMS is defined to be

RRMS = {
1

n3

n∑

i,j,k=1

[ZR(xi, yj , zk)− ZM (T̂(xi, yj , zk))]
2}1/2.
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Table 1: Proportion p (in percentage) of the original voxels in the reference image, and the numbers of selected rows in the
x−, y−, and z−axes in the brain image example.

number of rows
p x−axis y−axis z−axis

0.0097 12 12 10
0.0172 16 16 10
0.0269 20 20 10
0.0526 28 28 10
0.0687 32 32 10
0.0870 36 36 10
0.0969 38 38 10
0.1289 40 40 12
0.1560 44 44 12

Basically, RRMS is the Euclidean distance between {ZR(xi, yj , zk)} and {ZM (T̂(xi, yj , zk)}. Therefore, if
its value is smaller, then the image registration is regarded better. The CC measure is defined to be the
Pearson’s sample correlation coefficient of the bivariate data {ZR(xi, yj , zk), ZM (T̂(xi, yj , zk))}. Intuitively,

if the estimator T̂(xi, yj , zk) is good, then ZM (T̂(xi, yj , zk) would be close to ZR(xi, yj , zk). Consequently,
CC would be close to its maximum value 1. The EID measure become popular recently. It is defined as

EID = −
∑

d∈D

p(d)log p(d),

where D = {ZR(xi, yj , zk)− ZM (T̂(xi, yj , zk), i, j, k = 1, 2, . . . , n}, and p(d) is the relative frequency of d in

D. So, EID is basically the negative entropy of D. Intuitively, if T̂(x, y, z) is a good estimator of T(x, y, z),
then the randomness in the elements of D should be large. Consequently, EID should be small because the
entropy

∑
d∈D

p(d)log p(d) is a good measure of the randomness of D. Therefore, by this measure, the image

registration is better if the EID value is smaller.

In the first example, the 3D reference image is downloaded from
http://www.slicer.org/slicerWiki/images/4/43/MR-head.nrrd. It is a 3D MRI image of the head of a patient,
and has 256× 256× 130 voxels. The 20th, 30th, . . . , and 110th slices along the z-axis are shown in the first
row of Figure 1. To evaluate the performance of the proposed IR method, we first create a moved image by
geometrically shifting, rotating and scaling the reference image along the x−, y−, and z−axes, respectively,
with its front-top-left corner as the center for rotation and scaling. The reference image is rotated along
the x, y, and z−axes by 2 degrees each, shifted along the three axes by 3, 4 and 5 voxels, respectively,
and the scaling factor is set to be 0.95. When defining the moved image, the nearest-neighbor interpolation
procedure is used. The 10 corresponding slices of the moved image are shown in the second row of Figure 1.
By comparing the images in the first 2 rows of Figure 1, it can be seen that they look quite different.

In this example, besides the proposed IR method, we also consider the scaling rigid-body 3D IR method
in the software package 3DSlicer. The version of the software package that is used here is its newest release 4.5
that is available at http://www.slicer.org/. To make the comparison of the two methods fair, we choose the
option of the nearest-neighbor interpolation in 3DSlicer as well, as in the proposed IR method. To study the
performance of the two methods when the data size is reduced, we apply each method to a small proportion
p of the two original images. When selecting the sub-samples from the original voxels, the selection in the
reference image is always the same as that in the moved image, and the selected indices of the voxels are
always equally spaced in the x−, y−, z−axes, respectively, starting from the first row in each axis. The
specific selections of the sub-samples are described in Table 1.

For each sub-sample described in Table 1, we apply the two methods, and the results in terms of RRMS,
CC and EID are shown in Figure 2. From the plots in the figure, it can be seen that 1) both methods
perform better when p is larger, 2) the method in 3DSlicer performs slightly better when p ≥ 0.0526%, but
its performance deteriorates very fast when p ≤ 0.0526%, and 3) our proposed IR method is quite stable
even when p is as small as 0.0172%. This example shows that our proposed method can be considered to
use in big-data applications when data size is large or when the image registration needs to be fast (e.g., in
cases to online monitor sequences of images).
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Fig. 1: Head MRI image example. The first row shows 10 slices of the reference image, the second row shows the 10 corresponding
slices of the moved image, the third and fifth rows are the corresponding slices of the restored reference images by the proposed
method and the scaling rigid-body method in 3DSlicer when p = 0.0172%. The fourth and sixth rows are the corresponding
slices of the residual images of the two methods. The 10 slices in each row denote the 20th, 30th, . . . , and 110th slices of the
related 3D image along the z−axis.
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Fig. 2: RRMS, CC and EID values of the proposed IR method and the scaling rigid-body IR method in the
software package 3DSlicer.

In the case when p = 0.0172%, the 10 slices of the restored reference image ZM (T̂(x, y, z)) and the

corresponding slices of the difference image ZR(T(x, y, z)) − ZM (T̂(x, y, z)) by the proposed method are
shown in the third and fourth rows of Figure 1. The corresponding results by the scaling rigid-body IR
method in 3DSlicer are shown in the fifth and sixth rows of the same figure. It can be seen that the proposed
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Fig. 3: Abdomen MRI image example. The first row shows 10 slices of the reference image, the second row shows the 10
corresponding slices of the moved image, the third and fifth rows are the corresponding slices of the restored reference images
by the proposed method and the scaling rigid-body method in 3DSlicer when p = 0.1026%. The fourth and sixth rows are the
corresponding slices of the residual images of the two methods. The 10 slices in each row denote the 10th, 20th, . . ., and 100th
slices of the related 3D image along the z−axis.

method has a better performance, compared to the method in 3DSlicer, since its restored reference image
looks closer to the true reference image and its difference image has weaker non-random pattern. This result
is consistent with those shown in Figure 2.

By the way, all numerical examples presented in this section were computed using a computer with an
Intel CPU i5-2450 and with 4G of memory. Compared to the methods in 3DSlicer, our proposed method
is fast to compute. For instance, when the sampling proportion p = 0.0687% in the above example, the
proposed method takes about 3 seconds to finish the image registration task, while the method in 3DSlicer

takes about 4 seconds. When the sampling proportion is p = 0.0172%, the proposed method takes 0.9 seconds
while the method in 3DSlicer takes about 2.5 seconds.

Next, we consider another example about an abdomen MRI image of a patient. The 3D reference image,
which is an abdomen MRI image of a patient, is downloaded from
http://slicer.kitware.com/midas3/download/, and it has 220 × 160 × 107 voxels. Its 10th, 20th, . . ., 100th
slices along the z−axis are shown in the first row of Figure 3. To create a moved image, we first rotate it
along the x−, y−, and z−axes by 3, 2, and -2.5 degrees, respectively. As in the previous example, the rotation
and scaling center is set at the front-top-left corner. Then, the rotated image is shifted along the three axes
by -4, 3 and 2 voxels, respectively, and finally the resulting image is shrinked with a scaling factor of 0.93.
Its 10th, 20th, . . ., 100th slices along the z−axis are shown in the second row of Figure 3.

We then apply the proposed method and the scaling rigid-body IR method in 3DSlicer to this example.
Similar to the previous example, the two original images are reduced in size by sub-sampling and the sub-
sampling ratio is p (in percent). The selection of the sub-samples is made in a similar way to that in the
previous example, with the numbers of rows in the three axes listed in Table 2. Some results of the two
methods corresponding to those in Figures 1 and 2 are shown in Figures 3 and 4. It can be seen that our
proposed method performs much better in this example as well.
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Table 2: Proportion p (in percentage) of the original voxels in the reference image, and the numbers of selected rows in the
x−, y−, and z−axes in the abdomen image example.

number of rows
p x−axis y−axis z−axis

0.0335 16 16 10
0.0523 20 20 10
0.1026 28 28 10
0.1177 30 30 10
0.2374 36 36 14
0.2713 36 36 16
0.3400 38 38 18

Table 3: RRMS, CC and EID values of the proposed IR method and the scaling rigid-body IR method in the software package
3DSlicer in five random cases.

α β γ ∆x ∆y ∆z s 3DSlicer IR
RRMS CC EID RRMS CC EID

1 -0.03 -1.29 2.64 -2 2 -1 0.95 36.03 0.70 6.40 26.01 0.81 5.32
2 -0.58 -0.45 1.02 2 -3 -2 0.99 16.70 0.96 4.86 13.61 0.94 3.77
3 -1.33 -2.34 -0.66 1 -1 0 0.94 39.51 0.65 6.52 19.37 0.89 4.66
4 -2.51 -0.46 -0.81 -1 -2 0 0.99 21.40 0.91 5.41 16.18 0.92 4.68
5 1.48 -1.97 -1.92 -1 -1 -2 0.98 12.46 0.97 4.64 24.50 0.81 4.76
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Fig. 4: RRMS, CC and EID values of the proposed IR method and the scaling rigid-body IR method in the
software package 3DSlicer.

To study the robustness of our proposed method to different rigid-body transformations, we randomly
generated 5 sets of values of the transformation parameters as follows: each of (α, β, γ) was generated from
the Uniform distribution on [−3, 3], each of (∆x,∆y,∆z) was generated from the Uniform distribution
on {−3,−2,−1, 0, 1, 2, 3}, and the scale factor s was generated from the Uniform distribution on [0.9, 1].
The performance measures of the scaling rigid-body IR method in 3DSlicer and our proposed method are
presented in Table 3. From the table, it can be seen that our proposed method outperforms the 3DSlicer

method in 4 out of 5 cases. The averaged values of RRMS, CC and EID over all 5 cases are 19.93, 0.87 and
4.76, respectively, for our proposed method, and they are 25.22, 0.84 and 5.57 for the 3DSlicer method. So,
we can see that our proposed method has a better overall performance.

4 Concluding Remarks

In the previous sections, we have described our proposed IR method for analyzing 3D images. This method is
appropriate for handling cases with uniform affine transformations involved, which are the most common cases
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in practice. It is shown that our proposed method is reliable to use in applications where data compression
is necessary. This property makes it attractive for applications with big data, such as online monitoring of
a sequence of 3D MRI images. In some other applications, a non-uniform affine transformation might be
necessary for properly describing the geometric transformation involved in the IR problem. In such cases, it
is still unknown to us how to generalize the proposed method properly, which is left for our future research.
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