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Abstract: Better decisions for the control of HIV/AIDS and other infectious diseases require better information. The large 
amount of available public health data makes it possible to extract such information to monitor and predict significant disease 
events in disease epidemic. The detection of unusual events often involves a combination of a forecasting and a decision 
mechanism assessing the extent to which an observed event differs significantly from a forecast event. A number of methods 
and models have been proposed to monitor the trend of infectious disease and to detect unusual events. Although these 
existing methods and models are useful, many new issues remain to be addressed, including the complicated data structure 
and the infectious disease dynamics. In this paper, we first reviewed the most commonly used methods and models, including 
the historical limit method, the time series analysis, the hidden Markov models, and the process control charts.  Then, we 
further discussed issues with the current available methods. To overcome these issues, we introduced the statistical tool using 
statistical process control, and proposed a new method under that framework.  A major feature of the new method is that it 
prospectively monitors the disease incidence using sequentially collected data over time. It also takes into account a wide 
variety of longitudinal patterns and possible autocorrelation in the data. We further test this novel method with the recorded 
data of the number of AIDS cases in different states of US from 1985 to 2011. The results show that our new method is 
effective in detecting and predicting the time trends of AIDS epidemic for individual states and for US as a whole. Although 
AIDS data are used in our demonstration, this method can be used for monitoring other infectious diseases.  

Keywords: Early Detection; Epidemiology; Incidence Rate; Public Health Surveillance; Sequential Monitoring; Statistical Process 
Control (SPC); Seasonality. 

1. INTRODUCTION 

 After the first case of the acquired immunodeficiency 
syndrome (AIDS) in the United States (US) in 1981 [1], this 
life-threatening epidemic progresses rapidly. By 1993, AIDS 
had become the leading cause of death among persons 25 to 
44 years old and eighth overall among all causes of death [1]. 
The AIDS epidemic, including outbreaks of new infections 
and the large number of individuals living with the AIDS 
virus, create a major public health problem. Trends in the 
characteristics of AIDS cases are important information to 
provide to the decision-makers and the general public 
regarding the epidemic of AIDS. Many methods have been 
developed and used to detect the trend so that appropriate 
decisions can be made to prevent and control the epidemic in 
its early stage. For example, the AIDS case report systems 
were established in all 50 US states, including the District of 
Columbia, with the Centers for Disease Control and 
Prevention (CDC) as the system hub. These reported data 
provide us the basis for understanding the distribution of the 
disease over time and by geographic regions. Data from this 
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system are used as a major source to guide public health 
interventions at the national, state, and local levels. To 
extract information from this system and other data 
collection systems to meet the needs for disease prevention 
and control, public health researchers have developed a wide 
array of methods to process and utilize the collected data and 
support the control of AIDS epidemic. 

1.1. Surveillance data  

Three types of surveillance data are available for disease 
surveillance and monitoring, including the surveillance and 
monitoring of HIV/AIDS, and they are (1) number of total 
cases, (2) incidence rate of a disease, and (3) mortality rate. 
The number of newly confirmed cases of a disease is 
recorded periodically (e.g., on a daily, weekly, or monthly 
basis) through specific surveillance systems in many 
countries, including the US. It provides the up-to-date 
information about the number of persons acquiring a specific 
disease. Such data are useful for disease monitoring in real 
time.  

Sometimes the numbers of new cases alone may not be 
sufficient to provide a meaningful comparison of disease 
severity across different places because such data do not take 
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into account the difference of population density at different 
places. Therefore, the information derived from the total 
cases cannot tell the difference between a large population 
with a low disease rate and a small population with a high 
disease rate. Thus, it is important to relate the number of 
persons with a disease to the total population when 
monitoring the disease epidemic in a region. To this end, the 
incidence rate provides a good alternative, which is defined 
to be the ratio of the total number of cases diagnosed during 
a specific time period to the population at risk over the same 
period. 

As to certain health events such as heart disease, cancer, 
chronic lower respiratory disease, stroke, accident and crime, 
people are usually interested in the frequency of deaths in a 
defined population during a specific time interval. In such 
cases, the mortality rate can be used. In disease monitoring, 
the mortality rate is defined to be the number of deaths of a 
specific disease/condition divided by the total population in a 
related region. Since mortality rates of a population are 
heavily influenced by the age distribution of the population, 
age-adjusted mortality rates are often used to ensure the 
observed differences in deaths over time are not confounded 
by changes in the age distribution of the population over 
time [2]. For applications of mortality surveillance, see Aylin 
et al. [3]. 

1.2. Statistical surveillance methods 

 A review of the published studies indicate that among the 
existing surveillance methods and models, four of them are 
commonly used in practice to monitor the disease epidemic 
and estimate the risk of disease outbreak. They are the 
historical limit method, the time series analysis, the hidden 
Markov models, and the process control charts, described 
briefly below.  

1.2.1. Historical limit method: 

 The historical limit method relies on a straightforward 
comparison of the reported number of health events in the 
current time period to a summary statistic of past activities, 
for example, a mean or median. More specifically, it 
monitors the total number of cases in the current 4-week 
period and compares it with a baseline value. The baseline 
value is typically chosen to be the average of the numbers of 
cases in the preceding, current, and next 4-week periods 
during the past 5 years. Thus, fifteen values are averaged as 
an estimate of the baseline value. A ratio is then calculated 
by dividing the current 4-week total cases by the calculated 
baseline value [4]. It also assumes that the number of 
reported cases follows a normal distribution N µ, σ! , and 
the historical limits of the ratio are 

1 ±  
2𝜎
𝜇
, 

where the mean µ and the standard deviation σ can be 
estimated from the fifteen historical incidence values 
mentioned above. For each disease, if the calculated ratio is 
greater than the upper historical limit of the ratio, then a 
potential epidemic alert should be issued and a further 

epidemiologic investigation should be conducted. Due to its 
simplicity and interpretability, the historical limits method is 
quite popular in many health departments. Since 1989, the 
US Centers for Disease Control and Prevention has applied 
this method to the disease count data and reported the results 
in the Morbidity and Mortality Weekly Report [5].  

1.2.2. Time series model: 

 Public health surveillance data are often collected 
sequentially over time. Thus, these data are usually temporal 
correlated with seasonal changes. Adaptive methods that 
model the temporal dynamics have been proposed in the 
literature to provide forecasts of future incidence rates [6]. 
Among the adaptive methods, the time series analysis is the 
most commonly used for disease surveillance. 

 The well-received autoregressive integrated moving 
average (ARIMA) method [7] provides a general framework 
for the time series modeling. For this type of methods to 
work properly, the times series data must be stationary, i.e., 
both its mean function and the auto-covariance function are 
time invariant. When the time series has a non-constant 
mean, the traditional transformations, such as the time-lag 
differencing method, are required to generate stationary 
series. Square root or log transformations are often used 
when the variance of the time series data changes over time. 
Lai has implemented several preselected ARIMA models to 
the 2003 severe acute respiratory syndrome (SARS) 
epidemic data in Hong Kong [8]. The expected incidence 
values are estimated based on the one-day forecasts, and the 
forecasts are then compared with the most recently observed 
disease incidence value. The ARIMA-based models may not 
always perform well, particularly in cases when the 
stationary hypothesis is violated. 

 Another well-known method is the Serfling’s cyclic 
regression model [9]. This model is used by CDC as the 
standard algorithm for flu detection and monitoring. Instead 
of assuming a stationary data, this model uses sine and 
cosine functions to account for the underlying sinusoidal 
behavior of the seasonal influenza. By this method, the 
parameter of the non-epidemic seasonal baseline is first 
estimated, and then the upper limit of a confidence interval 
for the sinusoid is used to determine the epidemic threshold 
in the related time period. Serfling was the person who 
originally used this model to detect unusual pattern of 
pneumonia and influenza mortality in 108 US cities. 

1.2.3. Hidden Markov models: 

 Hidden Markov modeling (HMM) approach gains some 
popularity recently because of their success in detecting the 
outbreaks of influenza-like illness in some real applications 
[10,11]. This method characterizes the sequence of 
surveillance data by assuming that its probability density 
function depends on the state of an underlying Markov chain. 
In disease surveillance, the process is assumed to lie into one 
of two states: an endemic (non-outbreak) state, and an 
epidemic (outbreak) state. In order to detect the anomaly 
state of the disease, the most likely sequence of hidden states 
can be detected by the Viterbi algorithm based on the 
inference of these two states [12]. In the literature, the two-
state Hidden Markov models along with a seasonal trend 
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have been applied to monitor the influenza-like illness data, 
using a mixture of Gaussian, poliomyelitis counts, and a 
mixture of Poisson distribution [12]. This method has been 
demonstrated in examples of several infectious diseases, 
such as the flu-like disease, Malaria, Leprosy [13], 
nosocomial infections [14] and Hepatitis A [15]. 

1.2.4. Statistical process control charts: 

 The statistical process control (SPC) charts are originated 
from industrial engineering [16]. They are effective tools for 
infectious disease monitoring.  In the SPC framework, 
control charts are created and used to monitor a process.  The 
most widely used control charts include (a) Shewhart chart, 
(b) the cumulative sum (CUSUM) chart, and (c) the 
exponentially weighted moving average (EWMA) chart. 
Many biosurveillance systems, such as the Early Aberration 
Reporting System (EARS), BioSense, ESSENCE and 
NUCDOHMH, all use the SPC charts to detect disease 
outbreaks. The SPC charts evaluate the performance of a 
process sequentially based on all observed data up to the 
current time point.  These methods assume that the observed 
data are temporally independent and normally distributed. 
For this reason, it has been shown that SPC methods alone 
may lead to a relatively poor performance for disease 
surveillance, if the day-of-the-week effect of a disease is not 
handled properly [17]. To overcome this limitation, Cowling 
et al. [18] suggested an upper CUSUM chart using a 7-week 
buffer interval in the application. 

1.3. Challenges to disease surveillance 

 By using the existing methods described above for 
disease outbreak detection, there are a number of challenges 
to deal with the complicated structures of the commonly 
available HIV/AIDS data for effective detection of a 
potential event of HIV infection. 

 First, to detect a HIV/AIDS outbreak, we have to know 
the baseline pattern of the disease incidence or mortality 
when there is no disease outbreak. However, proper 
estimation of the baseline pattern itself is challenging 
because an observed pattern of HIV/AIDS over time can be 
affected by many external factors, such as climate change, 
population mobility, seasonal effects and so on. The regular 
baseline pattern would not be estimated properly without 
considering the impact of these time-dependent factors.  To 
develop a robust adaptive monitoring system, we need to 
consider two different processes of the dynamic changes in 
HIV/AIDS epidemic: (1) a process that is robust despite 
random fluctuations in the disease patterns to build the 
baseline model, and (2) a process that is sensitive to changes 
that may indicate outbreaks. 

 Second, the surveillance data for HIV/AIDS are often 
temporally correlated. If such correlation is ignored in 
monitoring, false HIV/AIDS outbreaks could be triggered as 
frequently as every day. Without a careful consideration of 
the impact of the temporal correlation, any model-based 
estimates will be subject to increased uncertainty and 
information bias, both of which will jeopardize our effort to 
monitor the HIV/AIDS epidemic. The autoregressive 
integrated moving average (ARIMA) method is 
recommended to deal with the temporal correlation [19,20]; 

however, this approach is difficult, if not impossible to 
implement in an automated way in practice because of the 
non-stationary nature of the surveillance data. The mean and 
variance structures of the surveillance data tend to change 
over time, violating the stationary hypothesis of the ARIMA 
approach. 

 Another key task when constructing a surveillance 
system is to make use of all available data, including the new 
data and the historical data, so that new information can be 
used to clarify situational awareness of public health 
monitors [21]. To this end, it is critical that the designed 
system can offer the best potential for early intervention and 
prevention while the false alarm rate is controlled at a low 
level. Our literature review indicates that most surveillance 
methods use the current data to make inference about the 
epidemic or outbreak of a disease without considering the 
historical data. In such cases, an outbreak in HIV/AIDS will 
not be detected if the disease incidence or motality showed a 
gradual increasing trend at the beginning. Ideally, all the 
historical data should be used for accumulating the evidence 
of an irregular pattern. With this approach, any outbreak 
signals can be triggered more efficiently without much delay. 
The aforementioned SPC methods, including the cumulative 
sum (CUSUM) and the exponentially weighted moving 
average (EWMA) charts, provide an effective tool to deal 
with this issue. The control charts evaluate the performance 
of a process sequentially based on all observed data up to the 
current time. But, to use these charts, it is conventionally 
assumed that the process distribution is unchanged over time 
when the process is stable (i.e., the process is in-control (IC)). 
This is obviously violated in HIV/AIDS applications because 
their incidence rates would change over time even in cases 
with no disease outbreaks. Therefore, the traditional SPC 
charts need to be modified properly before they can be 
applied to the current problem. 

1.4. Purpose of this study 

In this paper, we report our work on the development and 
verification of the adaptive monitoring-based alarming 
system for HIV/AIDS monitoring. The method we reported 
here can be considered as a modification of the dynamic 
screening system (DySS) originally proposed by Qiu and 
Xiang [22].  In this new method we attempted to address the 
aforementioned three challenges (i.e., addressing both the 
baseline pattern and online monitoring, dealing with 
temporal auto-correlation, and inclusion of both the current 
and history data). The ultimate goal is to develop a new tool 
for AIDS epidemic surveillance and control. To illustrate the 
use of our proposed monitoring scheme, the US AIDS 
diagnostic data from 1985 to 2011 are used and the related 
results are presented. 

2. AN ADAPTIVE MONITORING-BASED SYSTEM 

 We propose an adaptive monitoring-based alarming 
system consisting of the following three steps: 

(i) Detrend – The baseline pattern is first estimated by a 
nonparametric longitudinal model, and the estimated 
baseline pattern is then eliminated from the observed 
data, 
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(ii) Decorrelation – The temporal autocorrelation in the 
detrended data is modeled by an ARIMA model, and the 
estimated autocorrelation is eliminated from the 
detrended data, and 

(iii) Sequential Monitoring – The adjusted data obtained in 
step (ii) are then sequentially monitored by a SPC chart.  

 The main focus of step (i) is to estimate the baseline 
longitudinal pattern of a disease in question and remove it 
from the observed data before monitoring. Such baseline 
longitudinal pattern can usually be explained by the 
seasonality and other factors that are not our major interest 
[23,	 24]. The baseline pattern will be estimated by the 
nonparametric regression techniques. After the estimated 
baseline pattern is removed from the observed data, the mean 
and variance of the detrended data should remain stable 
under the non-epidemic condition. So, the underlying 
assumption of stationarity in the time series analysis in step 
(ii) is valid. The ARIMA model used in step (ii) is mainly 
for removing autocorrelation in the observed data. After this 
step, the detrended and decorrelated data should be 
independent at different time points and stationary if there 
are no disease outbreaks. A conventional SPC chart can then 
be applied for online monitoring of the disease incidence. 
Details about our three-step strategy are described in the 
following several parts. 

2.1. Detrend 

 In order to use the proposed monitoring scheme, the 
baseline longitudinal pattern of the surveillance data over 
time needs to be estimated properly. To this end, assume that 
the observed disease incidence rate y follows the 
nonparametric regression model 

y(t!") =  µ(t!") +  ε(t!"), for  i = 1, 2,…  ,m,     

        j = 1, 2,…  , n ,                  

(1) 

where 𝑡!"  ∈ [0,𝑇]  is the 𝑗 th observation time at location 
𝑖,  𝜇(𝑡!") is the mean of 𝑦(𝑡!"), and 𝜀(𝑡!") is the error term. 
We further assume that the error term is the sum of two 
independent components, i.e, 𝜀 𝑡!" =  𝜀! 𝑡!" +  𝜀! 𝑡!" , 
where 𝜀! ∙  is a random process with mean 0 and covariance 
function  𝑉! 𝑠, 𝑡 , 𝑠, 𝑡 ∈ [0,𝑇] . And, 𝑉! 𝑠, 𝑠  is denoted 
as  𝜎!! 𝑠 . In this decomposition, 𝜀! ∙  denotes the pure 
measurement error with mean 0 and variance 𝜎!! 𝑠 , and 
𝜀! ∙  denotes all possible covariates that may affect 𝑦 but are 
not included in model (1). The estimator of 𝜇 𝑡!"  is 
proposed by Chen et al. [25] and Pan et al. [26] based on the 
local 𝑝 th-order polynomial kernel smoothing procedure. 
Similarly, the variance functions 𝜎!! 𝑠  and 𝜎!! 𝑠  can be 
estimated. By modeling the error term in this way, it allows 
for temporal correlation among observed data within the area 
without specifying the autocorrelation structure. This model 
is flexible enough to accommodate a wide range of 
correlation in the data, and adjust for the baseline pattern that 
can vary from site to site. After model (1) is estimated, the 
observed data at each location are adjusted by first 
subtracting the estimated mean and then dividing the 
estimated standard deviation of  𝑦(𝑡!") . The resulting 
standardized data are denoted as 𝑟(𝑡!"). Note that through the 
above data standardization, the heterogeneity problem in the 

mean and variance functions over time and at different 
places has been addressed.  

2.2. Decorrelation 

 Before start modeling the temporal correlation in the 
standardized data, we suggest performing Ljung-Box test [27] 
to assess whether a strong temporal correlation exists. By 
this test, a small p-value indicates a strong evidence of 
dependence among data. In that case, the temporal 
correlation among the standardized data can be described by 
an ARIMA model. We then can use the Box-Jenkins 
technique to develop a forecasting model [28]. The Box-
Jenkins approach to time series forecasting requires an 
adequate stochastic ARIMA model of the following form to 
describe the time series at location 𝑖: 

Φ! 𝐵 ∇!𝑟 𝑡!" = Θ! 𝐵 𝜖 𝑡!" ,       j = 1, 2, … , 
n, (2) 

where Φ! 𝐵 = 1 − 𝜙!𝐵 −  𝜙!𝐵! −⋯−  𝜙!𝐵!  is an 
autoregressive polynomial of order p , ∇  is the backward 
difference operator, d is the order of the first difference, 
Θ! 𝐵 = 1 − θ!𝐵 − 𝜃!𝐵! −⋯− 𝜃!𝐵!  is a moving 
average polynomial of order q, B is the backshift operator, 
and 𝜖 𝑡!"  is a sequence of independent and identically 
distributed (i.i.d.) random errors with mean 0 and unknown 
variance. To develop and select an appropriate ARIMA 
model for each series, we suggest choosing d using the 
successive KPSS unit-toot test [29]. The KPSS test for 
testing the null hypothesis that the time series model is 
stationary is performed for integer d ≥ 1, and we choose the 
smallest integer value of d such that the corresponding p-
value of the test is less than a prespecified significance 
level α. Throughout this paper, α is set to be 0.05.  Once d is 
determined, p and q are chosen by minimizing the AICc 
criterion [29]. Note that the ARIMA model for each series is 
chosen in cases when no outbreak is present. Given the most 
recent observations, the one-step-ahead forecast errors based 
on the fitted chosen model can then be used for sequential 
monitoring.  

2.3. Sequential monitoring 

 In this part, we discuss the on-line monitoring of the 
forecast errors for detecting any upward shift in the disease 
incidence rate as quickly and accurately as possible. To this 
end, SPC charts have been frequently used. Recently, such 
charting methods have been demonstrated to be useful in 
public-health-related applications as well [30]. Among these 
commonly used control charts, the CUSUM chart has been 
proved to have certain good theoretical properties [31]. It is 
optimal in the sense that it detects the mean shift of a pre-
specified size with the least delay on average if the 
observations are independent and normally distributed. To 
measure the performance of a control chart, the average run 
length (ARL), defined as the average number of time points 
before an alarm is given, is often used. The control chart is 
usually presented by a plot of some function of the process 
measurements, called the charting statistic, against time. The 
computed value of the charting statistic is then compared to a 
pre-specified control limit. At the first time when the 
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charting statistic exceeds the control limit, the chart gives an 
alarm, indicating that some systematic shift may have 
occurred and some actions should be taken to fix the 
problem. The design of a control chart (i.e., selection of the 
control limit and other parameters) is a compromise between 
the risks of missing real shifts and giving false alarms. When 
the disease process is regular (or called in-control (IC) in the 
SPC literature), all alarms are false alarms. The distribution 
of the false alarms is often summarized by the IC ARL, 
denoted as ARL! . On the other hand, when the disease 
process is in the epidemic state (or called out-of-control 
(OC)), the OC ARL, denoted as ARL! , measures the 
excessive delay in detecting a true shift. The ARL!  and 
ARL! are well-defined measures that can be computed easily 
using existing software packages. They are the standard 
metrics for measuring the performance of the CUSUM chart. 
Intuitively, for an IC process, the ARL! value should be as 
large as possible. For example, if the observations from an 
IC process are independent and have a standard normal 
distribution and ARL!  = 370, it means that even if the 
process remains IC, on average an observation exceeding the 
control limit and triggering a signal every 370 observations. 
On the other hand, if the process is OC, ARL! should be as 
small as possible, meaning that the control chart signals the 
shift as soon as possible after the shift occurs. Unfortunately, 
both metrics cannot be small at the same time. For instance, 
in cases when the ARL!  value is large, the ARL!  value 
would be relatively large as well, and vice versa. To make a 
trade-off, the ARL! value is usually fixed at a given level 
(e.g., 200), and then we try to make the ARL! value as small 
as possible.  

 In this paper, we mainly use the CUSUM chart because 
of its good theoretical properties discussed above. To detect 
an upward mean shift for any sequence {e!, 𝑗 = 1, 2, 3,… }, 
the charting statistic of the upward CUSUM chart is defined 
by 

𝐶!! =  max 0,𝐶!!!! + 𝑒! − 𝑘 , for j≥ 1, (3) 

where 𝐶!! = 0, and 𝑘 > 0 is called the allowance constant. 
The chart gives a signal of an upward mean shift if 

𝐶!! > ℎ, (4) 

where ℎ > 0  is called the control limit. Similarly, to detect a 
downward mean shift, the charting statistic is defined by 

𝐶!! =  min 0,𝐶!!!! + 𝑒! + 𝑘 , for j≥ 1, (5) 

where 𝐶!! = 0. The chart gives a signal of a downward mean 
shift if 

𝐶!! < −ℎ, (6) 

We can also combine the two one-sided control charts for 
detecting both upward and downward shifts. Usually, the 
allowance 𝑘  is specified beforehand. It has been well 
demonstrated in the literature that large 𝑘  values are 
effective for detecting large shifts and small 𝑘 values are 
effective for detecting small shifts. The control limit ℎ is 
chosen such that a pre-specified ARL!  value is reached. 
Then, the chart performs better for detecting a given shift if 
its ARL! value is smaller.  ARL! usually depends on the size 
of the shift, denoted as 𝛿. It has been proved in the literature 

[31] that the best 𝑘 value is 𝛿/2 if process observations are 
independent and normally distributed. Since the data 
obtained from step 2 are approximately stationary and 
independent, the assumption of normality is the only main 
fact that we should consider. When the normality assumption 
is not valid but a set of IC dataset is available, we suggest 
using a bootstrap (or resampling) procedure to search for the 
control limit of the CUSUM charts [32,	33].  

3. APPLICATION TO AIDS SURVEILLANCE IN THE   
UNITED STATES 

 Here we illustrate the use of our monitoring scheme for 
monitoring the incidence rate of AIDS in US. The numbers 
of reported AIDS cases are geographically aggregated to the 
50 states and District of Columbia each year during 1985 – 
2011. As the denominator for calculating the incidence rate, 
we use the official population estimates for each state 
obtained from the official website of the U.S. Census Bureau. 
Figure (1) shows the observed incidence rate of AIDS for 
each of the 50 states and District of Columbia over the 27-
year follow-up period. From the figure, it can be seen that 
the incident rates increase from 1985 to 1993, and a peak is 
observed around 1993 for many states. We hope that their 
increasing trends can be detected early by our proposed 
monitoring scheme so that some medical interventions can 
be applied in a timely manner. 

 
Fig. (1). The incidence rate of AIDS per 100,000 people 
for each state in the United States during 1985 – 2011. 

 To estimate the baseline model (1), the local linear kernel 
smoothing procedure [34, Chap 2] is applied to the IC data 
obtained in the following way. For each state, the 25th and 
75th percentiles of the AIDS incidence rate are first 
computed. Then, these percentiles are averaged among all 51 
states, respectively. The resulting central 50% confidence 
interval for the AIDS incidence rate is [0.0045, 0.3880]. 
Then, for each state, all observed incidence rates that are 
within this interval are regarded as IC. From the defined IC 
data, an estimated mean function of the AIDS incidence rate 
is obtained as described in step 1. Once a time series model 
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is estimated from the detrended IC data, it is applied to all 
the detrended data for eliminating the autocorrelation. After 
the observed AIDS incidence data are standardized (or, 
detrended) and decorrelated, the CUSUM chart can be 
applied to the resulting forecasting errors.  In this case, we 
noted that the data do not seem to follow a normal 
distribution. In such cases, the commonly used control limit 
ℎ computed for normal data cannot be used, and it needs to 
be numerically searched by an algorithm. We use a bootstrap 
resampling algorithm to determine the value of h such that 
the pre-specified ARL!  is reached. More specifically, we 
resample with replacement the IC detrended and decorrelated 
data and numerically search for the appropriate value of h. 
After the value of h is computed, the conventional CUSUM 
chart can be readily applied. In this paper, k is set to be 0.5, 
and ARL! is fixed at 200.  

4. RESULTS 

 First, the IC data in the 51 states (light grey lines) and the 
estimated baseline function (black dashed line) are presented 
in Figure (2). From the plot, it can be seen that the estimated 
baseline function captures the general longitudinal trends of 
the AIDS incidence rates well. We monitor the detrended 
and decorrelated data for each state by the two-sided 
CUSUM chart and 14 out of 51 states triggered the outbreak 
signals during 1985 – 2011. The signal times are listed in 
Table 1 and shown in Figure (3). From the table and the 
figure, it can be seen that the District of Columbia is the first 
state in getting the signal in 1986. Its numbers of AIDS cases 
are consistently at high levels considering its relatively small 
population. Its AIDS incidence rate is more than 9 times the 
national average rate. The CUSUM chart gives signals 
during 1987 – 1989 for the states New York, New Jersey, 
Florida, and California. This result agrees with the analysis 
done by CDC which reveals that new AIDS diagnoses are 
concentrated primarily in metropolitan areas (81% in 2011), 
with New York, Los Angeles, and Miami topping the rank. 
Several states get signals around 1993, several others get 
signals during 1996 – 1999, and no states get signals after 

1999. Figure (4) shows the charting statistic 𝐶!! in (3) and 
the observed AIDS incidence rate for the state of California. 
The left panel shows the charting statistic in (3), with the 
dashed line denoting the numerically searched control limit h. 
It can be seen that the charting statistic rises and then 
stabilizes, implying that the AIDS incidence rate increases 
quite quickly first and then stabilizes or decreases. The right 
panel plots the observed AIDS incidence rate for California 
during 1985-2011. The vertical line indicates the signal time. 
It can be seen that the signal is given way before 1993 when 
an AIDS outbreak is quite obvious. Therefore, the CUSUM 
chart is quite effective for early detection of the AIDS 
outbreaks. 

 
Fig. (2). The in-control (IC) AIDS incidence rates and 
their estimated baseline function. The grey solid lines are 
the IC incidence rates of each state, and the black dotted line 
is the estimated baseline function. 

 

    Table 1. Signal times of the CUSUM chart for certain states in the U.S. during 1985 – 2011. 

State Signal time of outbreak State Signal time of outbreak 

District of Columbia 1986 Georgia 1993 

New York 1987 Nevada 1993 

New Jersey 1988 Texas 1993 

Florida 1989 Delaware 1994 

California 1989 Louisiana 1996 

Maryland 1993 South Carolina 1997 

Connecticut 1993 Massachusetts 1999 

 

5.  DISCUSSION AND CONCLUSION 

 We have described a three-step procedure for early 
detection of the AIDS outbreak in the United State. This 
procedure can accommodate the baseline longitudinal trend 

of the disease incidence rate and the temporal autocorrelation 
in the observed data as well. Our numerical results show that 
it is effective in practice. In our future research, we will 
generalize this approach in several different directions. First, 
the AIDS incident rates are often influenced by certain 
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environmental variables, such as medical conditions, 
educational levels, social-economic status, and so forth. Such 
AIDS-related covariates will be incorporated in model (1) 
when we estimate the baseline pattern. Second, in the current 
procedure, the spatial correlation in the observed data has not 
been taken care of yet. We will develop effective methods 

for sequentially monitoring the spatio-temporal patterns of 
the AIDS incidence rate and for more effective detection of 
the disease outbreaks. 
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Fig. (3). Signal times of different states are shown by different colors: the darker, the earlier. 

 

	

Fig. (4). The charting statistics 𝑪𝒋!and the AIDS incidence rate for the state of California. Left panel: charting statistic in 
(3) is plotted, and the dashed line is the numerically searched control limit h, in cases when ARL! is fixed at 200 and k is set to 
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be 0.5. Right panel: the observed AIDS incidence rate of California during 1985 – 2011, and the vertical line indicates the 
signal time.



Send	Orders	for	Reprints	to	reprints@benthamscience.net	

	 Journal	Name,	Year,	Volume	 9	

 XXX-XXX/14 $58.00+.00 © 2014 Bentham Science Publishers 

REFERENCES 

[1]  Centers for Disease Control and Prevention, 
Prevention. HIV and AIDS--United States, 1981-2000. 
MMWR Morbidity and mortality weekly report 2001; 
50(21):430-4. 

[2]  Notestein FW. Mortality, fertility, the size-age 
distribution, and the growth rate.  Demographic and 
economic change in developed countries: Columbia 
University Press 1960; pp. 261-84. 

[3]  Aylin P, Best N, Bottle A, Marshall C. Following 
Shipman: a pilot system for monitoring mortality rates in 
primary care. Lancet 2003; 362(9382):485-91. 

[4]  Stroup DF, Williamson GD, Herndon JL, Karon JM. 
Detection of aberrations in the occurrence of notifiable 
diseases surveillance data. Statistics in medicine 1989; 
8(3):323-9; discussion 31-2. 

[5]  Centers for Disease Control and Prevention. 
Proposed changes in format for presentation of notifiable 
disease report data. MMWR Morbidity and mortality weekly 
report 1989; 38(47):805-9. 

[6]  Lawson AB, Kleinman K. Spatial and Syndromic 
Surveillance for Public Health. Wiley 2005. 

[7]  Box GEP, Jenkins GM. Time series analysis: 
forecasting and control: Holden-Day 1976. 

[8]  Lai D. Monitoring the SARS epidemic in China: a 
time series analysis. Journal of Data Science 2005; 3(3):279-
93. 

[9]  Serfling RE. Methods for current statistical analysis 
of excess pneumonia-influenza deaths. Public health reports 
1963; 78(6):494. 

[10] Rath TM, Carreras M, Sebastiani P. Automated 
detection of influenza epidemics with hidden Markov 
models.  Advances in Intelligent data analysis V: Springer 
2003; pp. 521-32. 

[11] Sebastiani P, Mandl KD, Szolovits P, Kohane IS, 
Ramoni MF. A Bayesian dynamic model for influenza 
surveillance. Statistics in medicine 2006; 25(11):1803-16. 

[12] Le Strat Y, Carrat F. Monitoring epidemiologic 
surveillance data using hidden Markov models. Statistics in 
medicine 1999; 18(24):3463-78. 

[13] Jamshidi Orak R, Mohammad K, Pasha E, Sun W, 
Nori Jalyani K, Rasolinejad M, et al. Modeling the spread of 
infectious diseases based the Bayesian approach. Journal of 
School of Public Health and Institute of Public Health 
Research 2007; 5(1):7-15. 

[14] Cooper B, Lipsitch M. The analysis of hospital 
infection data using hidden Markov models. Biostatistics 
2004; 5(2):223-37. 

[15]   Watkins RE, Eagleson S, Veenendaal B, Wright G, 
Plant AJ. Disease surveillance using a hidden Markov model. 
BMC medical informatics and decision making 2009; 
9(1):39. 

[16]   Qiu P. Introduction to Statistical Process Control. 
1st ed. CRC Press 2013. 

[17]   Jackson ML, Baer A, Painter I, Duchin J. A 
simulation study comparing aberration detection algorithms 
for syndromic surveillance. BMC Medical Informatics and 
Decision Making 2007; 7(1):6. 

[18]   Cowling BJ, Wong IO, Ho L-M, Riley S, Leung 
GM. Methods for monitoring influenza surveillance data. 
International Journal of Epidemiology 2006; 35(5):1314-21. 

[19]  Yu H-K, Kim N-Y, Kim SS, Chu C, Kee M-K. 
Forecasting the number of human immunodeficiency virus 
infections in the Korean population using the autoregressive 
integrated moving average model. Osong public health and 
research perspectives 2013; 4(6):358-62. 

[20]   Aboagye-Sarfo12 P, Cross J, Mueller U. 
Application of Intervention Analysis to Incidence Cases of 
HIV Infection in Ghana. Available at: 
https://www.statssa.gov.za/isi2009/ScientificProgramme/IP
MS/0745.pdf. Accessed February 22, 2015.   

[21]   Shmueli G. To explain or to predict? Statistical 
science 2010; 25(3):289-310. 

[22]   Qiu P, Xiang D. Univariate Dynamic Screening 
System: An Approach For Identifying Individuals With 
Irregular Longitudinal Behavior. Technometrics 2014; 
56(2):248-60. 

[23]   McQuillan GM, Khare M, Karon JM, Schable CA, 
Vlahov D. Update on the seroepidemiology of human 
immunodeficiency virus in the United States household 
population: NHANES III, 1988-1994. JAIDS Journal of 
Acquired Immune Deficiency Syndromes 1997; 14(4):355-7. 

[24] Bacchetti P, Segal MR, Jewell NP. Backcalculation 
of HIV infection rates. Statistical Science 1993; 8(2):82-101. 

[25] Chen K, Jin Z. Local polynomial regression 
analysis of clustered data. Biometrika 2005; 92(1):59-74. 

[26] Pan J, Ye H, Li R. Nonparametric regression of 
covariance structures in longitudinal studies. Technical 
Report: School of Mathematics, University of Manchester, 
UK 2009. 

[27] Shumway RH, Stoffer DS. Time series analysis and 
its applications: with R examples: Springer Science & 
Business Media 2010. 

[28] Box GE, Jenkins GM. Time series analysis: 
forecasting and control, revised ed: Holden-Day 1976. 

[29] Kwiatkowski D, Phillips PC, Schmidt P, Shin Y. 
Testing the null hypothesis of stationarity against the 



Title	of	the	Article	 Journal	Name,	2014,	Vol.	0,	No.	0				10	

alternative of a unit root: How sure are we that economic 
time series have a unit root? Journal of econometrics 1992; 
54(1):159-78. 

[30] Woodall WH. The use of control charts in health-
care and public-health surveillance. Journal of Quality 
Technology 2006; 38(2):89-104. 

[31] Moustakides GV. Optimal stopping times for 
detecting changes in distributions. The Annals of Statistics 
1986; 14(4):1379-87. 

[32] Edopka I, Ogbeide E. Bootstrap approach control 
limit for statistical quality control. International Journal of 
Engineering Science Invention 2013; 2(4): 28-33. 

[33] Chatterjee S, Qiu P. Distribution-free cumulative 
sum control charts using bootstrap-based control limits. The 
Annals of Applied Statistics 2009; 3(1):349-369. 

[34] Qiu P. Image processing and jump regression 
analysis. 1st ed. John Wiley & Sons 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	


