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Abstract: Observed images are often blurred. Blind image deblurring (BID) is for

estimating a true image from its observed but blurred version, when the blurring

mechanism described by a point spread function (psf) cannot be completely speci-

fied beforehand. This is a challenging “ill-posed” problem, because (i) theoretically

speaking, the true image cannot be uniquely determined by the observed image

when the psf is unknown, and (ii) practically, besides blur, observed images often

contain noise that would bring numerical instability to the image deblurring prob-

lem. In the literature, early image deblurring methods are developed under the

assumption that the psf is known. More recent methods try to avoid this restric-

tive assumption, by assuming that either the psf follows a parametric form with

some unknown parameters, or the true image has certain special structures. In this

paper, we propose a BID methodology, without imposing restrictive assumptions

on the psf or the true image. It even allows the psf to change over location. Our

method makes use of the hierarchical nature of blurring that the image structure

is altered most significantly around step edges, less significantly around roof/valley

edges, and least significantly at places where the true image intensity function

is straight. So, it pays special attention to regions around step and roof/valley

edges when deblurring. Theoretical justifications and numerical studies show that

it works well in applications.

Key words and phrases: Deconvolution, denoising, edges, jump-preserving surface

estimation, local smoothing, nonparametric regression, principal components.

1 Introduction

Observed images generated by image acquisition devices are usually not exactly

the same as the true images, but are degraded versions of their true images (e.g.,

Gonzalez and Woods 1992, Qiu 2005). Degradations can occur in the entire

image acquisition process, and there are many different sources of degradation.
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For instance, in aerial reconnaissance, astronomy, and remote sensing, images

are often degraded by atmospheric turbulence, aberrations of the optical system,

or relative motion between the camera and the object. Among different degra-

dations, point degradation (or, noise) and spatial degradation (or, blurring) are

the most common in practice. Other types of degradations involve chromatic

or temporal effects. See Bates and McDonnell (1986) for a detailed discussion

about formation and description of various degradations.

In the literature, a commonly used model for describing the relationship

between a true image f and its observed but degraded version Z is as follows.

Z(x, y) = H{f}(x, y) + ε(x, y), for (x, y) ∈ Ω, (1)

where H{f}(x, y) =
∫ ∫

R2 h(u, v;x, y)f(x−u, y−v) dudv denotes the convolution

between a 2-D point spread function (psf) h and the true image intensity function

f , ε(x, y) is the pointwise noise at (x, y), and Ω is the design space of the image.

In model (1), it is assumed that f is degraded spatially by h and pointwise by ε,

the spatial blur is linear, and the pointwise noise is additive. In most references,

people further assume that h, which describes the spatial blurring mechanism, is

location invariant. That is, h(u, v;x, y) does not depend on (x, y).

Image deblurring is for estimating f from Z. This problem is “ill-posed”

for the following reasons. First, even in cases when no noise is contained in Z,

there could be multiple sets of h and f that correspond to the same Z, when h

is unspecified beforehand. Second, the inverse problem to estimate f from Z is

often numerically unstable, caused mainly by noise. For instance, in cases when

h is location invariant and known, from (1), we have

F{Z}(u, v) = F{h}(u, v)F{f}(u, v) + F{ε}(u, v), for (u, v) ∈ R2,

where F{f} denotes the Fourier transformation of f . Then, an intuitively rea-

sonable estimator of f can be defined by the inverse Fourier transformation of

F{Z}(u, v)/F{h}(u, v). However, when u2+v2 gets larger, F{h}(u, v) converges

to zero fast because h is usually a smooth function, but F{Z}(u, v) converges to

zero much slower because of the high-frequency noise in Z. Therefore, such an

estimator would be numerically unstable.

In the literature, early image deblurring procedures are under the assumption

that h is completely specified. In such cases, a major challenge is to overcome
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the numerical difficulty mentioned above. To this end, many proposals have been

suggested, including the inverse filtering, Wiener filtering, Lucy-Richardson algo-

rithm, maximum a posteriori (MAP) procedure, total variation image deblurring,

and so forth (e.g., Biggs and Andrews 1997, Figueiredo and Nowak 2003, Gonza-

lez and Woods 1992, Skilling 1989, Oliveira, Bioucas-Dias, and Figueiredo 2009).

In practice, however, it is often difficult to specify h. Image deblurring when h

is unspecified is referred to as the blind image deblurring (BID) problem, which

is challenging due to its “ill-posed” nature described above. There are some

existing procedures to handle the BID problem. Some of them assume that h

follows a parametric model with one or more unknown parameters, and estimate

the parameters together with the true image f (e.g., Carasso 2001, Hall and Qiu

2007a, Joshi and Chaudhuri 2005, Katsaggelos and Lay 1990). Some others as-

sume that f has one or more regions with certain known edge structures (e.g.,

Hall and Qiu 2007b, Kundur and Hatzinakos 1996, Qiu 2008). Several authors

formulate the BID problem as a regularization problem with regularization mea-

sures on both h and f (e.g., Chan and Wong 1998, Pruessner and O’Leary 2003,

Rudin, Osher and Fatemi 1992, You and Kaveh 1996). Some others develop BID

methods under the Bayesian framework (e.g., Fergus, Singh, Hertzmann, Roweis,

and Freeman 2006, Likas and Galatsanos 2004). For overviews on this topic, see

Kundur and Hatzinakos (1996) and Levin, Weiss, Durand, and Freeman (2011).

In practice, the model assumptions required by the existing methods de-

scribed above are often invalid, or difficult to check. For instance, the blur in a

satellite image is usually caused by wind, turbulence, relative motion between the

satellite and the earth, imperfection of the camera lens, and so forth. The psf h

in such cases is difficult to specify by a parametric model. It may not be location

invariant either. As demonstrated by several authors (e.g., Carasso 2001, Hall

and Qiu 2007b), image deblurring results are sensitive to the specification of h.

Therefore, the ill-posed BID problem is still mostly open.

In this paper, we propose a novel approach to the BID problem without

imposing restrictive assumptions on either h or f . It even allows h to change over

location. We notice that image blurring has the following hierarchical nature.

Namely, it alters the image structure most significantly at step edges (i.e., places

where f has jumps), less significantly at roof/valley edges (i.e., places where the

3



first-order derivatives of f have jumps), and least significantly at places where

f is straight. Therefore, we pay special attention to regions around jumps in

f and in its derivatives of different orders. In practice, jumps in the second or

higher order derivatives of f is hardly visible. So, only step and roof/valley edges

are specially treated in this paper, although jumps in the second or higher order

derivatives of f can be treated similarly. The major statistical tool used here is

the jump regression analysis (JRA) (cf., Qiu 2005). Under that framework, model

(1) is regarded as a 2-dimensional (2-D) regression model, f is a jump regression

surface, and various edges correspond to jumps in f and in its derivatives of

different orders. Local smoothing procedures are proposed under that framework

for estimating f by removing both pointwise noise and spatial blur. Theoretical

justifications and numerical studies show that it works well in applications.

The remaining part of the article is organized as follows. In the next section,

our proposed methodology is described in detail. Some of its statistical properties

are presented in Section 3. Its numerical performance is investigated in Section

4. Discussions about future research are presented in Section 5. Technical details

and some numerical results are provided in a supplementary file.

2 Methodology

2.1 Step and Roof/Valley Edge Detection

In the literature, existing edge detection procedures focus mainly on cases when

the observed image contains pointwise noise but it has no spatial blur involved

(e.g., Canny 1986, Chu, Siao, Wang and Deng 2011, Garlipp and Müller 2007,

Sun and Qiu 2007). Here, we try to take into account the possible blurring in the

observed data when detecting edges. For simplicity, let us assume that the design

space is Ω = [0, 1] × [0, 1], and {(xi, yj)} are equally spaced in Ω, i.e., (xi, yj) =

(i/n, j/n), for i, j = 1, . . . , n. Observations {(xi, yj , Zij), i, j = 1, 2, . . . , n} are

assumed to be from model (1). Namely,

Zij = H{f}(xi, yj) + εij , for i, j = 1, 2, . . . , n, (2)

where εij are i.i.d. errors with mean 0 and unknown variance σ2. For a given point

(x, y) ∈ [k1/n, 1 − k1/n] × [k1/n, 1 − k1/n], where the positive integer k1 < n/2

4



is a bandwidth, we consider its circular neighborhood

O′n(x, y) =
{

(u, v) : (u, v) ∈ Ω and
√

(u− x)2 + (v − y)2 ≤ k1/n
}
.

In this neighborhood, let us consider the following local linear kernel (LLK)

smoothing procedure:

min
a,b,c

∑
i2+j2≤k21

[
Z (x+ i/n, y + j/n)−

(
a+ b

i

n
+ c

j

n

)]2
K∗
(
i

k1
,
j

k1

)
, (3)

where K∗ is a circularly symmetric bivariate density kernel function defined on

the unit disk centered at the origin. Let the solution to {a, b, c} of the problem

(3) be denoted as {â(x, y), b̂(x, y), ĉ(x, y)}. Then, (̂b(x, y), ĉ(x, y)) is an estimator

of the gradient of the true regression surface f at (x, y). Now, we divide O′n(x, y)

into two halves, denoted as U ′n(x, y) and V ′n(x, y), along the direction perpendic-

ular to (̂b(x, y), ĉ(x, y)). The change in the values of f from V ′n(x, y) to U ′n(x, y)

should be relatively large if (x, y) is on a step edge segment. Also, in cases when

spatial blur is present, design points in O′n(x, y) closer to the step edge segment

would have more blurring involved. By combining these two facts, we define our

step edge detection criterion by

M(1)
n (x, y) =

|â+(x, y)− â−(x, y)|√ ∑
(xi,yj)∈U′

n(x,y) bij(x,y)
2[∑

(xi,yj)∈U′
n(x,y) bij(x,y)

]2 +

∑
(xi,yj)∈V ′

n(x,y) b
′
ij(x,y)

2[∑
(xi,yj)∈V ′

n(x,y) b
′
ij(x,y)

]2
,

where â+(x, y) and â−(x, y) are respectively the solutions to a of the following

local weighted least square problems:

min
a,b,c

∑
U ′
n(x,y)

[
Z
(
x+ i

n , y + j
n

)
−
(
a+ b i

n + c jn

)]2
K∗
(

i
k1
, j
k1

)
L∗
(

d′ij
k1/n

)
, (4)

min
a,b,c

∑
V ′
n(x,y)

[
Z
(
x+ i

n , y + j
n

)
−
(
a+ b i

n + c jn

)]2
K∗
(

i
k1
, j
k1

)
L∗
(

d′ij
k1/n

)
, (5)

bij(x, y) =
[
B1(x, y) +B2(x, y) i

n +B3(x, y) j
n

]
K∗
(

i
k1
, j
k1

)
L∗
(

d′ij
k1/n

)
,

B1(x, y) = t20(x, y)t02(x, y)− t11(x, y)t11(x, y),

B2(x, y) = t01(x, y)t11(x, y)− t10(x, y)t02(x, y),

B3(x, y) = t10(x, y)t11(x, y)− t01(x, y)t20(x, y),

ts1,s2(x, y) =
∑

U ′
n(x,y)

(
i
n

)s1 ( j
n

)s2
K∗
(

i
k1
, j
k1

)
L∗
(

d′ij
k1/n

)
, s1, s2 = 0, 1, 2,
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b′ij(x, y) is defined in the same way as bij(x, y) except that U ′n(x, y) in the defi-

nition of ts1,s2(x, y) should be replaced by V ′n(x, y), L∗ is a univariate increasing

density kernel function with support [0, 1], and d′ij is the Euclidean distance

from the point (xi, yj) to the line dividing O′n(x, y) into U ′n(x, y) and V ′n(x, y).

Clearly, our step edge detection criterion is a standardized difference between

the two one-sided local linear kernel estimators â+(x, y) and â−(x, y). By using

the two kernel functions K∗ and L∗, design points farther away from (x, y) or

closer to the line dividing O′n(x, y) into U ′n(x, y) and V ′n(x, y) would receive less

weights. Then, the design point (x, y) is flagged as a detected step edge pixel if

M(1)
n (x, y) > unσ, (6)

where un is a threshold value. As pointed out by Qiu and Yandell (1997), detected

edge pixels by (6) usually contain two types of deceptive ones: those scattered in

the whole design space due to randomness and those around true edge curves due

to thresholding. They can be deleted reasonably well by the two modification

procedures proposed in that paper. In practice, σ is often unknown, and it needs

to be estimated from the observed data. To this end, it can be estimated by

the residual mean squares of the conventional LLK smoothing procedure. The

estimator of σ is denoted as σ̂ hereafter.

A related procedure for detecting roof/valley edges is described in the sup-

plementary file.

2.2 Blind image deblurring

As described in Section 1, our proposed BID procedure pays special attention

to regions around the detected step and roof/valley edges when deblurring the

observed image Z (or, estimating the true image f from Z). To estimate f at a

given design point (x, y), let us consider a circular neighborhood

On(x, y) = {(u, v) :
√

(u− x)2 + (v − y)2 ≤ k/n},

where k < n/2 is a positive integer that could be different from the bandwidths k1

or k2 used in edge detection. Let {(wl, vl), l = 1, 2, . . . ,m} be detected step edge

points in On(x, y), w̄, v̄, σww and σvv be the sample means and sample variances

of {wl, l = 1, 2, . . . ,m} and {vl, l = 1, 2, . . . ,m}, σwv be their sample covariance,
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and (W,V ) be a vector variable taking values over {(wl, vl), l = 1, 2, · · · ,m}.
To estimate the underlying step edge segment in On(x, y) from the detected

step edge points, we consider using the principal component (PC) line of the

points {(wl, vl), l = 1, 2, . . . ,m}, which goes through the center of these points

along the direction that they have the biggest dispersion. See Figure 1(a) for a

demonstration. The PC line has the expression

σwv(W − w̄) + (λ1 − σww)(V − v̄) = 0, (7)

where

λ1 =
1

2

(
σww + σvv −

√
(σww − σvv)2 + 4σ2wv

)
is the smaller eigenvalue of the sample covariance matrix of {(wl, vl), l = 1, 2, . . .,

m}. In cases when no blurring is involved in Z, Qiu (1998) has shown that this

PC line provides a good approximation to the underlying step edge segment if

the step edge segment has a unique tangent line at (x, y). In Section 3, we will

show that this is still true in cases when Z contains spatial blur.
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Figure 1: (a): In neighborhood On(x, y), the PC line (solid line) goes through the center
of the detected step edge points (small dots) along the direction that they have the
biggest dispersion. (b): In On(x, y), a typical weighting function used in (8) is shown
by the surface. (c): A cross section of a blurred image intensity surface around a step
edge (solid line) and the deblurred versions by (9) when the bandwidth k/n is relatively
small (dotted line) and relatively large (dashed line).

Intuitively, if Z contains no blur, then f(x, y) can be estimated by a weighted

average of the observations located on the same side of the PC line as (x, y), as did

in the image denoising literature (cf., Qiu 1998). In cases when blurring is present,

if a design point in On(x, y) is closer to the PC line, then it is more likely that

the corresponding observed image intensity has blurring involved, as discussed in
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Section 2. Thus, it should receive a smaller weight in the weighted average. To

address this issue, similar to edge detection, besides a 2-D kernel function used

in conventional local smoothing to assign more weights to design points closer

to (x, y), a univariate kernel function L is used to assign less weights to design

points closer to the PC line. Then, the deblurred image f̂(x, y) is defined by the

solution to a0 of the following local constant kernel (LCK) smoothing procedure:

min
a0∈R

∑
Un(x,y)

{
Z
(
x+ i

n , y + j
n

)
− a0

}2
K
(

i
k ,

j
k

)
L
(

dij
k/n+d(x,y)

)
, (8)

where K is a circularly symmetric 2-D kernel density function that could be

different from the kernel function K∗ used in edge detection, L is a univariate

increasing density kernel function with support [0, 1] that could also be different

from the kernel function L∗, d(x, y) is the Euclidean distance from point (x, y)

to the PC line, dij is the Euclidean distance from point (xi, yj) to the PC line,

and Un(x, y) denotes the set of design points in On(x, y) that are on the same

side of the PC line as (x, y). That is,

Un(x, y) =


{(xi, yj) ∈ On(x, y) : σwv(xi − w̄) + (λ1 − σww)(yj − v̄) ≥ 0},

if σwv(x− w̄) + (λ1 − σww)(y − v̄) ≥ 0;

{(xi, yj) ∈ On(x, y) : σwv(xi − w̄) + (λ1 − σww)(yj − v̄) < 0},
otherwise.

By certain routine algebraic manipulations, we have

f̂(x, y) =

∑
(xi,yj)∈Un(x,y)

w̃ij(x, y)Zij∑
(xi,yj)∈Un(x,y)

w̃ij(x, y)
, (9)

where w̃ij(x, y) = K(i/k, j/k)L(
dij

k/n+d(x,y)). By (8) and (9), we actually fit a

constant inOn(x, y), using a weighted average scheme. The weights are controlled

by K (i/k, j/k)L
(

dij
k/n+d(x,y)

)
. When K and L are chosen to be the ones used

in Section 4 and when the detected step edge points are those shown in Figure

1(a), the weights used in (8) when estimating f(x, y) are demonstrated by the

surface shown in Figure 1(b). From the plot, we can see that (i) only those design

points that are on the same side of the PC line as (x, y) would receive positive

weights, and (ii) a given design point would receive more weight if it is closer

to (x, y) and farther away from the PC line. Because of this weighting scheme,
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the fitted plane in On(x, y) is mainly determined by observations whose design

points are certain distance away from the PC line. Consequently, f̂(x, y) would

not be affected much by the blurring around the underlying step edge segment

in On(x, y), especially when the blurring extent rn(x, y) (see its definition in

Section 3) is relatively small, compared to k. In Figure 1(c), a cross section of a

blurred image intensity function around a step edge is shown by the solid line.

The dotted and dashed lines denote the deblurred image intensity functions by

(9) when k = rn(x, y) and k = 2rn(x, y), respectively. It can be seen that (i) the

BID procedure (9) does have the ability to deblur the image around step edges,

and (ii) it would deblur the image better if the ratio rn/k is smaller. The second

conclusion implies that procedure (9) would perform better if the blurring extent

is smaller. If the blurring extent is relatively large, then the deblurred image

by (9) may still contain certain blur, although the blur is mostly eliminated,

because (9) cannot use a very large bandwidth in order to avoid large bias in

local smoothing. More theoretical and numerical justifications of (9) are given

in the next two sections.

Formula (9) is for image deblurring around the detected step edges. In

On(x, y), if the number of detected step edge points, denoted as I ′n(x, y), is so

small that it is unlikely to have a step edge segment in On(x, y) (e.g., I ′n(x, y) <

k,), then we check to see whether On(x, y) would possibly contain a roof/valley

edge segment. In the case when the number of detected roof/valley edge points,

denoted as I ′′n(x, y), is quite large (e.g., I ′′n(x, y) ≥ k) and it is possible to have a

roof/valley edge segment in On(x, y), f̂(x, y) can still be defined by (9), except

that the detected step edge points {(wl, vl), l = 1, 2, . . . ,m} should be replaced

by the detected roof/valley edge points in its definition. The corresponding

estimator f̂(x, y) should deblur the image well around the detected roof/valley

edge points, as explained above about image deblurring around the detected step

edge points. In cases when both I ′n(x, y) and I ′′n(x, y) are so small that On(x, y) is

unlikely to contain any step or roof/valley edge segments, we suggest estimating

f(x, y) by the conventional LLK estimator, which is the solution to a0 of the

LLK procedure

min
a0,a1,a2

∑
i2+j2≤k2

[
Z
(
x+ i

n , y + j
n

)
−
(
a0 + a1

i
n + a2

j
n

)]2
K
(

i
k ,

j
k

)
. (10)
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In such cases, f̂(x, y) has the expression

f̂(x, y) =

∑
i2+j2≤k2 wij(x, y)Zij∑
i2+j2≤k2 wij(x, y)

, (11)

where

wij(x, y) =

[
A1(x, y) +A2(x, y)

i

n
+A3(x, y)

j

n

]
K

(
i

k
,
j

k

)
,

A1(x, y) = r20(x, y)r02(x, y)− r11(x, y)r11(x, y),

A2(x, y) = r01(x, y)r11(x, y)− r10(x, y)r02(x, y),

A3(x, y) = r10(x, y)r11(x, y)− r01(x, y)r20(x, y),

rs1s2(x, y) =
∑

i2+j2≤k2

(
i

n

)s1 ( j
n

)s2

K

(
i

k
,
j

k

)
, for s1, s2 = 0, 1, 2.

By comparing (11) with (9), it can be seen that, when estimating f(x, y), an

LCK estimator is used in (9) in cases when (x, y) is close to a step or roof/valley

edge segment, while an LLK estimator is used in (11) in cases when (x, y) is

far away from any step or roof/valley edge. That is because the LCK estimator

is more robust to spatial blur around edges, as demonstrated by Figure 2, and

the LLK estimator is less biased in continuity regions (cf., Qiu 2005, Chapter

2). In practice, a regular image usually contains some regions where no step

x
0 0.25 0.5 0.75 1

Figure 2: A cross section of a blurred image intensity surface around a step edge (solid
line), the deblurred version by (9) with local constant kernel estimation (dashed line),
and the deblurred version by (9) with local linear kernel estimation (dotted line).
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or roof/valley edge segments are present. So, at a given pixel (x, y), before

estimating a PC line from the detected step or roof/valley edge pixels in On(x, y),

we suggest making a judgment to insure that a step or roof/valley edge segment

is possible in On(x, y). One major benefit to do so is that the image estimator

in (11) would be more efficient than the one in (9) at places without any step

or roof/valley edge segments, because of the fact that the former estimator is

constructed from all observations in On(x, y) while the latter estimator uses only

part observations in On(x, y). After taking all these considerations into account,

our proposed BID procedure is summarized below.

Proposed Blind Image Deblurring Procedure

1. Detect step and roof/valley edge points.

2. At a given point (x, y), if the number of detected step edge points I ′n(x, y) ≥
k, then estimate f(x, y) by (7)–(9).

3. If I ′n(x, y) < k but I ′′n(x, y) ≥ k, then still estimate f(x, y) by (7)–(9), after

the detected step edge points are replaced by the detected roof/valley edge

points in On(x, y) when computing the estimator.

4. If I ′n(x, y) < k and I ′′n(x, y) < k, then estimate f(x, y) by (10) and (11).

In cases when I ′n(x, y) ≥ k and I ′′n(x, y) ≥ k, the neighborhood On(x, y) likely

contains both step and roof/valley edge segments. For instance, on two different

sides of a step edge segment in On(x, y), the image intensity surface often has

different slopes. So, the step edge segment is also a roof/valley edge segment. In

such cases, the above BID procedure focuses on the detected step edge points only,

because step edges would dominate the roof/valley edges in terms of human visual

perception about the image. When we make the judgment whether there are step

and/or roof/valley edge segments in On(x, y), the number γn = k is used as a

threshold in the above procedure, which is roughly half of the number of pixels

on a line that passes (x, y) and is parallel to the x- or y-axis in On(x, y). If there

is a step (or, roof/valley) edge segment in On(x, y) and the threshold value un in

(6) is properly chosen, then the number of detected step edge points (or, detected

roof/valley edge points) should generally be larger than k. Our numerical studies

show that other numbers around k (e.g., numbers in [0.75k, 1.25k]) can also be
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chosen as γn; but such choices can hardly improve the estimated image. For this

reason, we recommend using γn = k, instead of choosing γn separately, to save

some computation.

Like most local smoothing estimators, the estimator f̂(x, y) in (9) or (11) is

well defined in [ξn, 1 − ξn] × [ξn, 1 − ξn] only, where ξn = (k + max(k1, k2))/n.

It is not well defined in the border regions of the design space. This is the

so-called “boundary problem” in the literature (e.g., Qiu 2005, Section 3.5).

There are several existing proposals to overcome this problem. For instance,

most DWT software packages use periodic or symmetric “padding” methods to

define neighborhoods in the border regions (e.g., Nason and Silverman 1994).

In all numerical examples presented in Section 4 of this paper, the symmetric

“padding” method is used. By that method, the design space is expanded from

[0, 1]× [0, 1] to [−ξn, 1 + ξn]× [−ξn, 1 + ξn] in the way that the expanded image

intensity surface is symmetric about the border of the original design space.

2.3 Selection of procedure parameters

In the proposed BID procedure, there are several parameters to choose. In the

image processing practice, people often choose parameter values to be the ones

giving the best visual impression. In this part, we provide an alternative ap-

proach, which chooses parameters by data-driven procedures.

Our BID procedure consists of two sequential steps for edge detection and for

image estimation. Parameters in these two steps can also be chosen sequentially.

In the edge detection procedures, there are four parameters k1, un, k2 and vn to

choose (note: k2 and vn are used for roof/valley edge detection). Since detection

of step edges is more important to our proposed BID procedure, compared to

detection of roof/valley edges, we suggest choosing k1 and un before choosing k2

and vn. To this end, we need a performance measure for the set of detected step

edges, denoted as Ŝn, in estimating the set of true step edges, denoted as S. In

cases when there is no blurring in the observed image Z, Qiu (2002) suggested

the following measure:

dQ(Ŝn, S; k1, un) = w
|Ŝn\S|
|Ω\S|

+ (1− w)
|S\Ŝn|
|S|

,

where 0 ≤ w ≤ 1 is a weighting parameter, and |A| denotes the number of design
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points in the pointset A. In practice, D can be replaced by D∗ = {(xi, yj) :

dE((xi, yj), D) ≤ 1/(2n)} for the purpose of calculating dQ, where dE is the

Euclidean distance. Obviously, dQ(Ŝn, S; k1, un) is a weighted average of the

proportion of false step edge points detected by (6) and the proportion of true

step edge points missed by (6). The weight w represents the relative importance

of the first proportion compared to the second proportion, and it should be

determined beforehand. In cases when there is no prior information about the

relative importance of the proportions, we can simply choose w = 0.5.

In simulations, the pointset S is usually known. So, k1 and un can be chosen

by minimizing dQ(Ŝn, S; k1, un). In practice, however, S is often unknown. In

such cases, we propose the following bootstrap procedure. Let

{ε̂ij = Zij − â0(xi, yj), i, j = 1, 2, . . . , n}

be the set of residuals obtained from the LLK procedure (10) with the bandwidth

k selected separately via the conventional cross validation procedure. Since the

mean function of Z(x, y) is H{f}(x, y), which is the blurred version of f and

which is a continuous function, these residuals should be reasonable estimates

of the random errors {εij , i, j = 1, 2, . . . , n} in model (2). Then, we draw n2

residuals from the above residual set with replacement, and the selected residuals

are denoted as {ε̃(1)ij , i, j = 1, 2, . . . , n}. The first bootstrap sample is defined by

Z̃(1) =
{
Z̃

(1)
ij = â0(xi, yj) + ε̃

(1)
ij , i, j = 1, 2, . . . , n

}
.

After repeating this process B times, we get B bootstrap samples Z̃(1), Z̃(2), . . .,

Z̃(B), where B is the bootstrap sample size. Assume that the detected sets of step

edge points from these bootstrap samples are S̃
(1)
n , S̃

(2)
n , . . . , S̃

(B)
n , respectively.

Then, k1 and un can be chosen to be the solution of

min
k1,un

1

B

B∑
l=1

dQ

(
S̃(l)
n , Ŝn; k1, un

)
. (12)

The parameters k2 and vn can be chosen similarly. Let RV , R̂V n, and

{R̃V
(l)

n , l = 1, 2, . . . , B} be the true set of roof/valley edge points, its estimate

from the original data, and its estimates from the bootstrap samples, respec-

tively. Then, when RV is known, k2 and vn can be chosen by minimizing
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dQ(R̂V n, RV ; k2, vn), which is defined similarly to dQ(Ŝn, S; k1, un). When RV is

unknown, k2 and vn can be chosen by minimizing 1
B

∑B
l=1 dQ(R̃V

(l)

n , R̂V n; k2, vn).

After edge detection, we need to choose the bandwidth k used in the BID

procedure (8)-(11) for defining the deblurred image f̂ . In simulation, the true

image f is often known, then k can be selected by minimizing MSE(f, f̂ ; k) =
1
n2

∑n
i,j=1(f(xi, yj) − f̂(xi, yj))

2. In practice, however, f is never known. To

this end, cross-validation procedures are natural to consider. But, in the BID

model (1), the mean response is the blurred image H{f}(x, y), instead of the

true image f . So, the cross-validation idea is appropriate only at places where f

is continuous because H{f}(x, y) and f(x, y) are close if the f is straight around

(x, y). On the other hand, observations at those design points that are around

edges are affected much by the blur; thus, choosing k by minimizing the distance

between individual observations Zij and the leave-one-out estimates of f(xi, yj)

may not be appropriate at those places. For this reason, we suggest using the

following bootstrap procedure instead. Let {f̂ (l)(x, y), l = 1, 2, . . . , B} be BID

estimates of f constructed from the B bootstrap samples {Z̃(l), l = 1, 2, . . . , B}
defined above. Then, k is approximated by the minimizer of

min
k

1

B

B∑
l=1

 w̃

|Ŝn ∪ R̂V n|

∑
(xi,yj)∈Ŝn∪R̂V n

[
f̂ (l)(xi, yj)− f̂(xi, yj)

]2
(13)

+
(1− w̃)

|Ω\(Ŝn ∪ R̂V n)|

∑
(xi,yj) 6∈Ŝn∪R̂V n

[
f̂
(l)
−(xi,yj)

(xi, yj)− Z̃(l)
ij

]2 ,

where f̂
(l)
−(xi,yj)

(xi, yj) denotes the leave-one-out estimate at the design point

(xi, yj) constructed from the bootstrap sample Z̃(l), and w̃ ∈ (0, 1) indicates

the relative importance of the two quantities. In (13), the first quantity reflects

the effectiveness of deblurring around edges while the second one indicates the

data fidelity in continuity regions.

When defining f̂ (l)(x, y) from Z̃(l), we suggest using the detected step and

roof/valley edge points from the original data (i.e., using Ŝn and R̂V n), instead

of using detected step and roof/valley edge points from Z̃(l), to save much com-

putation without losing much efficacy. Also, we have used the same bootstrap

samples as those used in (12) for simplicity.
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3 Statistical Properties

We discuss some statistical properties of the proposed edge detection procedures

and the BID procedure in this section. In the literature on image deblurring,

the psf h(u, v;x, y) in model (1) is usually assumed to be a density function

since it is believed that the blurring process would not change the image mass

(cf., Bates and McDonnell 1986). This conventional assumption is also adopted

here. Furthermore, we assume that h(u, v;x, y) = 0 if
√
u2 + v2 > rn(x, y)/n,

where rn(x, y) is a positive integer indicating the number of rows/columns of

pixels that are affected by the blur at (x, y). Theorem 3.1 below gives some

results about the detected step and roof/valley edge points. In the theorem, the

following notations are used: Ωk1,n = {(xi, yj) : (xi, yj) ∈ [k1/n, 1 − k1/n] ×
[k1/n, 1 − k1/n]}, JS includes all singular points in S, defined to be crossing

points of step edge segments, points on a single step edge segment at which

there does not exist a unique tangent line of the edge segment, or points on a

single step edge segment at which the jump sizes in f are 0, JS,k1,n = {(x, y) :

dE((x, y), (x′, y′)) ≤ k1/n, for any (x′, y′) ∈ JS}, JS,k1,n = Ω\Jk1,n, Sk2,n =

{(x, y) : dE((x, y), (x′, y′)) ≤ k2/n, for any (x′, y′) ∈ S}, Sk2,n = Ω\Sk2,n, Ωk2,n

is defined similarly to Ωk1,n, JRV includes all singular points on RV defined

similarly to JS , JRV,k2,n is defined similarly to JS,k1,n, and

dH(A,B) = max

{
sup
s1∈A

inf
s2∈B

dE(s1, s2), sup
s1∈B

inf
s2∈A

dE(s1, s2)

}
is the Hausdorff distance between two pointsets A and B.

Theorem 3.1. Assume that the true image intensity function f has piecewisely
continuous second-order derivatives in each closed subset of [0, 1] × [0, 1] where
f and its first-order derivatives are continuous; at the boundary curves of the
pieces, f has uniformly bounded, directional second-order derivatives from any
direction in a single piece; f also has uniformly bounded, directional first-order
derivatives at any point in RV from any direction passing through a region that
the first-order derivatives are continuous; E(ε311) < ∞; the kernel function K∗

is a Lipschitz-1 continuous, circularly symmetric, density function; the kernel
function L∗ is a Lipschitz-1 continuous increasing density function supported on
[0, 1]; the psf h(u, v;x, y) is bounded uniformly with respect to (u, v) and (x, y); the
blurring extent Rn=supi,j rn(xi, yj), the bandwidths k1, k2, and the sample size
n satisfy the conditions that k1/n = o(1), k2/n = o(1), 1/k1 = o(1), 1/k2 = o(1),
Rn/k1 = o(1), Rn/k2 = o(1), n2 log(n)/k31 = O(1) and n2 log(n)/k32 = O(1); un
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and vn satisfy the conditions that k21/(nun) = o(1), un/k1 = o(1), k21/(nvn) =
o(1), and vn/k1 = o(1). Then, we have

(i) dH

(
Ŝn
⋂

(Ωk1,n
⋂
JS,k1,n), S

⋂
(Ωk1,n

⋂
JS,k1,n)

)
= O(k1/n), a.s., and

(ii) dH

(
R̂V n

⋂
(Ωk2,n

⋂
Sk2,n

⋂
JRV,k2,n), RV

⋂
(Ωk2,n

⋂
Sk2,n

⋂
JRV,k2,n)

)
= O(k2/n), a.s..

Remark 3.1 By Theorem 3.1, the detected step edge pointset Ŝn converges

almost surely to the true step edge pointset S in Hausdorff distance, after some

small regions around the singular points of S and the border of the design space

are excluded. Regarding the detected roof/valley edge pointset R̂V n, Theorem

3.1 says that it converges almost surely to the true roof/valley edge pointset RV

in Hausdorff distance, after some small regions around the step edge pointset S,

the singular points of RV and the border of the design space are excluded.

Remark 3.2 In Theorem 3.1, it is assumed that Rn/k1 = o(1). By this assump-

tion, the number of rows/columns of pixels affected by blur (i.e., Rn) is allowed

to tend to infinity, but the rate needs to be slower than that of the number of

pixels used in local smoothing (i.e., k1). In terms of the image acquisition, this

assumption implies that when the image acquisition techniques are improved so

that the image resolution is increased (i.e., n is increased), Rn can increase with

n. But, to have a good blind image deblurring result using our method, Rn

cannot increase too fast. Intuitively, this requirement seems reasonable because

when image acquisition techniques are improved, the number of rows/columns of

pixels affected by blur should be under control.

The next theorem establishes the statistical consistency of the deblurred

image by the proposed BID procedure (8)–(11). Proofs of the two theorems are

given in the Supplementary file.

Theorem 3.2. Under the conditions stated in Theorem 3.1, if we further assume
that k1/k = o(1) and k2/k = o(1), then we have

(i) for any given point (x, y) ∈ Ωk,n\(S
⋃
RV ),

f̂(x, y) = f(x, y) +O(k/n) +O

(
log(n)

k

)
, a.s.,
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(ii) for any given point (x, y) ∈ Ωk,n
⋂

(S \ JS),

f̂(x, y) = f(x, y)− C(x, y)CK,L +O(k/n) +O (k1/k) +O

(
log(n)

k

)
, a.s.,

where C(x, y) is the jump magnitude of f at (x, y),

CK,L =

∫ 1
0

∫ 1
−1K(s, t)dtL(s)

∫
u>s k

rn(x,y)
h̃(u, v;x, y)dudvds∫ 1

0

∫ 1
−1K(s, t)dt L(s)ds

,

h̃(u, v;x, y) = h(u cos θ + v sin θ,−u sin θ + v cos θ;x, y), and θ is the acute
angle formed by the tangent line of S at (x, y) and the y-axis.

(iii) for any given point (x, y) ∈ Ωk,n
⋂

(RV \ JRV ),

f̂(x, y) = f(x, y) +O(k/n) +O (k2/k) +O

(
log(n)

k

)
, a.s.,

where Ωk,n is defined similarly to Ωk1,n used in Theorem 3.1.

Remark 3.4 Result (i) in Theorem 3.2 establishes the consistency for f̂(x, y)

in continuity regions of f . Result (ii) is about the property of f̂(x, y) around

step edges. It can be checked that the second term on the right hand side of

the equation for f̂(x, y) is of order O(Rn/k). So, under the conditions stated in

the theorem, f̂(x, y) is a consistent estimator of f(x, y) around step edges. Fur-

thermore, if the kernel function L is increasing on [0, 1], then by the Chebyshev

integral inequality (cf., Mitrinovic, Pecaric and Fink 1993), we have

CK,L ≤

∫ 1
0

∫ 1
−1K(s, t) dt

∫
u>s k

rn(x,y)
h̃(u, v;x, y) dudv ds∫ 1

0

∫ 1
−1K(s, t) dt ds

.

The right-hand-side of the above inequality is the leading term of the asymptotic

bias caused by blur of f̂(x, y) for estimating f(x, y) in cases when L is not used in

constructing f̂(x, y). This result shows that L used in (8) is helpful in reducing

the asymptotic bias of f̂(x, y). Result (iii) in the theorem is about the property

of f̂(x, y) around roof/valley edges. The asymptotic bias of f̂(x, y) in this case

can be studied in a similar way to that in result (ii). It is omitted here.

4 Numerical Studies

In this section, we present some numerical examples concerning the numerical

performance of the proposed BID procedure (8)–(11). Throughout this section,
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if there is no further specification, the kernel functions K∗ and K are both

chosen to be the truncated Gaussian density functions, i.e., 1/(2π−3π exp(−0.5))

[exp(−(x2 +y2)/2)− exp(−0.5)]Ix2+y2≤1, the kernel functions L∗ and L are both

chosen to be 1/1.194958 exp(x2/2)I0≤x≤1, which is proportional to the reciprocal

of the 1-D truncated Gaussian density function, w in (12) and w̃ in (13) are both

fixed at 0.5, and B in (12) and (13) is chosen to be 100. Degraded images are

generated from model (2), in which the psf is chosen to be

h(u, v;x, y) =
3

π

(
1−

√
u2 + v2

rn(x, y)/n

)
I√u2+v2≤rn(x,y)/n,

and the additive random errors εij follow the distribution N(0, σ2). The above

psf is circularly symmetric with the blurring extent rn(x, y) which may depend on

(x, y). Let ρn(x, y) = rn(x, y)/n denote the blurring-extent-to-sample-size ratio

(BSR) at (x, y). Two artificial numerical examples are presented in the supple-

mentary file, from which we can see that our proposed BID procedure (8)–(11)

performs well in various cases. Next, we consider the test image of peppers with

256 × 256 pixels shown in Figure 3, and compare our proposed BID procedure

with three representatives of the existing deblurring methods. The first existing

method considered here is the one accomplished by the Matlab’s blind decon-

volution routine deconvblind, which is based on the method discussed by Biggs

and Andrews (1997) and Jansson (1997) in the framework of the Richardson-

Lucy algorithm. The second method is the total-variation-based image deblur-

ring method proposed by Oliveira, Bioucas-Dias, and Figueiredo (2009). The

third method is the blind image deconvolution procedure developed under the

Bayesian framework by Fergus, Singh, Hertzmann, Roweis and Freeman (2006).

These methods are denoted as RL, TV and Bayes, respectively. It should be

pointed out that both RL and Bayes are blind image deblurring schemes, but

TV requires the psf h to be fully specified.

The example is set up as follows. The original test image is first blurred by

the psf h with three different BSR functions: ρ̃
(1)
n (x, y) = 0.03(1 − (x − 0.5)2 −

(y−0.5)2), ρ̃
(2)
n (x, y) = 0.03x, and ρ̃

(3)
n (x, y) = 0.02. Then, additive random noise

generated from theN(0, σ2) distribution is added to the blurred test image, where

σ is fixed at 5 or 10. Figure 4(a) presents the degraded test image in the case with

ρ̃
(2)
n and σ = 10. The deblurred image by our BID method with the bandwidth
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Figure 3: Original test image of peppers.

k/n chosen to be 5/256 is shown in Figure 4(b). The deblurred image by RL is

shown in Figure 4(c). Note that the RL algorithm is designed to handle location-

invariant blur only, and the blurring extent rn needs to be specified beforehand.

In our simulation, rn is selected by minimizing the mean squared error of the

deblurred image so that it can have its best performance in the example. The

TV procedure requires the specification of h beforehand. In this example, we

have tried two different ways for that purpose. One is that the true expression

of h is used, and the second way is that h is assumed to be the psf of a motion

blur along the x-axis (i.e., h(u, v;x, y) = 2n
rn
I{|u|≤rn/n}δ0(v), where δ0 is a point

mass at 0). The two different versions of the TV procedure are denoted as TV1

and TV2 hereafter, and their deblurred images are shown in Figure 4(d) -(e).

To implement the Bayes method, a sub-region of the image needs to be chosen

beforehand. As suggested in Fergus, Singh, Hertzmann, Roweis, and Freeman

(2006), their algorithm would perform better and run faster if a smaller patch,

rich in edge structure, is manually selected. Based on our visual impression of

the test image, we choose the sub-region [25/256, 75/256]× [25/256, 75/256], and

the deblurred image is shown in Figure 4(f). From the figure, it can be seen

that (i) our proposed method can remove both noise and blur reasonably well,

(ii) the deblurred image by RL contains much noise and some artifacts, (iii) the

TV1 method, in which the form of the psf h is correctly specified, cannot handle

spatially-variant blur well, in that much artifacts are generated at the boundaries
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of the image while its deblurred image in the central part looks reasonably good,

(iv) the TV2 method, in which a wrong psf is specified, performs poorly, and (v)

the Bayes method performs poorly as well due to the facts that the observed test

image contains much noise and that the method is developed mainly for handling

motion blur which is not the case in the current example. We have tried several

different choices of the sub-region when implementing the Bayes method. No

significant improvement in the results can be obtained.

(a) (b) (c)

(d) (e) (f)

Figure 4: (a): Observed test image of peppers in the case when ρn(x, y) = 0.03x and
σ = 10. (b)-(f): Deblurred images by NEW, TV when h is specified correctly, TV when
h is specified incorrectly, and Bayes, respectively.

Figure 5 presents the corresponding results in cases when ρ̃
(3)
n (x, y) = 0.02

and σ = 10. In such cases, the spatial blur is location invariant. From the figure,

it can be seen that (i) our proposed method sharpens the observed test image

much, (ii) the deblurred image by RL contains much noise and many artifacts as

before, (iii) the TV method performs well when the true psf h is fully specified,

(iv) the TV method does not perform well when h is misspecified, and (v) the

Bayes method performs poorly once again.

Table 1 presents the root mean squared errors (RMSE) of the four deblur-
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(a) (b) (c)

(d) (e) (f)

Figure 5: (a): Observed test image of peppers in the case when ρn(x, y) = 0.02 and
σ = 10. (b)-(f): Deblurred images by NEW, TV when h is specified correctly, TV when
h is specified incorrectly, and Bayes, respectively.

ring methods, based on 100 replicated simulations. In the table, the proposed

BID method is denoted as NEW. It can be seen that (i) the proposed method

outperforms the other methods in most cases considered, and it can handle a

wide variety of blurs since it does not require any restrictive conditions on the

psf h, (ii) the TV method performs the best in cases when the true psf is location-

invariant and fully specified (i.e., the case when ρn(x, y) = ρ̃
(3)
n (x, y) for TV1),

(iii) the TV method could perform poorly when h is misspecified (i.e., TV2), and

(iv) both the RL and Bayes methods cannot deblur the image well.

5 Discussions

We have described our proposed method for blind image deblurring in the previ-

ous sections. Our method differs from most existing methods by imposing little

restriction on the psf h and the true image intensity function. It even allows the

psf h to be spatially variant. Our method makes use of the hierarchical structure
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Table 1: RMSE values of the four image deblurring methods in the example of the test
image of peppers.

ρ̃
(1)
n (x, y) ρ̃

(2)
n (x, y) ρ̃

(3)
n (x, y)

Methods σ = 5 10 σ = 5 10 σ = 5 10
NEW 19.18 19.37 18.14 19.34 18.07 18.40
RL 30.32 33.66 49.18 52.58 37.90 40.14

TV1 19.40 19.64 64.79 64.59 17.66 17.75
TV2 27.71 36.84 76.27 103.29 20.73 29.36
Bayes 33.78 45.06 42.44 52.81 46.48 48.99

of blurred images by paying special attention to regions around the detected step

and valley/roof edges. Also, a data-driven parameter selection scheme based

on bootstrap has been suggested. Both theoretical justifications and numerical

studies show that our method can remove pointwise noise and spatial blur well

in various cases.

The proposed method still has much room for further improvements. For in-

stance, the current version of the method uses constant bandwidth and threshold

parameters in step edge and roof/valley edge detection and in image deblurring

as well. The idea of multilevel smoothing with location-variant bandwidths and

threshold values can be incorporated into the proposed method. In such cases,

one price to pay is the expensive computation. Furthermore, our current method

cannot provide an estimate for the psf h. It requires much future research to

modify it properly such that h can be estimated accurately at the same time

when the observed image is deblurred.
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