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Abstract

Big data often take the form of data streams with observations of certain processes collected

sequentially over time. Among many different purposes, one common task to collect and analyze

big data is to monitor the longitudinal performance/status of the related processes. To this end,

statistical process control (SPC) charts could be a useful tool, although conventional SPC charts

need to be modified properly in some cases. In this paper, we introduce some basic SPC charts

and some of their modifications, and describe how these charts can be used for monitoring

different types of processes. Among many potential applications, dynamic disease screening and

profile/image monitoring will be discussed in some detail.

Key Words: Curve data; Data stream; Images; Longitudinal data; monitoring; Profiles; Se-

quential process; Surveillance.

1 Introduction

Recent advances in data acquisition technologies have led to massive amounts of data being collected

routinely in different scientific disciplines (e.g., Martin and Priscila 2011, Reichman et al. 2011).

In addition to volume, big data often have complicated structures. In applications, they often

take the form of data streams. Examples of big sets of data streams include those obtained from

complex engineering systems (e.g., production lines), sequences of satellite images, climate data,

website transaction logs, credit card records, and so forth. In many such applications, one major

goal to collect and analyze big data is to monitor the longitudinal performance/status of the related

processes. For such big data applications, statistical process control (SPC) charts could be a useful

tool. This paper tries to build a connection between SPC and big data analysis, by introducing some

representative SPC charts and by describing their (potential) use in various big data applications.

SPC charts are widely used in manufacturing and other industries for monitoring sequential
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processes (e.g., production lines, internet traffics, operation of medical systems) to make sure

that they work stably and satisfactorily (cf., Hawkins and Olwell 1998, Qiu 2014). Since the

first control chart was proposed in 1931 by Walter A. Shewhart, many control charts have been

proposed in the past more than eighty years, including different versions of the Shewhart chart,

CUSUM chart, EWMA chart, and the chart based on change-point detection (CPD). See, for

instance, Champ and Woodall (1987), Crosier (1988), Crowder (1989), Hawkins (1991), Hawkins

et al. (2003), Lowry et al. (1992), Page (1954), Roberts (1959), Shewhart (1931), and Tracy et

al. (1992). Control charts discussed in these and many other relatively early papers are based

on the assumptions that the process distribution is normal and process observations at different

time points are independent. Some recent SPC charts are more flexible in the sense that they can

accommodate data autocorrelation and non-normality (e.g., Apley and Lee 2003, Qiu and Hawkins

2001, 2003, Qiu 2008).

The conventional control charts mentioned above are designed mainly for monitoring processes

whose observations at individual time points are scalars/vectors and whose observation distributions

are unchanged when the processes run stably. In applications, especially in those with big data

involved, process observations could be images or other types of profiles (see Section 4 for a detailed

description). When processes are stable, their observation distributions could change over time due

to seasonality and other reasons. To handle such applications properly, much research effort has

been made in the literature to extend/generalize the conventional control charts. After some basic

SPC concepts and control charts are discussed in Section 2, these extended/generalized control

charts will be discussed in Sections 3 and 4. Some remarks conclude the article in Section 5.

2 Conventional SPC Charts

In the past several decades, SPC charts were mainly used for monitoring production lines in the

manufacturing industry, although they also found many applications in infectious disease surveil-

lance, environment monitoring and other areas. When a production line is first installed, SPC

charts can be used to check whether the quality of a relatively small amount of products produced

by the production line meets the quality requirements. If some products are detected to be defec-

tive, then the root causes need to be figured out and the production line is adjusted accordingly.

After the proper adjustment, a small amount of products is produced again for quality inspection.
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This trial-and-adjustment process continues until all assignable causes are believed to be removed

and the production line works stably. This stage of process control is often called phase-I SPC in

the literature. At the end of phase-I SPC, a clean dataset is collected under stable operating condi-

tions of the production line for estimating the distribution of the quality variables when the process

is in-control (IC). This dataset is called an IC dataset hereafter. The estimated IC distribution can

then be used for designing a control chart for online monitoring of the production line operation.

The online monitoring phase is called phase-II SPC. Its major goal is to guarantee that the produc-

tion line is IC, and give a signal as quickly as possible after the observed data provide a sufficient

evident that the production line has become out-of-control (OC). Most big data applications with

data streams involved concern phase-II SPC only because new observations are collected in daily

basis. However, the IC distribution of the quality variables still needs to be properly estimated

beforehand in a case-by-case basis. See related discussions in Sections 3 and 4 for some examples.

Next, we introduce some basic control charts for phase-II SPC. We start with cases with only

one quality variable X involved. Its distribution is assumed to be normal, and its observations

at different time points are assumed independent. When the process is IC, the process mean

and standard deviation are assumed to be µ0 and σ0, respectively. These parameters are assumed

known in phase-II SPC. But, they need to be estimated from an IC dataset in practice, as mentioned

above. At time n, for n ≥ 1, assume that there is a batch of m observations of X, denoted as

Xn1, Xn2, . . . , Xnm. Then, by the X Shewhart chart, the process has a mean shift if

|Xn − µ0| > Z1−α/2
σ0√
m
, (1)

where α is a significance level and Z1−α/2 is the (1 − α/2)-th quantile of the standard normal

distribution. In the SPC literature, the performance of a control chart is often measured by the IC

average run length (ARL), denoted as ARL0, and the OC ARL, denoted as ARL1. ARL0 is the

average number of observations from the beginning of process monitoring to the signal time when

the process is IC, and ARL1 is the average number of observations from the occurrence of a shift

to the signal time after the process becomes OC. Usually, the value of ARL0 is pre-specified, and

the chart performs better for detecting a given shift if the value of ARL1 is smaller. For the X

chart (1), it is obvious that ARL0 = 1/α. For instance, when α is chosen 0.0027 (i.e., Z1−α/2 = 3),

ARL0 = 370.

The X chart (1) detects a mean shift at the current time n using the observed data at that

time point alone. This chart is good for detecting relatively large shifts. Intuitively, when a shift
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is small, it should be better to use all available data by the time point n, including those at time n

and all previous time points. One such chart is the cumulative sum (CUSUM) chart proposed by

Page (1954), which gives a signal of mean shift when

C+
n > h or C−n < −h, for n ≥ 1, (2)

where h > 0 is a control limit,

C+
n = max

(
0, C+

n−1 + (Xn − µ0)
√
m

σ0
− k
)
, C−n = min

(
0, C−n−1 + (Xn − µ0)

√
m

σ0
+ k

)
, (3)

and k > 0 is an allowance constant. From the definition of C+
n and C−n in (3), it can be seen that

(i) both of them use all available observations by the time n, and (ii) a re-starting mechanism is

introduced in their definitions so that C+
n (C−n ) is reset to 0 each time when there is little evidence

of an upward (downward) mean shift. For the CUSUM chart (2), the allowance constant k is often

pre-specified, and its control limit h is chosen such that a pre-specified ARL0 level is reached.

An alternative control chart using all available observations is the exponentially weighted mov-

ing average (EWMA) chart originally proposed by Roberts (1959). This chart gives a signal of

mean shift if

|En| > ρE

√
λ

2− λ
, for n ≥ 1, (4)

where ρE > 0 is a parameter,

En = λ(Xn − µ0)
√
m

σ0
+ (1− λ)En−1, (5)

E0 = 0, and λ ∈ (0, 1] is a weighting parameter. Obviously, En = λ
∑n

i=1(1−λ)n−i(Xn−µ0)
√
m/σ0

is a weighted average of {(Xi−µ0)
√
m/σ0, i ≤ n} with the weights decay exponentially fast when i

moves away from n. In the chart (4), λ is usually pre-specified, and ρE is chosen such that a given

ARL0 level is reached.

All the charts (1), (2) and (4) assume that the IC parameters µ0 and σ0 have been properly

estimated beforehand. The CPD chart proposed by Hawkins et al. (2003) does not require this

assumption. However, its computation is more demanding, compared to that involved in the charts

(1), (2) and (4), which makes it less feasible for big data applications. For this reason, it is not

introduced here.

Example 1 The data shown in Figure 1(a) denote the Ethernet data lengths (in log scale) of

the 1 million Ethernet packets received by a computing facility. The x-axis denotes the time (in
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seconds) since the start of the trace. The Ethernet data lengths smaller than 64 or larger than 1518

were not included in the dataset. The data with x ≤ 250 look unstable and they are excluded from

this analysis. Then, the data with 250 < x ≤ 1000 are used as an IC dataset, from which µ0 and σ0

are estimated. Their estimators are used for monitoring the data with x > 1000 (i.e., the phase-II

data). The blue vertical dashed line in Figure 1(a) separates the IC dataset from the phase II data.

In phase-II monitoring, we treat every 5 consecutive observations as a batch of m = 5 observations,

the means of their Ethernet data lengths and arrival times are both computed, and the mean of

the Ethernet data lengths is monitored. We group the data in batches in this example to shrink

the data size so that the related plots can be better presented for the demonstration purpose. In

practice, the control charts can be applied to the original data with a single observation at each

time point. Figure 1(b) shows the X chart (1) with Z1−α/2 = 3.09 (or, α = 0.002), where the

dots are batch means of the Ethernet data lengths, and the horizontal blue dotted lines are the

control limits µ0 ± Z1−α/2
σ0√
m

. The ARL0 value of this chart is 1/0.002 = 500. From Figure 1(b),

it can be seen that no signal is given by the X chart. The CUSUM chart (2) with k = 1 and with

h chosen such that ARL0 = 500 is shown in Figure 1(c), where the horizontal blue dotted lines

are the control limits h and −h. Because this chart is quite crowded, the first 1/50-th is shown

in Figure 1(d). From both plots, we can see that many signals are given by the CUSUM chart,

and the signals come and go, implying that the mean shifts are isolated instead of persistent. The

corresponding results of the EWMA chart (4) with λ = 0.1 are shown in Figure 1(e)–1(f). If we

compare the results from the CUSUM chart with those from the EWMA chart, we can see some

consistency in their patterns.

In Example 1, parameter determination of the control charts (1), (2), and (4) are based on the

assumptions that the process observation distribution is normal and the observations at different

time points are independent. These assumptions could be invalid. For instance, from Figure

1(a)–(b), it is obvious that the observation distribution is skewed to the right. In cases when the

normality and independence assumptions are invalid, it has been demonstrated in the literature

that the performance of the related control charts is generally unreliable in the sense that their

actual ATS0 values could be substantially different from the assumed ATS0 value (e.g., Apley

and Lee 2003, Qiu and Li 2011). In such cases, many nonparametric (or distribution-free) control

charts and control charts that can accommodate autocorrelation have been proposed. See, for

instance, Albers and Kallenberg (2004), Amin and Widmaier (1999), Bakir (2006), Chakraborti et
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Figure 1: (a) Original observations of the Ethernet data lengths, with the vertical blue dashed

line separating the IC dataset from the phase II observations. b) X chart with ATS0 = 500 for

monitoring the mean of every five consecutive observations. (c) CUSUM chart with k = 1 and

ARL0 = 500. d) First 1/50-th of the plot c). e) EWMA chart with λ = 0.1 and ARL0 = 500. f)

First 1/50-th of the plot e). The horizontal blue dotted lines in plots (b)–(f) are control limits.
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al. (2001), Chatteejee and Qiu (2009), Hawkins and Deng (2010), Lu and Reynolds (1999), Ross

et al. (2011), Timmer et al. (1998), Yashchin (1993), and Zou and Tsung (2010). More recent

research on nonparametric SPC can be found in Chapters 8 and 9 of Qiu (2014) and the special

issue of Quality and Reliability Engineering International that was edited by Chakraborti et al.

(2015, ed.).

In applications, especially in those with big data involved, the number of quality variables could

be large. In such cases, many multivariate SPC charts have been proposed (cf., Qiu 2014, Chapter

7). Most early ones are based on the normality assumption (e.g., Healy 1987, Hawkins 1991, Lowry

et al. 1992, Woodall and Ncube 1985). Some recent ones are nonparametric or distribution-free

(e.g., Liu 1995, Qiu 2008, Qiu and Hawkins 2001, 2003, Zou and Tsung 2011). There are also some

multivariate SPC charts proposed specifically for cases with a large number of quality variables,

based on LASSO and some other variable selection techniques (e.g., Capizzi and Masarotto 2011,

Wang and Jiang 2009, Zou et al. 2015, Zou and Qiu 2009).

3 Dynamic Statistical Screening

The conventional SPC charts described in the previous section are mainly for monitoring processes

with a stable process distribution when the process is IC. In many applications, however, the

process distribution would change even when the process is IC. For instance, in applications with

infectious disease surveillance, the incidence rate of an infectious disease would change over time

even in time periods without disease outbreaks, due mainly to seasonality and other reasons. For

such applications, the conventional SPC charts cannot be applied directly. Recently, Qiu and

Xiang (2014) proposed a new method called dynamic screening system (DySS) for handling these

applications, which is discussed in this section. A completely nonparametric version is discussed

recently in Li and Qiu (2016). A multivariate DySS procedure is proposed in Qiu and Xiang (2015).

Its applications for monitoring the incidence rates of the hand, foot and mouth disease in China

and the AIDS epidemic in US are discussed in Zhang et al. (2015, 2016).

The DySS method is a generalization of the conventional SPC charts for cases when the IC mean

and variance change over time. It can be used in the following two different scenarios. First, it can

be used for early detection of diseases based on the longitudinal pattern of certain disease predictors.

In this scenario, if each person is regarded as a process, then many processes are involved. The IC
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(or regular) longitudinal pattern of the disease predictors can be estimated from an observed dataset

of a group of people who do not have the disease in question. Then, we can sequentially monitor the

disease predictors of a given person, and use the cumulative difference between her/his longitudinal

pattern of the disease predictors and the estimated regular longitudinal pattern for disease early

detection. The related sequential monitoring problem in this scenario is called dynamic screening

(DS) in Qiu and Xiang (2014). Of course, the DS problem exists in many other applications,

including performance monitoring of durable goods (e.g., airplanes, cars). For instance, we are

required to check many mechanical indices of an airplane each time when it arrives a city, and

some interventions should be made if the observed values of the indices are significantly worse than

those of a well-functioning airplane of the same type and age. Second, the DySS method can also

be used for monitoring a single process whose IC distribution changes over time. For instance,

suppose we are interested in monitoring the incidence rate of an infectious disease in a region over

time. As mentioned in the previous paragraph, the incidence rate will change over time even in

years when no disease outbreaks occur. For such applications, by the DySS method, we can first

estimate the regular longitudinal pattern of the disease incidence rate from observed data in time

periods without disease outbreaks, and the estimated regular longitudinal pattern can then be used

for future disease monitoring.

From the above brief description, the DySS method consists of three main steps described

below.

(i) Estimation of the regular longitudinal pattern of the quality variables from a properly chosen

IC dataset.

(ii) Standardization of the longitudinal observations of a process in question for sequential mon-

itoring of its quality variables, using the estimated regular longitudinal pattern obtained in

step (i).

(iii) Dynamic monitoring of the standardized observations of the process, and giving a signal

as soon as all available data suggest a significant shift in its longitudinal pattern from the

estimated regular pattern.

In the DySS method, step (i) tries to establish a standard for comparison purposes in step (ii). By

standardizing the process observations, step (ii) actually compares the process in question cross-

sectionally and longitudinally with other well-functioning processes (in scenario 1) or with the same
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process during the time periods when it is IC (in scenario 2). Step (iii) tries to detect the significant

difference between the longitudinal pattern of the process in question and the regular longitudinal

pattern based on their cumulative difference. Therefore, the DySS method has made use of the

current data and all history data in its decision making process. It should provide an effective tool

for solving the DS and other related problems.

Example 2 We demonstrate the DySS method using a dataset obtained from the SHARe

Framingham Heart Study of the National Heart Lung and Blood Institute (cf., Cupples et al.

2007, Qiu and Xiang 2014). Assume that we are interested in early detecting stroke based on the

longitudinal pattern of people’s total cholesterol level (in mg/100ml). In the data, there are 1028

non-stroke patients. Each of them was followed 7 times, and the total cholesterol level, denoted as

y, was recorded at each time. The observation times of different patients are all different. So, by

the DySS method, we first need to estimate the regular longitudinal pattern of y based on this IC

data. We assume that the IC data follow the model

y(tij) = µ(tij) + ε(tij), for j = 1, 2, . . . , Ji, i = 1, 2, . . . ,m, (6)

where tij is the jth observation time of the ith patient, y(tij) is the observed value of y at tij ,

µ(tij) is the mean of y(tij), and ε(tij) is the error term. In the IC data, m = 1028, Ji = 7, for

all i, and tij take theirs values in the interval [9, 85] years old. We further assume that the error

term ε(t), for any t ∈ [9, 85], consists of two independent components, i.e., ε(t) = ε0(t) + ε1(t),

where ε0(·) is a random process with mean 0 and covariance function V0(s, t), for any s, t ∈ [9, 85],

and ε1(·) is a noise process satisfying the condition that ε1(s) and ε1(t) are independent for any

s, t ∈ [9, 85]. In this decomposition, ε1(t) denotes the pure measurement error, and ε0(t) denotes

all possible covariates that may affect y but are not included in model (6). In such cases, the

covariance function of ε(·) is

V (s, t) = Cov (ε(s), ε(t)) = V0(s, t) + σ21(s)I(s = t), for any s, t ∈ [9, 85],

where σ21(s) = Var(ε1(s)), and I(s = t) = 1 when s = t and 0 otherwise. In model (6), observations

of different individuals are assumed to be independent. By the four-step procedure discussed in

Qiu and Xiang (2014), we can obtain estimates of the IC mean function µ(t) and the IC variance

function σ2y(t) = V0(t, t) + σ21(t), denoted as µ̂(t) and σ̂2y(t), respectively.

The estimated regular longitudinal pattern of y can then be described by µ̂(t) and σ̂2y(t). For

a new patient, assume that his/her y observations are {y(t∗j ), j = 1, 2, . . .}, and their standardized
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values are

ε̂(t∗j ) =
y(t∗j )− µ̂(t∗j )

σ̂y(t∗j )
, for j = 1, 2, . . . . (7)

Then, we can apply the upward version of the CUSUM chart (2)-(3) (i.e., it gives a signal when

C+
n > h) to the standardized data for detecting upward mean shifts. The upward version of the

CUSUM chart (2)-(3) is considered here because we are mainly concerned about upward mean

shift in the total cholesterol level in this example. For the 10 patients in the data who had at least

one stroke during the study, their CUSUM charts are shown in Figure 2. In each CUSUM chart,

(k, h) are chosen to be (0.1, 0.927). In such cases, the average time to signal is about 25 years for a

non-stroke patient. From the figure, it can be seen that the first patient does not receive a signal,

the second patient receives a signal at the second observation time, and so forth. In this example,

we only monitor 10 patients for a demonstration. In practice, the same method can be used for

monitoring millions of patients in exactly the same way.
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Figure 2: The upward CUSUM chart with the charting statistic C+
n defined in (3) for the 10 stroke

patients in a dataset from the SHARe Framingham Heart Study. In the chart, (k, h) are chosen to

be (0.1, 0.927).
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4 Profiles/Images Monitoring

In the previous two sections, process observations are assumed to be scalars (i.e., univariate SPC) or

vectors (i.e., multivariate SPC). In some applications, product quality is reflected in the relationship

among two or more variables. In such cases, one observes a set of data points (or called a profile)

of these variables for each sampled product. The major goal of SPC is to check the stability of the

relationship over time based on the observed profile data. This is the so-called profile monitoring

problem in the literature (Qiu 2014, Chapter 10).

The early research in profile monitoring is under the assumption that the relationship among

variables is linear, which is called linear profile monitoring in the literature (e.g., Jensen et al. 2008,

Kang and Albin 2000, Kim et al. 2003, Zou et al. 2006). For a given product, assume that we

are concerned about the relationship between a response variable y and a predictor x. For the i-th

sampled product, the observed profile data are assumed to follow the linear regression model

yij = ai + bixij + εij , for j = 1, 2, . . . , ni, i = 1, 2, . . . , (8)

where ai and bi are coefficients, and {εij , j = 1, 2, . . . , ni} are random errors. In such cases,

monitoring the stability of the relationship between x and y is equivalent to monitoring the stability

of {(ai, bi), i = 1, 2, . . .}. Then, the IC values of ai and bi can be estimated from an IC dataset, and

the linear profile monitoring can be accomplished by using a bivariate SPC chart.

In some applications, the linear regression model (8) is too restrictive to properly describe

the relationship between x and y. Instead, we can use a nonlinear model based on certain physi-

cal/chemical theory. In such cases, the linear model (8) can be generalized to the nonlinear model

yij = f(xij ,θi) + εij , for j = 1, 2, . . . , ni, i = 1, 2, . . . , (9)

where f(x,θ) is a known parametric function with parameter vector θ. For such a nonlinear profile

monitoring problem, we can estimate the IC value of θ from an IC dataset, and apply a conventional

SPC chart to the sequence {θi, i = 1, 2, . . .} for monitoring their stability (e.g., Chicken et al. 1998,

Ding et al. 2006, Jensen and Birch 2009, Jin and Shi 1999, Zou et al. 2007).

In many applications, the linear profile model (8) is inappropriate and it is difficult to specify

the nonlinear profile model (9) either. For instance, Figure 3 is about a manufacturing process of

aluminum electrolytic capacitors (AECs) considered in Qiu et al. (2010). This process transforms
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raw materials, such as anode aluminum foil, cathode aluminum foil, and plastic tube, into AECs that

are appropriate to use in low leakage circuits and are well adapted to a wide range of environmental

temperatures. The quality of AECs is reflected in the relationship between the dissipation factor

(DF) and the environmental temperature. The figure shows three AEC profiles along with an

estimator of the IC profile function (see the related discussion below). In this example, the profiles

look nonlinear and a parametric function for describing their pattern is unavailable. For such
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Figure 3: Three AEC profiles (lines connecting points with three different symbols) and a nonpara-

metric estimator (solid curve) of the IC profile function.

applications, a number of nonparametric profile monitoring approaches have been proposed (e.g.,

Qiu et al. 2010, Qiu and Zou 2010, Zou et al. 2008, 2009). In Qiu et al. (2010), the following

nonparametric mixed-effects model is used for describing the relationship between x and y:

yij = g(xij) + fi(xij) + εij , for j = 1, 2, . . . , ni, i = 1, 2, . . . , (10)

where g is the population profile function (i.e., the fixed-effects term), fi is the random-effects

term describing the deviation of the i-th individual profile from g, {(xij , yij), i = 1, 2, . . . , nj} is the

sample collected for the i-th profile, and {εij , j = 1, 2, . . . , ni} are i.i.d. random errors with mean

0 and variance σ2. In model (10), it is routinely assumed that the random-effects term fi and the

random errors εij are independent of each other, and fi is a realization of a mean 0 process with a
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common covariance function

γ(x1, x2) = E[fi(x1)fi(x2)], for any x1, x2.

Then, the IC functions of g(x) and γ(x1, x2), denoted as g0(x) and γ0(x1, x2), and the IC value

of σ2, denoted as σ20, can be estimated from an IC dataset. At the current time point t, we can

estimate g by minimizing the following local weighted negative-log likelihood:

WL(a, b; s, λ, t) =

t∑
i=1

ni∑
j=1

[yij − a− b(xij − s)]2Kh (xij − s) (1− λ)t−i/ν2(xij),

where λ ∈ (0, 1] is a weighting parameter, and ν2(x) = γ(x, x) + σ2 is the variance function of

the response. Note that WL(a, b; s, λ, t) combines the local linear kernel smoothing procedure (cf.,

Subsection 2.8.5, Qiu 2014) with the exponential weighting scheme used in EWMA through the

term (1 − λ)t−i. At the same time, it takes into account the heteroscedasticity of observations

by using ν2(xij). Then, the local linear kernel estimator of g(s), defined as the solution to a of

the minimization problem mina,bWL(a, b; s, λ, t) and denoted as ĝt,h,λ, can be obtained. Process

monitoring can then be performed based on the charting statistic

Tt,h,λ =

∫
[ĝs,h,λ − g0(s)]2

ν2(s)
Γ1(s)ds,

where Γ1 is some pre-specified density function.

In some applications, there are multiple response variables. For instance, Figure 4 shows a

forging machine with four strain gages. The strain gages can record the tonnage force at the four

dies located at the four corners of the machine during a forging process, resulting in data with 4

profiles. For such examples, models (8)–(10) can still be used for describing observed profile data,

except that the response variable and the related coefficients and mean function are vectors in the

current setup. Research on this multivariate profile monitoring problem just gets started. See, for

instance, Paynabar et al. (2013, 2015) for related discussions.

In modern industries and scientific research, image data become more and more popular (Qiu

2005). For instance, NASA’s satellites send us images about the earth surface constantly for

monitoring the earth surface resources. Magnetic resonance imaging (MRI) has become a major

tool for studying the brain functioning. Manufacturing companies monitor the quality of certain

products (e.g., metal) by taking images of the products. A central task in all these applications

involves image processing and monitoring. In the literature, there has been some existing research
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Figure 4: A forging machine with four strain gages.

on effective image monitoring (cf., Chiu et al. 2004, Tong et al. 2005). Most existing methods

construct their control charts based on some summary statistics of the observed images or some

detected image features. Some important (spatial) structures of the image sequences, however,

have not been well accommodated yet in these methods, and no general SPC methods and practical

guidelines have been proposed/provided for image monitoring. Therefore, in my opinion, the image

monitoring area is still mostly open. Next, I will use one example to address one important issue

that has not been taken into account in the existing research.

Example 3 The U.S. Geological Survey and NASA have launched 8 satellites since 1972

to gather earth resource data and for monitoring changes in the earth’s land surface and in the

associated environment (http://landsat.gsfc.nasa.gov). The most recent satellite Landsat-8 can

give us images of different places in the entire earth every 16 days. In about a year, we can get 23

images of a given place of interest. These images have been widely used in studying agriculture,

forestry and range resources, land use and mapping, geology, hydrology, coastal resources, and

environmental monitoring. In Figure 5, the upper-left and upper-right panels denote two satellite

images of the San Francisco bay area, taken in 1990 and 1999, respectively. Assume that we are

interested in detecting earth surface change over time in this area. In the two images, the larger and

smaller boxes highlight two regions in the bay area where obvious changes can be noticed between

the two images. Basically, the highlighted regions in the second image have more dark pixels. To

detect the earth surface change in the bay area between the two time points, a simple and commonly

used method is to compute the difference of the two images, which is shown in the lower-left panel.

From this “difference” image, it seems that the bay area changed quite dramatically from 1990

14



to 1999. But, if we check the two original images and their “difference” image carefully, then we

can find that much of the pattern in the “difference” image is due to the geometric mis-alignment

between the two images caused by the fact that the relative position between the satellite camera

and earth at the two time points changed slightly. In the image processing literature, the research

area called image registration is specially for handling this problem (e.g., Qiu and Xing 2013). After

the two original images are aligned using the image registration method in Qiu and Xing (2013),

the “difference” image is shown in the lower-right panel of Figure 5. It can be seen that the pattern

in this image is much weaker than that in the image shown in the lower-left panel. Therefore,

when we sequentially monitor the satellite image sequence, image registration should be taken into

account. In the image monitoring literature, however, this issue has not received much attention

yet.

5 Concluding Remarks

Data stream is a common format of big data. In applications with data streams involved, one

common research goal is to monitor the data stream and detect any longitudinal shifts and changes.

For such applications, SPC charts would be an efficient statistical tool, although not many people

in the big data area are familiar with this tool yet. In this paper, we have briefly introduced certain

SPC charts that are potentially useful for analyzing big data. However, much future research

is needed to make the existing SPC charts be more appropriate for big data applications. In

this regard, fast and efficient computation, dimension reduction, and other topics about big data

management and analysis are all relevant.
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