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SUMMARY 

Many robust tests have been proposed in the literature to compare two hazard rate functions, 

however, very few of them can be used in cases when there are multiple hazard rate functions to 

be compared. In this paper, we propose an approach for detecting the difference among multiple 

hazard rate functions. Through a simulation study and a real-data application, we show that the 

new method is robust and powerful in many situations, compared with some commonly used 

tests. 
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1. Introduction 

In survival data analysis, people are often interested in comparing hazard rate functions or 

survival curves of different treatment groups. In the literature, a large number of tests have been 

proposed to compare two hazard rate functions. See, for example, the so-called 𝐺!,! test statistics 

introduced by Fleming and Harrington (Fleming and Harrington, 1991) that include the 

commonly used log-rank test due to Mantel and Haenszel (Mantel and Haenszel, 1959), and the 

Gehan-Wilcoxon test due to Gehan (Gehan, 1965) as special cases. The 𝐺!,! tests are weighted 

log-rank tests that are based on the weighted sum of the differences between the expected and 

observed numbers of events in one group at each failure time point. In the 𝐺!,! tests, the weights 

are usually assigned using non-negative values.  In different situations, it has been shown that 

improvement of the 𝐺!,! tests can be achieved by choosing appropriate weights (Buyske, 

Fagerstrom and Ying, 2000; Yang and Prentice, 2010).   

    In practice, the two hazard rate functions may cross each other. If this is the case, then the 

𝐺!,!  tests would not be optimal and they may even have little or no power at all. To circumvent 

this limitation, negative weights have been considered and assigned to some failure time points 

(Moreau et al., 1992; Qiu and Sheng, 2008). In Qiu and Sheng (2008), the authors proposed a 

two-stage approach to compare two hazard rate functions. In the first stage, they used the log-

rank test, which has been shown to be the most powerful test when the hazard rates are 

proportional (Fleming and Harrington, 1991); in the second stage, a weighted log-rank test with 

possible negative weights was designed to detect the difference between two hazard rate 

functions in cases when they crossed each other. An overall p-value was then calculated based on 
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the two test statistics. This two-stage test was shown to be robust and it has a good power to 

detect the difference between two hazard rate functions regardless whether they cross each other 

or not. In the literature, some other methods designed specifically for detecting the difference 

between two crossing hazard rate functions have been proposed either based on other functions 

(e.g., absolute or squared) of the differences between the two hazard rates or some modeling 

techniques (Lin and Wang, 2004; Liu, Qiu and Sheng, 2007; Park and Qiu, 2014).  

    When there are multiple treatment groups, although the log-rank test and the Gehan-Wilcoxon 

test can be extended and applied, they may have little or no power if the hazard rate functions 

cross each other. Robust methods with good properties as those of the two-stage approach are 

highly desirable. However, there is no simple extension of the aforementioned two-stage 

approach for comparing multiple hazard rate functions. In this paper, we propose a new approach 

based on a series of asymptotically independent tests. An overall p-value for each test is 

calculated using a robust p-value combining method.  

   The rest parts of the paper are organized as follows. In Section 2, we describe the proposed 

method; in Section 3, through a simulation study, we study the numerical performance of the 

new test; in Section 4, we illustrate the new test using a real-data application; the paper is 

concluded with some concluding remarks. 

2. Proposed Method 

Suppose we have 𝐾 treatment groups; for group 𝑘 (𝑘 = 1,2,… ,𝐾), the survival function of the 

surviving time, 𝑇!!   (𝑖 = 1,2,… ,𝑛!), is 𝑆!(𝑡) = 1− 𝐹!(𝑡), and the survival function of the 

censoring time, 𝐶!", is 𝐿!(𝑡) = 1− 𝐺!(𝑡), where 𝐹! 𝑡  and 𝐺! 𝑡  are the related cumulative 

distribution functions. Let {𝑡!, 𝑡!,⋯ , 𝑡!} be the set of 𝐷 distinct ordered event times in the 

pooled sample. Define 𝑑!" as the observed number of events out of 𝑌!" individuals at risk in the 
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𝑘!! group at time 𝑡!  (𝑖 = 1,2,⋯ ,𝐷). Denote 𝑑! = (𝑑!!,𝑑!!,⋯ ,𝑑!")!, and 𝑌! =

(𝑌!!,𝑌!!,⋯ ,𝑌!")!.  Let 𝑋!" = min (𝑇!" ,𝐶!"), 𝛿!" = I{!!"! !!"}, and 𝜋! 𝑡 = P 𝑋!" > t =

𝑆!(𝑡)𝐿!(𝑡) (𝑘 = 1,2,… ,𝐾), where 𝐼(∙) is the indicator function. In this paper, we make the 

conventional assumption that the surviving times 𝑇!" and the censoring times 𝐶!" are 

independent.  

    To test for the homogeneity of the hazard rate functions among the K groups, we consider the 

following hypotheses: 

     𝐻!: 𝑆!(𝑡) = 𝑆!(𝑡) = ⋯ = 𝑆!(𝑡), and 

     𝐻!: at least one Sk is different than others at some time t. 

    In the two-sample situation (i.e., 𝐾 = 2), the un-weighted log-rank test is constructed as 

follows: 

𝑈 = ℎ 𝑤!! 𝑑!! − 𝑌!!
!!!!!!!
!!!!!!!

!
!!! 𝑤!!!

!!!
!!!!!!!

!!!
!!!!!!!

!!!!!!!! !!!!!!!
!!!!!!! !!

𝑑!! + 𝑑!!!
!!!  ,      (1) 

 
where ℎ = (!!!!!

!!!!
)!/!, and 𝑤!! = 1 for all 𝑖 = 1,2,… ,𝐷. Under the null hypothesis, 𝑈 in (1) has 

an asymptotic standard normal distribution.  

   The weighted log-rank test statistic considered by (Qiu and Sheng, 2008) is defined as follows. 

𝑉! =

ℎ 𝑤!!
! 𝑑!! − 𝑌!!

!!!!!!!
!!!!!!!

!
!!! 𝑤!!

! ! !!!
!!!!!!!

!!!
!!!!!!!

!!!!!!!! !!!!!!!
!!!!!!! !!

𝑑!! + 𝑑!!!
!!! ,    (2)                

 

where 𝑤!!
! = −1  𝑖𝑓 𝑖 = 1,2,⋯ ,𝑚

𝑐!               !"!!"#$%!
, 𝑚 = [𝐷𝑟], the integer part of 𝐷𝑟 for any 𝑟 ∈ 𝜀, 1− 𝜀 , 

0 < 𝜀 < 0.5, and 𝑐! = !! !! !! !!
!!
! !! !! !

!!
! !! !!

∆𝑆(𝑡!)!
!!! / !! !! !! !!

!!
! !! !! !

!!
! !! !!

∆𝑆(𝑡!)!
!!!!! ,  

which is an estimate of the quantity 
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𝑐! =
!! ! !! !

!!!! ! !!!!! !
𝑑𝐹 𝑠!!! !

!
!! ! !! !

!!!! ! !!!!! !
𝑑𝐹 𝑠!

!!! !  ,                                    (3) 

where 𝐿!(𝑡) is the estimate of 𝐿!(𝑡) (𝑙 = 1,2), 𝑆(𝑡) is the estimate of the survival distribution 

𝑆(𝑡) using the pooled samples, 𝑝! = lim!→!
!!

!!!!!
, 𝑝!! = lim!→!

!!
!!!!!

; 𝑚 = [𝐷𝑟], and 

𝑢 = inf [𝑠:min 𝜋! 𝑠 ,𝜋! 𝑠 = 0]. 

    Under the null hypothesis, each  𝑉! defined in (2) has an asymptotic standard normal 

distribution (Qiu and Sheng, 2008).  Furthermore, let 

 𝑉 = !"#
!!!!!!!!!

(𝑉!),                                                                                                                       

(3) 

which is designed specifically for detecting the difference between two crossing hazard rate 

functions, we have the following result (Qiu and Sheng, 2008): 

Lemma 1. Under the null hypothesis, 𝑈 and 𝑉! for each m, and therefore, 𝑈 and 𝑉, are 

asymptotically independent.  

    The sampling distribution of 𝑉 in (3) under the null hypothesis is hard to derive explicitly 

since 𝑉!′𝑠 are correlated. However, its p-value can be estimated using bootstrap (Qiu and Sheng, 

2008).  

     Next, we want to generalize the statistics 𝑈 and 𝑉 to cases with multiple hazard rate functions 

(i.e., 𝐾 > 2).  To this end, we will obtain K-1 pairs of 𝑈 and 𝑉 through comparing two hazard 

rate functions K-1 times. Specifically, for each k (k=1, 2 ,…, K-1), we compare two groups, one 

from the pooled original treatment groups of 1, 2, …, k, and the other is the original group of 

k+1, and obtain two respective statistics 𝑈! and 𝑉!. For those 𝑈! and 𝑉!, we have the following 

result. 
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Theorem 1. Under the null hypothesis, the 2(K-1) statistics, 𝑈!, 𝑉! (k=1, 2, …, K-1) are 

asymptotically independent .  

The proof of Theorem 1 is given in the Appendix. It should be pointed out that when K=2, the 

two statistics 𝑈! and 𝑉! are the same statistics as in (1) and (3) obtained by the Qiu and Sheng 

method. Based on the properties of those statistics 𝑈! and 𝑉!, we define some test statistics. 

2.1 The U test 

Define the test statistic 

                                                           𝑈! = 𝜒!! !! 1− 𝑃!!
!!!
!!! ,                                           (4) 

where 𝑃!! is the p-value from the test 𝑈!  (𝑖 = 1,2,⋯ ,𝐾 − 1), 𝜒!! !! .  is the inverse function 

of the cumulative chi-square distribution with degree of freedom (df) 1.  

    We will call the test 𝑈! in (4) the U test. Under the null hypothesis 𝑃!! are asymptotically and 

independently distributed uniformly between 0 and 1. Therefore, under the null hypothesis, 𝑈! 

has an asymptotic chi-square distribution with  𝐾 − 1 df. Its p-value can be calculated as 

𝑃! = pr [𝜒!!!! > 𝑈!]. The U test is an extension of the two-sample log-rank test and it has 

similar performance as the multiple-sample log-rank test. When the hazard rate functions are 

parallel, this test should be powerful. 

2.2 The V test 

Define the test statistic 

                                                          𝑉! = 𝜒!! !! 1− 𝑃!!
!!!
!!! ,                                             (13) 

where 𝑃!! is the p-value from the test 𝑉!  (𝑖 = 1,2,⋯ ,𝐾 − 1). 

We will call the test 𝑉! in (13) the V test. From theorem 1, under the null hypothesis 𝑉! are 

asymptotically independent. Therefore, under the null hypothesis, 𝑉! has an asymptotic chi-

square distribution with df K-1.  Its p-value can be calculated as 𝑃! = pr [𝜒!!!! > 𝑉!]. The V 
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test is an extension of the weighted log-rank test which is powerful when the hazard rate 

functions are crossing. 

2.3 The UV test 

From Theorem 1, under the null hypothesis, 𝑈! ,𝑉!! (𝑘, 𝑘! = 1,2,⋯ ,𝐾 − 1) are asymptotically 

independent. Therefore, we have the following result. 

Theorem 2. Under the null hypothesis, the U test and the V test statistics are asymptotically 

independent.  

    The proof of Theorem 2 are given in the Appendix. 

    Based on this result, a test statistic can be constructed as 𝑈! + 𝑉!. We will call this test the 

UV test. Under the null hypothesis, the UV test has an asymptotic chi-square distribution with df 

equals 2(K-1). Therefore, its p-value can be calculated as  

 𝑃!" = pr{𝜒! !!!
! > 𝑈! + 𝑉!} = pr {𝜒! !!!

! > 𝜒!! !! 1− 𝑃!!
!!!
!!! + 𝜒!! !! 1−!!!

!!!

𝑃!! }. 

    It should be pointed out that when K=2, the above UV test is constructed based on the two 

statistics U and V as obtained by the Qiu and Sheng method. However, the Qiu and Sheng 

approach obtains the overall p-value from U and V in a different way. Our simulation study (data 

not shown) indicates that our proposed UV test is usually more powerful than the Qiu and Sheng 

test when K=2. 

3. A Simulation Study 

In this section, we conduct a simulation study to demonstrate the performance of the U test, the 

V test and the UV test. We will compare these methods with the commonly used log-rank (LR) 

test, and the Gehan-Wilcoxon (GW) test for multiple samples. In this simulation study, we 

assume there are three treatment groups with hazard rate functions, ℎ!(𝑡), ℎ!(𝑡), and ℎ!(𝑡), 
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respectively. We assume the censoring times are uniformly distributed between 0 and 2. Two 

different sample sizes are considered: 50 and 100 for each group. The empirical type I error rate 

and power are estimated based on 1000 replicates using the significance level of 0.05. When the 

null hypothesis is true, we set ℎ!(𝑡) = ℎ!(𝑡) = ℎ!(𝑡) = 1 to estimate the type I error rate. To 

estimate the power, we consider the following four cases, as shown in Figure 1: (a) ℎ!(𝑡) =

1, ℎ!(𝑡) = 1.2,  ℎ!(𝑡) = 1.5; (b) ℎ!(𝑡) = 1, ℎ!(𝑡) = 1.5,  ℎ!(𝑡) = 1+ 0.5𝑡; (c) ℎ!(𝑡) =

1, ℎ!(𝑡) = 1.2,  ℎ!(𝑡) = 2𝑡; and (d) ℎ!(𝑡) = 1, ℎ!(𝑡) = 0.5+ 𝑡,  ℎ!(𝑡) = 2𝑡.  Note that, in (a), 

the three hazard rate functions are parallel; in (b), the three hazard rate functions cross once 

(beyond time 0); in (c), the three hazard rate functions cross twice; and in (d), the three hazard 

rate functions cross three times. From (a) to (d), the degree of crossing among the three risk rate 

functions is in an increasing order.    

    Table 1 reports the empirical type I error rate and power for each method considered in the 

simulation. From Table 1, we can see that the U test, the V test and the proposed UV test all 

control the type I error rate quite well. We also observe that the U test has similar performance to 

that of the LR test, because they are both extensions of the two-sample LR test in different ways. 

When there are no or very few crossings among the hazard rate functions (e.g., cases (a) and (b)), 

the V test has no or little power; therefore, the proposed UV test has slightly lower power than 

the U test. However, when there are more crossings (e.g., cases (c) and (d)), the V test can be 

very powerful while the LR and GW tests lose power dramatically. From this simulation 

example, it can be seen that the U, LR and GW tests are powerful when there are no or few 

crossings, the V test is powerful when there are more crossings, and the UV test is always close 

to the best test in all cases considered. Therefore, the UV test is robust to different patterns of the 

hazard rate functions. It should be pointed out that in the simulation study, we simply use the 
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number of crossing to indicate the degree of crossing. However, the performance of the V test, 

and the UV test may also depend on when and how the crossing take place.  

4. A Real Data Example 

In this section, we apply the proposed test to a real data set from the randomized, double-blinded 

Digoxin Intervention Trial (The Digitalis Investigation Group, 1997). In the trial, patients with 

left ventricular ejection fractions of 0.45 or less were randomly assigned to digoxin (3397 

patients) or placebo (3403 patients) groups. A primary outcome was the mortality due to 

worsening heart failure. Figure 2 (a) plots the Kaplan-Meier curves for the two treatment groups. 

    In the original study, the authors used the LR test and obtained a p-value of 0.06, indicating 

that the evidence of the effectiveness of digoxin, in terms of reducing the mortality due to 

worsening heart failure, is at most marginal. However, based on the above Kaplan-Meier curves, 

the proportional hazard rates assumption made in the LR test may not be valid, and tests other 

than the LR should be considered. In fact, we obtain p-values from other methods as shown in 

Table 2 (a). The p-value from the UV test is 0.021; there is a relatively stronger evidence to 

support the effectiveness of the drug.  

      We then consider the possible interaction between the treatment and gender. Table 3 

summarizes the data for the four groups.  Figure 2 (b) plots the Kaplan-Meier curves for the four 

groups, which clearly shows that the LR test is not optimal as the proportional hazard rates 

assumption is violated. Table 2 (b) reports the p-values from different tests. Both the V test and 

the UV test obtain very small p-values. It is then interesting to compare the two treatments 

among male patients: M-P vs. M-D. Table 2 (c) gives the p-values from various tests. The p-

value from the UV test is 0.0054; there is strong evidence that the drug is effective among male 

patients. Finally, we compare the treatments among female patients; the p-values from all the 

methods considered are shown in Table 2 (d). All tests obtained large p-values; there is no 
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evidence from the data to support the effectiveness of the drug for female patients, although it is 

noticeable that there were much fewer female patients in the study. 

5. Discussion and Conclusion 

In this paper we extend the two-sample LR test to multiple samples and call this extension the U 

test. The U test has similar performance as the traditional LR test, and therefore, it is powerful 

when the hazard rate functions are parallel. We also proposed another test, called the V test, 

which is designed specifically for the situation when the hazard rate functions cross each other 

and when the U test fails. The proposed UV test is a robust approach that combines information 

from the U test and the V test in an efficient way. If we have information about the hazard rate 

functions prior to seeing the data, we can use the U test, or the V test only when it is appropriate.  

For example, if the alternative hypothesis is directional, 𝑆!(𝑡) ≥ 𝑆!(𝑡) ≥ ⋯ ≥ 𝑆!(𝑡) (or 

𝑆!(𝑡) ≤ 𝑆!(𝑡) ≤ ⋯ ≤ 𝑆!(𝑡)), the one-sided p-values obtained based on the test statistics 

𝑈!  (𝑘 = 1,2,⋯ ,𝐾 − 1) can be used to obtain an overall p-value. However, if this kind of 

information is unavailable, the proposed UV test would be a good choice.  

    In each of the U, V and UV tests, we choose to combine the related p-values using the chi-

square distribution with df 1 as this method is robust (Chen, 2011; Chen and Nadarajah, 2014). 

Although other robust methods of combing p-values, such as the Fisher test (Fisher, 1932), are 

also possible, the weighted z tests are not recommended here since they are not robust and may 

lose power dramatically in some situations. In addition, for the UV test, we can combine the two 

p–values from the U and V tests, namely, PU and PV, with different df values dfU and dfV, i.e., 

𝑃!" = pr{𝜒!"!!!"!
! > 𝜒!"!

! !!(1− 𝑃!)+ 𝜒!"!
! !!(1− 𝑃!)}. If we know that the hazard rate 

functions are mainly parallel, we can assign a large number for dfU and a relatively small number 

for dfV. On the other hand, if the hazard rate functions are dominated by the crossing, we can 
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assign a small number for dfU and a large number for dfV. When dfU = dfV = K-1, it is the 

proposed UV test.  

    In summary, the UV test proposed in this paper is a flexible and robust approach, which has 

been confirmed by a simulation study and a real data application. More specifically, we have 

shown that this approach has good performance in terms of controlling the type I error rate and 

the detecting power. In some situations, the gain in power is substantial compared with other 

commonly used methods, such as the LR test and the GW test.  
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APPENDIX 

 

For the proofs, first, we define the following statistics: 

𝑍!!{𝑤!:!
! = 𝑍!! 𝑤!:! = ℎ! 𝑤!:!!{𝑑! !!! − 𝑌! !!! 𝑑!"!!!

!!! 𝑌!"!!!
!!! }!!

!!! ,                     (A.1) 

𝑍!!{𝑤!:!
!! } = ℎ! 𝑤!:!!

! {𝑑! !!! − 𝑌! !!! 𝑑!"!!!
!!! 𝑌!"!!!

!!! }!!
!!! ,                                       (A.2) 

where 𝑘 = 1,2,… ,𝐾 − 1,  ℎ! = 𝑛!!!!
!!! {𝑛!!! 𝑛!!

!!! } ,𝐷! is the total number of distinct 

failure times from groups 1, 2,… , 𝑘 + 1, and 𝑤!:!
! = {𝑤!:!!

! ,𝑤!:!!
! ,⋯ ,𝑤!:!!!

! }′ (𝑙 = 1,2) are 

suitable weight functions defined as follows. 

𝑤!:!!
! = 1, for i=1,.2,…, 𝐷!, and  

                                                          𝑤!:!!
!! =

−1, 𝑖𝑓 𝑖 = 1,2,⋯ ,𝑚!
𝑐!! ,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                                   (A.3) 

where 
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𝑐!! ≜
!!! ! !!! !

!!!!!! ! !!!!!!! !
𝑑𝐹!! 𝑠!!!

!! !!
!

!!! ! !!! !
!!!!!! ! !!!!!!! !

𝑑𝐹!! 𝑠!!
!!!
!! !!

,                    (A.4) 

𝐹!! 𝑡 = 1− 𝑆!! 𝑡  is the cumulative distribution function of the survival time using the pooled 

data from groups 1, 2,… , 𝑘 + 1; 𝑝!! = lim!→!
!!!
!!!

, 𝑝!! = lim!→!
!!!
!!!

; 𝑚! = [𝐷!𝑟!], and 

𝑢! = inf [𝑠:min 𝜋!! 𝑠 ,𝜋!! 𝑠 = 0]. Note that the weights 𝑤!:!!
!!  defined in (A.3) and (A.4)  

are analogous to those defined in (2) and (3). 

    For the covariance between 𝑍!"{𝑤!:!
!! !!!

} and 𝑍!!!!{𝑤!!:!!
!! !!!!

} (𝑘 ≠ 𝑘′), we have the 

following major result. 

Lemma 2. If 𝑘 ≠ 𝑘!, 𝑐𝑜𝑣[𝑍!"{𝑤!:!
!! !!!

},𝑍!!!!{𝑤!!:!!
!! !!!!

}] = 0 for 𝑙, 𝑙! = 1,2, and 𝑘, 𝑘! =

1,2,… ,𝐾 − 1. 

Proof of Lemma 2. 

First we define the following counting processes: 

𝑌!" 𝑡 = 𝐼(𝑋!" > 𝑡), 𝑖 = 1,2,⋯ ,𝐾, 𝑗 = 1,2,⋯ ,𝑛! , 

𝑁!" 𝑡 = 𝐼(𝑋!" < 𝑡, 𝛿!" = 1), 𝑖 = 1,2,⋯ ,𝐾, 𝑗 = 1,2,⋯ ,𝑛!,  

𝑌!! 𝑡 = 𝑌 !!! !(𝑡)
!!!!
!!! , 𝑘 = 1,2,⋯ ,𝐾 − 1, 

𝑌!! 𝑡 = 𝑌!"
!!
!!!

!
!!! 𝑡 , 𝑘 = 1,2,⋯ ,𝐾 − 1,  

𝑌! 𝑡 = 𝑌!! 𝑡 + 𝑌!! 𝑡 = 𝑌!"
!!
!!!

!!!
!!! 𝑡 , 𝑘 = 1,2,⋯ ,𝐾 − 1. 

    To simplify the notation, for given 𝑟!, we use 𝑤!:! to denote 𝑤!:!
{(!!)!!!}.  

For the statistic 𝑍!" 𝑤!:!; 𝑡 = 𝑤!:!"{𝑑! !!! − 𝑌! !!! 𝑑!"!!!
!!! 𝑌!"!!!

!!! }!!
!!! , where 

𝑙 = 1,2, 𝑘 = 1,2,… ,𝐾 − 1, it can be shown that  

𝑍!" 𝑤!:!; 𝑡 = 𝐻!"#$ 𝑠 𝑑𝑀!" 𝑠
!
!

!!
!!!

!!!
!!! ,  
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where 𝐻!"#$ 𝑡 = −1 ! !∈(!,!,…,!) 𝑤!:!(𝑡)𝑌!!(𝑡)𝑌!!(𝑡)(𝑌!(𝑡)(𝑌!! 𝑡 )! !∈(!,!,…,!) (𝑌!! 𝑡 )!(!!!!!))!!, 

and martingale 𝑀!" 𝑡 = 𝑁!" 𝑡 − 𝐼 !!"!! 𝑑Λ(𝑢)
!
! . 

Therefore,  𝑍!!!! 𝑤!!:!!!; 𝑡 = 𝐻!"#!!! 𝑠 𝑑𝑀!" 𝑠
!
!

!!
!!!

!!!!
!!! , where 

𝐻!"#!!! 𝑡 = −1 ! !∈(!,!,…,!!) 𝑤!!:!!(𝑡)𝑌!!"(𝑡)𝑌!!"(𝑡)(𝑌!!(𝑡)(𝑌!!" 𝑡 )! !∈(!,!,…,!!) (𝑌!!" 𝑡 )! !!!!!! )!!. 

    Without loss of generality, in this proof we assume 𝑘 < 𝑘′. With the weight functions 𝑤!:!(𝑡) 

and 𝑤!!:!!(𝑡) defined as in (A.3), it is easy to check that the required conditions in theorem 2.6.2 

of Fleming and Harrington (Fleming and Harrington, 1991) are met;  therefore, based on that 

theorem, the covariance between 𝑍!" 𝑤!:!; 𝑡  and 𝑍!!!! 𝑤!!:!!; 𝑡  can be expressed as: 

𝑐𝑜𝑣 𝑍!" 𝑤!:!; 𝑡 ,𝑍!!!! 𝑤!!:!!; 𝑡 = 𝐸 𝐻!"#$(𝑠)𝐻!"#!!!(𝑠)𝐼{!!"!!} 1− Λ(𝑠) 𝑑Λ(𝑠)!
!

!!
!!!

!!!
!!! . 

Therefore, 𝑐𝑜𝑣 𝑍!" 𝑤!:!; 𝑡 ,𝑍!!!! 𝑤!!:!!; 𝑡 = 𝐸{ 𝐻!"#$(𝑠)𝐻!"!!!!(𝑠)𝐼 !!"!! }
!!
!!!

!!!
!!! 1−!

!

Λ(𝑠) 𝑑Λ(𝑠). 

But, 

𝐻!"#$(𝑠)𝐻!"!!!!(𝑠)
!!
!!!

!!!
!!! =

𝐻!"#$(𝑠)𝐻!"!!!!(𝑠)
!!
!!!

!
!!! + 𝐻(!!!)!"#(𝑠)𝐻(!!!)!!!!!(𝑠)

!!!!
!!! =

𝑤!:! 𝑠 𝑤!!:!! 𝑠 − 𝐼{!!"!!}
!!! !
!! !

!!!! !

!!! !
!!
!!!

!
!!! + 𝐼{!(!!!)!!!}

!!! !
!! !

!!!! !

!!! !
!!!!
!!! =

𝑐 − 𝑌!" 𝑠
!!
!!!

!
!!! 𝑌 !!! ! 𝑠

!!!!
!!! + 𝑌 !!! ! 𝑠

!!!!
!!! 𝑌!" 𝑠

!!
!!!

!
!!! = 0, where 

𝑐 = 𝑤!:! 𝑠 𝑤!!:!! 𝑠
!

!! !

!!!! !

!!! !
. 

Finally, let 𝑢!,!! = inf [𝑠:min 𝜋!! 𝑠 ,𝜋!! 𝑠 ,𝜋!!! 𝑠 ,𝜋!!! 𝑠 = 0], covariance 

𝑐𝑜𝑣(𝑍!" ,𝑍!!!!) = 𝑐𝑜𝑣{𝑍!"(𝑢!,!!),𝑍!!!!(𝑢!,!!)} = 0 when 𝑘 ≠ 𝑘!. 

 

Proof of theorem 1. 
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Note that  

                                          𝑈! = 𝑍!!(𝑤!:!)/ℎ!𝜎{𝑍!! 𝑤!:! } (𝑘 = 1,2,… ,𝐾 − 1),                 (A.5) 

where 𝜎{𝑍!! 𝑤!:! } = 𝑤!:!!! !!:!!
!!:!

!!:!!
!!:!

!!:!!!!:!
!!:!!!

𝑑!:!
!!
!!!   , 𝑌!:!! = 𝑌!(!!!), 𝑌!:!! = 𝑌!"!

!!! , 

𝑌!:! = 𝑌!:!! + 𝑌!:!!, 𝑑!:! = 𝑑!"!!!
!!! . 

And  

                                                              𝑉! = !"#
!!!!!!!!!!!!!

(𝑉!:!!),                                      (A.6) 

where 𝑉!:!! = 𝑍!!{𝑤!:!
!! }/ℎ!𝜎[𝑍!!{𝑤!:!

!! }],  

𝜎[𝑍!!{𝑤!:!
!! }] = {𝑤!:!!

!! }! !!:!!
!!:!

!!:!!
!!:!

!!:!!!!:!
!!:!!!

𝑑!:!
!!
!!! , 

 𝑤!:!
!! = {𝑤!:!"

!! ,𝑤!:!!
!! ,⋯ ,𝑤!:!!!

!! }!, 

 𝑤!:!!
!! =

−1  𝑖𝑓 𝑖 = 1,2,⋯ ,𝑚!
𝑐!!      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,  

𝑐!! =
!!! !! !!! !!

!!!
!!!

!!! !! !
!!!
!!!

!!! !!
∆𝑆!(𝑡!)

!!
!!! / !!! !! !!! !!

!!!
!!!

!!! !! !
!!!
!!!

!!! !!
∆𝑆!(𝑡!)

!!
!!!!!! ,      (A.7) 

𝑛!! = 𝑛!!!, 𝑛!! = 𝑛!!
!!! , 𝑛!! = 𝑛!! + 𝑛!! = 𝑛!!!!

!!! ,  

and 𝐿!! 𝑡  is the K-M estimate of the survival function for censoring time using the (k+1)th 

sample, and 𝐿!! 𝑡  is the K-M estimate of the survival function for censoring time using pooled 

sample from groups 1, 2,… , 𝑘, and 𝑆! 𝑡  is the K-M estimate of the survival function for 

survival time using pooled sample from groups 1, 2,… , 𝑘 + 1.  

    We have the following result for 𝑐!! in (A.7) (Qiu and Sheng, 2008): it convergences in 

probability to 

𝑐!! =
!!! ! !!! !

!!!!!! ! !!!!!!! !
𝑑𝐹!! 𝑠!!!

!! !!
!

!!! ! !!! !
!!!!!! ! !!!!!!! !

𝑑𝐹!! 𝑠!!
!!!
!! !!

.                    (A.8) 

The quantity defined in (A.8) is analogous to that in (3). 
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     (i) This part can be proved in the same way as the proof of lemma 1. 

    (ii) From Corollary 7.2.1 in Fleming and Harrington (Fleming and Harrington, 1991), see also 

Appendix A in Qiu and Sheng (Qiu and Sheng, 2008), we know that under the null hypothesis 

𝑍!!(𝑤!:!)/𝜎{𝑍!! 𝑤!:! } has an asymptotic standard normal distribution, and 𝜎!{𝑍!! 𝑤!:! }/

𝜎! 𝑍!! 𝑤!:!  convergences to 1 in probability, where 

𝜎!{𝑍!! 𝑤!:! } = 𝑤!:!! (𝑠) !!! ! !!! !
!!!!!! ! !!!!!!! !

𝑑𝐹!! 𝑠!!
! . 

    From lemma 2, we also have 𝑐𝑜𝑣 𝑍!! ,𝑍!!! = 0 for 𝑘 ≠ 𝑘′. Therefore, 𝑐𝑜𝑣(𝑈! ,𝑈!!) →

!

! !!! !!:! ! !!!! !!!:!
𝑐𝑜𝑣 𝑍!! ,𝑍!!! = 0, and 𝑈! and 𝑈!! (𝑘, 𝑘′ = 1,2,… ,𝐾 − 1, 𝑘 ≠ 𝑘′) are 

asymptotically independent. 

    (iii) For any 𝑘 ≠ 𝑘!, as in (ii), it can be shown that under the null hypothesis 𝑉!:!! and 𝑉!!:!!! 

are asymptotically independent. Notice that 𝑉! = !"#
!!!!!!!!!!!!!

(𝑉!:!!), based on theorems 

18.10, and 18.11 in van der Vaart (Van der Vaart, 1998),we have under the null hypothesis 𝑉! 

and each 𝑉!!:!!! are asymptotically independent. Similarly, under the null hypothesis 𝑉!! and 

each 𝑉!:!! are asymptotically independent. Therefore, under the null hypothesis 𝑉! and 𝑉!! are 

asymptotically independent. 

    (iv) For any 𝑘 ≠ 𝑘!, as in (ii), it can be shown that under the null hypothesis 𝑈! and each 

𝑉!!:!!! are asymptotically independent. Therefore, again by theorems 18.10, and 18.11 in van der 

Vaart (Van der Vaart, 1998), under the null hypothesis 𝑈! and 𝑉!! are asymptotically 

independent. 

 

Proof of theorem 2. 
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Under the null hypothesis, the U test is the sum of 𝐾 − 1 asymptotically independent chi-square 

distributions each with df 1; and the V test is the sum of another 𝐾 − 1 asymptotically 

independent chi-square distributions each with df 1. The two sets of chi-square distributions are 

mutually asymptotically independent, therefore, under the null hypothesis, the U test and the V 

test statistics are asymptotically independent.  

 

 

 

 

 

 

 

 

TABLES AND FIGURES 

 

Table 1. Empirical type I error rate and power of each method obtained from 1000 replicates 

with nominal significance level of 0.05. 

Sample size Test Type I 
error rate 

Power 
(a) (b) (c) (d) 

 
 
𝑛! = 𝑛! = 𝑛! = 50 

U 0.048 0.281 0.289 0.132 0.044 
V 0.043 0.036 0.079 0.845 0.721 
UV 0.047 0.187 0.244 0.832 0.628 
LR 0.048 0.273 0.310 0.185 0.066 
GW 0.052 0.235 0.268 0.449 0.215 

 
 
𝑛! = 𝑛! = 𝑛! = 100 

U 0.047 0.545 0.495 0.301 0.072 
V 0.036 0.049 0.137 0.995 0.965 
UV 0.054 0.431 0.464 0.995 0.935 
LR 0.051 0.533 0.521 0.349 0.092 
GW 0.053 0.469 0.479 0.777 0.356 
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Table 2. P-values from various tests when compare (a) two groups (placebo, drug), (b) compare 

four groups (male placebo, male drug, female placebo, and female drug); (c) two groups (male 

placebo, male drug), and (d) two groups (female placebo, female drug). 

Data used U V UV LR GW 
(a) P vs. D 0.061 0.040 0.021 0.061 0.050 
(b) M-P, M-D, F-P, F-D 0.11 0.0083 0.0070 0.11 0.092 
(c) M-P vs. M-D 0.019 0.026 0.0054 0.019 0.014 
(d) F-P vs. F-D 0.66 0.69 0.84 0.66 0.66 
 

 

Table 3. Death due to worsening heart failure by treatment and gender. 

Group Yes (%) No (%) Total 
male-placebo (M-P) 358 (13.6) 2281 (86.4) 2639 
male-drug (M-D) 300 (11.4) 2342 (88.6) 2642 
female-placebo (F-P) 91 (11.9) 673 (88.1) 764 
female-drug (F-D) 94 (12.5) 661 (87.5) 755 
     

 

 

Figure 1. Four sets of hazard rate functions used in the simulation study for power estimation. 
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Figure 2. Kaplan-Meier curves for the two treatment groups (plot (a)) and the four treatment by 

gender groups (plot (b)).  


