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Abstract

We consider the problem of detecting jump location curves of regression surfaces when they

are spatially blurred and contaminated pointwise by random noise. This problem is common in

various applications, including equi-temperature surface estimation in meteorology and oceanog-

raphy and edge detection in image processing. In the literature, most existing jump detection

methods are developed under the assumption that there is no blurring involved, or that the

blurring mechanism described by a point spread function is completely specified. In this paper,

we propose four possible jump detectors, without imposing restrictive assumptions on either the

point spread function or the true regression surface. Their theoretical and numerical properties

are studied and compared. We also propose a new quantitative metric for measuring the per-

formance of a jump detector. A data-driven bandwidth selection procedure via the bootstrap is

suggested as well. This paper has supplementary material online.

Key Words: Denoising; Edge detection; Gradient; Jump location curves; Nonparametric re-

gression; Performance measure; Surface estimation.

1 Introduction

Surface estimation is an important problem in many scientific areas, including image processing,

geology, meteorology, oceanography, and so forth. In many surface estimation problems, the true

surfaces have jumps and discontinuities, which are often called edges of the related image intensity

surface in the image processing literature (cf., Gonzalez and Woods 1992, Qiu 2005). Jumps in a

surface often represent outlines of objects (e.g., the boundary locations of image objects), or places

where the structure of a 2-D process changes abruptly (e.g., places where an equi-temperature

surface in high sky or deep ocean changes dramatically). Therefore, it is important to detect the

jump locations of regression surfaces accurately from the observed data. In practice, however, the
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observed data are usually not exactly the same as the true surfaces, but are degraded versions

of their true surfaces. There are many different sources of degradations. For instance, in aerial

reconnaissance, astronomy, and remote sensing, image intensity surfaces are often degraded by

atmospheric turbulence, aberrations of the optical system, or relative motion between a camera

and an object. Among different degradations, pointwise degradation (or, random noise) and spatial

degradation (or, blur) are the most common in practice. As a demonstration, Figure 1(a)-(c) show a

true image with a step edge at x = 0.5, a blurred version, and a blurred-noisy version, respectively.

The cross section of the blurred noisy version at y = 0.5 is shown in 1(d). From these plots,

it can be seen that noise alters individual gray levels in a random pattern but the alteration by

blur is spatially correlated. From Figure 1(b)-(d), it can also be seen that the step edge of the

original image is still visible in its blurred or blurred-noisy version, although the edge is tapered by

some smoothing process that is often unknown in practice and such a smoothing process can vary

over location as well (e.g., atmospheric turbulence often causes spatially variant blur in satellite

images because both its direction and intensity are usually different at different locations). Other

types of degradations involve chromatic or temporal effects. See Bates and McDonnell (1986) for a

detailed discussion about formation of various degradations. This paper focuses on jump detection

in regression surfaces when both spatial blur and pointwise noise are present in the observed data.

In the literature, most existing jump detection methods assume that there is no blurring in-

volved in the observed data. These methods are usually based on appropriate estimation of the

first-order and/or the second-order derivatives of the regression surfaces. See, for instance, Bowman

et al. (2006), Chu et al. (2012), Ferger (2004), Garlipp and Müller (2006, 2007), Hall et al. (2008),

Qiu (2002), Sun and Qiu (2007), and Wang (1998) in the statistical literature; and Canny (1986),

Clark (1989), Fleck (1992), Heath et al. (1998), Marr and Hildreth (1980), Qiu and Bhandarkar

(1996), and Torre and Poggio (1986) in the image processing literature.

In this paper, we propose four jump detectors in cases when the observed data contain both

spatial blur and pointwise noise. The idea behind our proposed methods can be explained intu-

itively as follows. First, although spatial blur would alter the regression surface structure, especially

around the true jump location curves, the blurred regression surface would change most dramat-

ically at the true jump location curves along their normal directions (cf., 1(b)-(d)). Therefore,

2



0 0.25 0.5 0.75 1

0
0.

25
0.

5
0.

75
1

x

y

(a)

0 0.25 0.5 0.75 1

0
0.

25
0.

5
0.

75
1

x

y

(b)

0 0.25 0.5 0.75 1

0
0.

25
0.

5
0.

75
1

x

y

(c)

0 0.25 0.5 0.75 1
x

(d)

Figure 1: (a)-(c): Original image with a single step edge, a blurred version and a blurred-noisy

version, respectively. (d): The cross section of the image in (c) at y = 0.5.

appropriate estimators of the surface gradients can be used for jump detection. Second, spatial

blur is a smoothing process; it smooths the regression surface at the true jump locations. If we can

recover the jump structure to a certain degree when removing noise, it may help detect jumps. Our

proposed jump detectors make use of these properties of spatial blur in different ways. One major

feature of these jump detectors is that they do not require restrictive assumptions on either the

point spread function that describes the blurring mechanism or the true regression surface. Their

theoretical and numerical properties are studied and compared. Further, in this paper, we pro-

pose a new quantitative metric for measuring the performance of a jump detector. A data-driven

bandwidth selection procedure via the bootstrap is suggested as well.

The remainder of the article is organized as follows: In the next section, our proposed jump
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detectors are described in detail. Some of their statistical properties are presented in Section 3.

Their numerical performance is evaluated in Section 4. Several remarks conclude the article in

Section 5. Some technical details are given in a supplementary file.

2 Proposed Jump Detectors

In this section, we first describe our proposed jump detectors in detail in Subsection 2.1, and then

propose a new metric for measuring the jump detection performance in Subsection 2.2. Based on

the proposed performance measure, a bootstrap bandwidth selection procedure is suggested in that

subsection as well.

2.1 Four jump detectors based on local kernel smoothing

In the image processing literature, a commonly used model for describing the relationship between

a true regression surface f and its observed degraded version Z is as follows.

Z(x, y) = G{f}(x, y) + ε(x, y), for (x, y) ∈ Ω, (1)

where G{f}(x, y) =

∫ ∫
R2

g(u, v;x, y)f(x− u, y − v) dudv denotes the convolution between a 2-

D point spread function (psf) g (see Section 3 for a detailed mathematical description) and the

true regression function f , ε(x, y) is the pointwise noise at (x, y), and Ω is the design space of the

surface. In model (1), it is assumed that the true regression function f is degraded spatially by g and

pointwise by ε, that the spatial blur is linear in the sense that G{a1f1+a2f2} = a1G{f1}+a2G{f2},

where a1 and a2 are two arbitrary constants and f1 and f2 are any two images, and that the

pointwise noise is additive. In most references, it is further assumed that the psf g, which describes

the spatial blurring mechanism, is location invariant. That is, g(u, v;x, y) does not depend on

(x, y). See Hall and Qiu (2007) for a related discussion.

For simplicity, let us assume that the design space is Ω = [0, 1]×[0, 1], {(xi, yj) = (i/n, j/n), i, j =

1, 2, . . . , n} are equally spaced design points in Ω, and {(xi, yj , Zij), i, j = 1, 2, . . . , n} follow the

model

Zij = G{f}(xi, yj) + εij , for i, j = 1, 2, · · · , n, (2)

4



where {εij} are i.i.d. random errors with mean 0 and unknown variance σ2. For a given point

(x, y) ∈ Hn = [hn, 1−hn]× [hn, 1−hn], where hn ∈ (0, 1/2) is a bandwidth parameter, we consider

its circular neighborhood:

On(x, y) =
{

(u, v) : (u, v) ∈ Ω and
√

(u− x)2 + (v − y)2 ≤ hn
}
.

In this neighborhood, let us consider the following local linear kernel smoothing procedure:

min
a,b,c

∑
(xi,yj)∈On(x,y)

{Zij − [a+ b(xi − x) + c(yj − y)]}2Kij , (3)

where Kij := K((xi − x)/hn, (yj − y)/hn) and K is a circularly symmetric bivariate density kernel

function defined on the unit disk centered at the origin. Let the solution to {a, b, c} of the problem

(3) be denoted as {â(x, y), b̂(x, y), ĉ(x, y)}. Then, (̂b(x, y), ĉ(x, y)) is an estimator of the gradient of

the true regression surface f at (x, y). Now, we divide On(x, y) into two halves, denoted as Un(x, y)

and Vn(x, y), along the direction perpendicular to (̂b(x, y), ĉ(x, y)). More specifically, we define

Un(x, y) = {(xi, yj) ∈ On(x, y) : (xi − x)̂b(x, y) + (yj − y)ĉ(x, y) ≥ 0},

Vn(x, y) = {(xi, yj) ∈ On(x, y) : (xi − x)̂b(x, y) + (yj − y)ĉ(x, y) < 0}.

The change in the values of f from Vn(x, y) to Un(x, y) should be relatively large if (x, y) is on a

jump location curve. Let

f̂LCK,+(x, y) =

∑
(xi,yj)∈Un(x,y)

ZijKij∑
(xi,yj)∈Un(x,y)

Kij
,

f̂LCK,−(x, y) =

∑
(xi,yj)∈Vn(x,y) ZijKij∑
(xi,yj)∈Vn(x,y)Kij

(4)

be the Nadaraya-Watson local constant kernel (LCK) estimators of f(x, y), constructed from

the observations in the two one-sided neighborhoods Un(x, y) and Vn(x, y), respectively. Then,

f̂LCK,+(x, y) − f̂LCK,−(x, y) would be a good measure of the change in values of f along the di-

rection from Vn(x, y) to Un(x, y). Our first jump detection criterion is defined by its standardized

version

LCKn(x, y) =
f̂LCK,+(x, y)− f̂LCK,−(x, y)√ ∑

(xi,yj)∈Un(x,y)K
2
ij[∑

(xi,yj)∈Un(x,y)Kij

]2 +

∑
(xi,yj)∈Vn(x,y)K

2
ij[∑

(xi,yj)∈Vn(x,y)Kij

]2
,

and the corresponding jump detector is denoted as LCK. Theoretically, it can be checked that

the jump detection criterion LCKn(x, y) has the following two properties (proofs are given in the

supplementary material):
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(i) if f is continuous around (x, y), then we have

LCKn(x, y)
d−→ N

(
0, σ2

)
, as n −→∞ (5)

(ii) if f has a jump at (x, y), then we have

LCKn(x, y)
P−→∞, as n −→∞. (6)

Therefore, the criterion LCKn(x, y) contains useful information for jump detection. Our proposed

jump detector LCK can be summarized as follows.

• At a given design point (xi, yj), for i, j = 1, 2, · · · , n, solve the minimization problem (3) and

obtain the solution vector {b̂(xi, yj), ĉ(xi, yj)}.

• Divide On(xi, yj) into two halves Un(xi, yj) and Vn(xi, yj) along the direction perpendicular to

the estimated gradient vector {b̂(xi, yj), ĉ(xi, yj)}. Compute the Nadaraya-Watson LCK esti-

mators of f(x, y) from the observations in Un(xi, yj) and Vn(xi, yj), respectively, as described

in (4).

• The design point (xi, yj) is flagged as a detected jump point if

|LCKn(xi, yj)| > Z1−αnσ,

where Z1−αn is the (1 − αn)-th quantile of the standard normal distribution and αn is a

significance level.

In practice, σ is often unknown, and it needs to be estimated from the observed data. To this end,

it can be estimated by the conventional kernel smoothing approach in a chosen region in which the

regression surface is relatively smooth. Or, σ2 can be estimated by the residual mean squares of

the jump-preserving surface estimation procedure suggested by Qiu (2004).

Note that the jump detector LCK does not take into account the possible blurring in the

observed data. As illustrated in Figure 1(b), blurring alters the image most significantly around a

jump location curve (JLC, see its formal definition in Qiu (2005)) and least significantly at places

where the intensity surface is straight. So, in cases when blurring is present and (x, y) is on a JLC,

if a design point in On(x, y) is closer to the line that divides On(x, y) into Un(x, y) and Vn(x, y),
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then it is more likely that the corresponding observation Zij has blurring involved. Thus, it should

receive smaller weight in the related weighted average. To address this issue, we suggest using a

univariate kernel function L for assigning such weights. By this idea, our second jump detection

criterion is defined by

LC2Kn(x, y) =
f̂LC2K,+(x, y)− f̂LC2K,−(x, y)√ ∑

(xi,yj)∈Un(x,y) K
2
ijL

2
ij[∑

(xi,yj)∈Un(x,y) KijLij

]2 +

∑
(xi,yj)∈Vn(x,y) K

2
ijL

2
ij[∑

(xi,yj)∈Vn(x,y) KijLij)
]2
,

where

f̂LC2K,+(x, y) =

∑
(xi,yj)∈Un(x,y)

ZijKijLij∑
(xi,yj)∈Un(x,y)

KijLij
,

f̂LC2K,−(x, y) =

∑
(xi,yj)∈Vn(x,y) ZijKijLij∑
(xi,yj)∈Vn(x,y)KijLij

, (7)

Lij := L(dij/hn), L is a univariate increasing density kernel function with support [0, 1], and dij

is the Euclidean distance from the point (xi, yj) to the line that divides On(x, y) into Un(x, y)

and Vn(x, y). The corresponding jump detector is labeled as LC2K, where LC2K denotes local

constant smoothing with 2 kernel functions. The jump detection criterion LC2Kn(x, y) has similar

asymptotic results to (5) and (6). Also, a numerical algorithm of the jump detector LC2K can be

developed in a similar way to that of the jump detector LCK.

In cases when the true regression surface f is quite steep but continuous around a given point

(x, y), by the jump detectors LCK and LC2K, (x, y) can be falsely detected as a jump point

because both their jump detection criteria LCKn(x, y) and LC2Kn(x, y) are good estimators of the

directional derivative of f along the gradient direction at (x, y). To overcome this limitation, in the

one-sided neighborhoods Un(x, y) and Vn(x, y), instead of computing the Nadaraya-Watson LCK

estimators (cf., (4)), we consider fitting local planes by solving the following local linear kernel

(LLK) smoothing problems:

min
a0,a1,a2

∑
(xi,yj)∈Un(x,y)

{Zij − [a0 + a1(xi − x) + a2(yj − y)]}2Kij , (8)

and

min
a0,a1,a2

∑
(xi,yj)∈Vn(x,y)

{Zij − [a0 + a1(xi − x) + a2(yj − y)]}2Kij . (9)
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The solutions to a0 of (8) and (9) are denoted as f̂LLK,+(x, y) and f̂LLK,−(x, y), respectively, and

they have the expressions

f̂LLK,+(x, y) =

∑
(xi,yj)∈Un(x,y)

wij(x, y)Zij∑
(xi,yj)∈Un(x,y)

wij(x, y)

f̂LLK,−(x, y) =

∑
(xi,yj)∈Vn(x,y)w

′
ij(x, y)Zij∑

(xi,yj)∈Vn(x,y)w
′
ij(x, y)

,

where

wij(x, y) = [A1(x, y) +A2(x, y)(xi − x) +A3(x, y)(yj − y)]Kij ,

A1(x, y) = r20(x, y)r02(x, y)− r11(x, y)r11(x, y),

A2(x, y) = r01(x, y)r11(x, y)− r10(x, y)r02(x, y),

A3(x, y) = r10(x, y)r11(x, y)− r01(x, y)r20(x, y),

rs1,s2(x, y) =
∑

(xi,yj)∈Un(x,y)

(xi − x)s1(yj − y)s2Kij , for s1, s2 = 0, 1, 2,

and w′ij(x, y) is defined to be the same as wij(x, y) except that Un(x, y) needs to be replaced by

Vn(x, y) throughout. Then, we define our third jump detection criterion by

LLKn(x, y) =
f̂LLK,+(x, y)− f̂LLK,−(x, y)√ ∑

(xi,yj)∈Un(x,y) wij(x,y)2

[
∑

(xi,yj)∈Un(x,y) wij(x,y)]2
+

∑
(xi,yj)∈Vn(x,y) w

′
ij(x,y)

2

[
∑

(xi,yj)∈Vn(x,y) w
′
ij(x,y)]

2

.

It can be checked that, in cases when f is continuous at (x, y), the value of |LLKn(x, y)| would

be small, even when f is steep around (x, y), because the slope effect has been accommodated in

fitting the local planes in (8) and (9). See, for instance, Qiu (2004) for a related discussion.

Obviously, the jump detection criterion LLKn(x, y) has not taken into account the blurring

effect, as discussed above about the jump detector LCK. By combining the ideas of the jump

detection criteria LC2Kn(x, y) and LLKn(x, y), we define the fourth jump detection criterion by

LL2Kn(x, y) =
f̂LL2K,+(x, y)− f̂LL2K,−(x, y)√ ∑

(xi,yj)∈Un(x,y) w̃ij(x,y)2[∑
(xi,yj)∈Un(x,y) w̃ij(x,y)

]2 +

∑
(xi,yj)∈Vn(x,y) w̃

′
ij(x,y)

2[∑
(xi,yj)∈Vn(x,y) w̃

′
ij(x,y)

]2
,

where f̂LL2K,+(x, y) and f̂LL2K,−(x, y) are respectively the solutions to a0 of the following local

weighted least square problems:

min
a0,a1,a2

∑
(xi,yj)∈Un(x,y)

{Zij − [a0 + a1(xi − x) + a2(yj − y)]}2KijLij , (10)
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min
a0,a1,a2

∑
(xi,yj)∈Vn(x,y)

{Zij − [a0 + a1(xi − x) + a2(yj − y)]}2KijLij , (11)

w̃ij(x, y) =
[
Ã1(x, y) + Ã2(x, y)(xi − x) + Ã3(x, y)(yj − y)

]
KijLij ,

Ã1(x, y) = r̃20(x, y)r̃02(x, y)− r̃11(x, y)r̃11(x, y),

Ã2(x, y) = r̃01(x, y)r̃11(x, y)− r̃10(x, y)r̃02(x, y),

Ã3(x, y) = r̃10(x, y)r̃11(x, y)− r̃01(x, y)r̃20(x, y),

r̃s1,s2(x, y) =
∑

(xi,yj)∈Un(x,y)

(xi − x)s1(yj − y)s2KijLij , for s1, s2 = 0, 1, 2,

and w̃′ij(x, y) is defined to be the same as w̃ij(x, y), except that Un(x, y) needs to be replaced by

Vn(x, y) throughout.

For the jump detection criteria LLKn(x, y) and LL2Kn(x, y), we can derive their asymptotic

results similar to those in (5) and (6). Their corresponding jump detection procedures are denoted

as LLK and LL2K, respectively, and are briefly summarized as follows.

• At a given design point (xi, yj), for i, j = 1, 2, · · · , n, solve the minimization problem (3) and

obtain the solution vector {b̂(xi, yj), ĉ(xi, yj)}.

• Divide On(xi, yj) into two halves Un(xi, yj) and Vn(xi, yj) along the direction that is per-

pendicular to the estimated gradient vector {b̂(xi, yj), ĉ(xi, yj)}. Compute f̂LLK,+(x, y) and

f̂LLK,−(x, y) (or, f̂LL2K,+(x, y) and f̂LL2K,−(x, y)) from (8) and (9) (or, (10) and (11)).

• The design point (xi, yj) is flagged as a detected jump point if the jump detector LLK is used

and

|LLKn(xi, yj)| > Z1−αn σ̂

or, the jump detector LL2K is used and

|LL2Kn(xi, yj)| > Z1−αn σ̂

where σ̂ is an appropriate estimator of σ.
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2.2 Selection of the bandwidth

The proposed jump detectors described in Subsection 2.1 have the bandwidth parameter hn in-

volved. In 1-D cases, Gijbels and Goderniaux (2004) demonstrated that this parameter plays an

important role in their 1-D jump detection procedure. Based on our numerical experience, this is

also true for the current 2-D procedure. In this subsection, we propose a procedure for choosing

hn in 2-D cases.

The 2-D bandwidth selection problem is more complicated than its 1-D counterpart. In order

to choose the bandwidth properly in 2-D cases, we first need to choose a metric for measuring the

distance between the pointset S of the true jump points and its estimator Ŝn by a jump detector

with a given bandwidth hn. Qiu (2002) investigated this performance measure problem carefully,

and suggested the following performance measure:

dQ(Ŝn, S;hn) = ω
|Ŝn \ S|
|Ω \ S|

+ (1− ω)
|S \ Ŝn|
|S|

,

where 0 ≤ ω ≤ 1 is a weight, Ω denotes the entire design space, A \B denotes the set of points in

A but not in B, and |A| denotes the number of design points in the point set of A. Clearly, dQ is a

weighted average of the false positive rate and the false negative rate of the related jump detector,

and the weight ω reflects the relative importance of the two rates. In an application, if the two

rates are equally important, then ω can be simply chosen as 0.5. It should be pointed out that dQ

can be computed only when the pointset of the true jump points S is known.

In mathematics, a popular metric for measuring the distance between two pointsets A and B

is the following Hausdorff distance:

dH(A,B) = max

{
sup
s1∈A

inf
s2∈B

dE(s1, s2), sup
s1∈B

inf
s2∈A

dE(s1, s2)

}
,

where dE(s1, s2) denotes the Euclidean distance between two points s1 and s2. Qiu (2002) demon-

strated that the above Hausdorff distance had two major limitations: (i) it was sensitive to individ-

ual points in the related pointsets, and (ii) it required extensive computations. As a comparison,

the measure dQ is easier to compute and more robust to individual points. However, we find that

dQ has its own limitations. For instance, assume that the true jump location curve is the line

y = 0.5 and the detected jumps are those design points on the line y = 0.5 + 1/n1, where n1 is a
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positive integer. Then, we would expect that the related jump detector performs better when n1

gets larger. However, it can be checked that the value of dQ does not depend on n1 in such a case,

which is intuitively unreasonable. To avoid this drawback, in this paper, we propose the following

performance measure:

dKQ(Ŝn, S;hn) =
ω

|Ŝn|

∑
(x′,y′)∈Ŝn

dE((x′, y′), S) +
1− ω
|S|

∑
(x,y)∈S

dE((x, y), Ŝn), (12)

where 0 ≤ w ≤ 1 is a weight, and dE((x′, y′), S) denotes the Euclidean distance from the point

(x′, y′) to the pointset S, i.e., the minimum of all pairwise distances between (x′, y′) and (w, z)

for (w, z) in S. Obviously, dKQ is a weighted average of two averages, where the first average in

(12) is the average Euclidean distance from the individual detected jump points to the set of true

jump points and the second average is the average Euclidean distance from the individual true

jump points to the set of detected jump points. By using dKQ, the drawback of the measure dQ

mentioned above is obviously overcome.

To demonstrate the strengths and limitations of the three performance measures discussed

above, let us consider the following two examples. Without loss of generality, in both examples, ω

is fixed at 0.5 and the sample size is fixed at n = 100. In the first example, it is assumed that there

is a single JLC in the design space [0, 1]× [0, 1], and it is the line parallel to the x-axis at y = 0.5.

We further assume that the detected jump points include all design points with y = 0.5 and a point

at (0.5, 0.5 + r), where 0 ≤ r ≤ 0.5 is a constant. These detected jump points are shown in Figure

2(a) by the dark dots. The single outlying point affects the value of dH dramatically. But, it does

not affect either dQ or dKQ much. As a matter of fact, it can be checked that

dH(Ŝn, S) = r, dQ(Ŝn, S) =
0.5

n2 − n
, dKQ(Ŝn, S) =

0.5r

n+ 1
.

When r changes from 0 to 0.5, dH(Ŝn, S), dQ(Ŝn, S), and dKQ(Ŝn, S) are shown in Figure 2(b) by

the solid, dashed and dotted lines, respectively. In the plot, dKQ(Ŝn, S) is not visible because it

almost overlaps with dQ(Ŝn, S). From the plot, it can be seen that dH(Ŝn, S) is indeed sensitive to

the single detected jump point at (0.5, 0.5 + r), dQ(Ŝn, S) does not depend on r, and dKQ(Ŝn, S)

depends on r but it is almost unchanged with r because there is only one detected jump point

moved when r changes. In this example, it is obvious that dH(Ŝn, S) does not reflect the jump

detection performance well when r is large, and the other two performance measures are more

reasonable to use.

11



Next, in the second example, let us assume that the detected jump points are those design

points on the line at y = 0.5 + t (shown in Figure 2(c)), where 0 ≤ t ≤ 0.5 is a constant, and the

remaining setup is the same as those in the first example. In this example, it can be checked that

the three performance measures are

dH(Ŝn, S) = t, dQ(Ŝn, S) =
0.5n

n2 − n
+ 0.5, dKQ(Ŝn, S) = t.

When t changes from 0 to 0.5, these performance measures are shown in Figure 2(d). Because

dH(Ŝn, S) and dKQ(Ŝn, S) are exactly the same in this example, they are overlapped in the plot.

From the plot, it can be seen that dQ(Ŝn, S) remains unchanged when t increases, which is un-

reasonable because the jump detection performance should become worse when t increases. As a

comparison, both dH(Ŝn, S) and dKQ(Ŝn, S) reflect this fact well in their values. From this and

the first examples, it seems that the major limitations of dH and dQ have been overcome by the

proposed new jump detection performance measure dKQ.

However, we should point out that dKQ is not a mathematical metric and it is proposed for

selecting bandwidth due to the reason that the mathematically well- defined Hausdorff distance is

highly sensitive to individual points as demonstrated in Figure 2. Thus, the Hausdorff distance still

needs to be adopted for characterizing asymptotic properties of jump detectors in Section 3, but

dKQ is used in Section 4 to evaluate numerical performance in finite-sample scenarios. In practice,

S can be replaced by its discrete version S∗ = {(xi, yj) : d((xi, yj), S) ≤ 1/(2n)} for the purpose

of calculating dKQ. In simulations, the point set S is usually known; thus, hn can be chosen by

minimizing dKQ(Ŝn, S;hn). In practice, however, S is often unknown. In such cases, we propose a

bootstrap procedure described below for choosing hn.

Bootstrap Procedure For Choosing hn

1. Apply a jump detector to the original dataset {(xi, yj , Zij), i, j = 1, 2, . . . , n}. The set of

detected jump points is denoted as Ŝn.

2. Construct an estimator Ĝ{f}(x, y) of the blurred regression function G{f}(x, y) using a jump-

preserving surface estimation method, and define the residuals by r̂ij = Zij − Ĝ{f}(xi, yj).

12
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Figure 2: (a) Detected jump points are shown by the dark dots in the first example. (b) Three

metrics for measuring the performance of the detected jump points in plot (a) when r changes from

0 to 0.5. (c) Detected jump points are shown by the dark dots in the second example. (d) Three

metrics for measuring the performance of the detected jump points in plot (c) when t changes from

0 to 0.5. In both examples, the true jump location curves are the line y = 0.5 shown by the dashed

lines in plots (a) and (c).
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3. Draw with replacement a bootstrap sample of size n2, denoted as {r̂∗ij , i, j = 1, 2, · · · , n}, from

the residual set {r̂ij , i, j = 1, 2, · · · , n}, and then obtain a bootstrap dataset {(xi, yj , Z∗ij), i, j =

1, 2, · · · , n}, where Z∗ij = Ĝ{f}(xi, yj) + r̂∗ij .

4. The jump detector with the same bandwidth as that in step 1 is then applied to the bootstrap

dataset, and a set of detected jump points from this bootstrap dataset can be obtained.

5. Steps 3 and 4 are repeated N times. The sets of the detected jump points from the N boot-

strap datasets are denoted as Ŝ∗1n, Ŝ
∗
2n, . . . , Ŝ

∗
Nn, respectively. Then, the bootstrap estimator

of dKQ(Ŝn, S;hn) is defined by

d̂BTKQ(Ŝn, S;hn) =
1

N

N∑
i=1

dKQ(Ŝ∗in, Ŝn;hn).

The optimal bandwidth is then approximated by the minimizer of d̂BTKQ(Ŝn, S;hn) with respect

to hn.

In step 2 of the above procedure, Ĝ{f}(x, y) can be constructed by any jump-preserving surface

estimator proposed in the literature (cf., Hillebrand and Müller 2007, Qiu 2007). In all numerical

examples presented in this paper, the local piecewise constant kernel estimator suggested in Qiu

(2009) is used.

3 Statistical Properties

We discuss some statistical properties of the proposed jump detectors. In the literature, the psf

g(u, v;x, y) in model (2) is often assumed to be a density function (i.e., a non-negative function with

a unit integration on its support), since it is believed that the blurring process does not change the

mass (Bates and McDonnell 1986) of the regression surface. This conventional assumption is also

adopted here. Further, we assume g is symmetric about both x-axis and y-axis, which in practice

is often satisfied by common types of blur such as out-of-focus blur, motion blur or Gaussian blur.

More specifically, we assume that, for any (x, y) ∈ Ω, (i) g(u, v;x, y) ≥ 0, for all (u, v) ∈ R2, (ii)∫ ∫
R2 g(u, v;x, y) dudv = 1,(iii)

∫ ∫
R2 ug(u, v;x, y) dudv =

∫ ∫
R2 vg(u, v;x, y) dudv = 0. and (iv)

g(u, v;x, y) = 0 if
√
u2 + v2 > ρn, where ρn is a positive parameter denoting the blurring extent.

Then, we have the following result about the proposed jump detectors.
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Theorem 3.1. Assume that the true regression function f has piecewise continuous third-order

derivatives in each closed subset of [0, 1]× [0, 1]; on each boundary curve of the pieces in which the

first-order derivatives of f are continuous, the first-order derivatives of f have uniformly bounded

one-sided limits defined in individual pieces; E(ε211) <∞; K is a Lipschitze-1 continuous circularly

symmetric 2-D density kernel function with support {(x, y) : x2 + y2 ≤ 1}; L is a univariate

Lipschitze-1 continuous increasing density kernel function with support [0, 1]; the psf g(u, v;x, y) is

bounded; the blurring extent ρn = o(1); the bandwidth hn satisfies the conditions that hn = o(1),

log(n)/(nh4n) = o(1) and ρn/hn = o(1); the significance level αn satisfies the conditions that αn =

o(1) and Z1−αn/(nhn) = o(1), (nh3n)/Z1−αn = o(1). Then, we have

dH(Ŝn ∩ Ωhn ∩ JCS,hn , S ∩ Ωhn ∩ JCS,hn) = O(hn), a.s.,

where Ŝn is the set of the detected jump points by one of the four proposed jump detectors, Ωhn =

{(x, y) : (x, y) ∈ [hn, 1 − hn] × [hn, 1 − hn]}, JS includes all singular points in S, defined to be

crossing points of several jump location curves or points on a single jump location curve at which

at least one of the two one-sided tangent lines of the curve does not exist, or points on a single

jump location curve at which the jump sizes in f are zero, JS,hn = {(x, y) : dE((x, y), JS) ≤ hn},

and JCS,hn = Ω \ JS,hn.

From Theorem 3.1, each of the four proposed jump detectors provides a consistent estimator

of S in the sense that it converges almost surely to S in the Hausdorff distance, after certain small

regions around the singular points in S and around the border of the design space are excluded.

It should be pointed out that the assumption used in the theorem that the blurring extent ρn

converges to 0 when n increases seems restrictive; but, it is actually quite flexible for the reason

given below. Let rn = nρn. Then, rn denotes the blurring extent in terms of the number of

rows/columns of design points. The assumptions in Theorem 3.1 allows rn to increase to infinity

when n increases. Namely, when the resolution of the observed regression surface increases, our

proposed methods allow the number of rows/columns of design points involved in the blurring at

a given point to increase at a certain rate, which should be flexible enough for most applications.

The proof of Theorem 3.1 is given in the supplementary material.
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4 Numerical Studies

In this section, we present some numerical examples concerning the performance of the four pro-

posed jump detectors. Throughout this section, if there is no further specification, the kernel

function K used in (3) is chosen to be the truncated 2-D Gaussian density function 1/(2π −

3π exp(−0.5))[exp(−(x2 + y2)/2− exp(−0.5))]Ix2+y2≤1, the 2-D kernel function used in construct-

ing each jump detection criterion (cf., e.g., (4)) is chosen to be the Epanechnikov kernel function

(2/π)(1 − x2 − y2)Ix2+y2≤1, and the 1-D kernel function L used in (7) and (10) is chosen to be

(1/1.194958) exp(x2/2)I0≤x≤1, which is proportional to the reciprocal of the truncated 1-D Gaus-

sian kernel function. We choose these kernel functions because the Epanechnikov kernel function

is a standard choice in the statistical literature and the truncated Gaussian kernel functions are

commonly used in the image processing literature.

In the first example, the following true regression function is considered:

f1(x, y) =



3, if (x− 0.5)2 + (y − 0.5)2 ≤ 0.04

2, if 0.04 < (x− 0.5)2 + (y − 0.5)2 ≤ 0.09

−20(
√

(x− 0.5)2 + (y − 0.5)2 − 0.4), if 0.09 < (x− 0.5)2 + (y − 0.5)2 ≤ 0.16

0, otherwise.

As shown in Figure 3(a), f1 has one circular jump location curve, and its surface is steep in the

region {(x, y) : 0.09 < (x− 0.5)2 + (y − 0.5)2 < 0.16}.

In model (2), the psf is chosen to be

g(u, v;x, y) =
3

πρ2n(x, y)

(
1−
√
u2 + v2

ρn(x, y)

)
Iu2+v2≤ρ2n(x,y), (13)

and the additive random errors εij are generated from the distribution N(0, σ2). The above psf is

circularly symmetric at each (x, y) with the blurring extent controlled by ρn(x, y). In this example,

we simply choose ρn(x, y) ≡ 0.02. In such cases, g(u, v;x, y) is location invariant. Next, we

try to measure the performance of the related jump detectors quantitatively using the proposed

performance measure dKQ(Ŝn, S;hn), in which ω is fixed at 0.5 in this section. Without loss of

generality, the bandwidth hn is assumed to take the value of k/n, where k < n is a positive integer.

We consider two sample sizes 100 × 100 (i.e., n = 100) and 200 × 200 (i.e., n = 200), and three σ
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Figure 3: (a): The true regression function f1(x, y). (b): The observed image.

values 0.2, 0.3 and 0.4. The value of αn is fixed at 0.001 when n = 100 and 0.0005 when n = 200.

Figure 3(b) shows an observed image when σ = 0.3 and n = 100. Simulation results based on

100 replications are presented in Table 1. In the simulation, for each combination of n and σ and

for each jump detector, the bandwidth hn is chosen by minimizing the averaged value of the 100

values of dKQ(Ŝn, S;hn) that are obtained from 100 replicated simulations. Such a value of hn

is called the optimal bandwidth because it provides a reasonable approximation to the minimizer

of minhn E(dKQ(Ŝn, S;hn)). Average bandwidths computed over 100 replications chosen by our

proposed bootstrap procedure are also presented in the table.

From Table 1, it can be seen that: (i) the jump detectors based on the local linear kernel

smoothing (i.e., LLK and LL2K) perform better than their counterparts based on the local constant

kernel smoothing (i.e., LCK and LC2K), (ii) generally speaking, bandwidth for each jump detector

should be chosen larger for noisier data, (iii) performance of the jump detectors based on the local

constant kernel smoothing does not change much when noise level or sample size changes, (iv) the

jump detectors based on the local linear kernel smoothing perform better when the sample size gets

larger, (v) the bootstrap procedure tends to select the bandwidth slightly larger than the optimal

value, and (vi) the bootstrap procedure gives close-to-optimal bandwidths when the sample size

increases. The result (i) is intuitively reasonable because the regression surface is steep in certain

regions in this example (cf., Figure 3(a)), the jump detectors based on the local linear kernel
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Table 1: Numerical results for example 1 based on 100 replicated simulations. Each entry is

(optimal bandwidth, bandwidth chosen by the proposed bootstrap procedure) and the averaged

value of dKQ(Ŝn, S;hn) when hn is chosen to be the optimal bandwidth.

n Method σ = 0.2 σ = 0.3 σ = 0.4

100

LCK
(0.02, 0.03) (0.02, 0.04) (0.03, 0.04)

0.103 0.109 0.111

LC2K
(0.02, 0.03) (0.02, 0.03) (0.03, 0.04)

0.109 0.105 0.113

LLK
(0.07, 0.06) (0.09, 0.13) (0.10, 0.14)

0.009 0.013 0.030

LL2K
(0.06, 0.10) (0.07, 0.11) (0.08, 0.12)

0.011 0.013 0.022

200

LCK
(0.01, 0.02) (0.02, 0.04) (0.02, 0.03)

0.106 0.075 0.092

LC2K
(0.01, 0.02) (0.02, 0.04) (0.02, 0.04)

0.094 0.085 0.088

LLK
(0.05, 0.05) (0.06, 0.06) (0.07, 0.07)

0.004 0.005 0.006

LL2K
(0.04, 0.04) (0.05, 0.05) (0.06, 0.06)

0.006 0.006 0.008
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smoothing can accommodate such a case well, but the jump detectors based on the local constant

kernel smoothing would have many false jump detections due to the steep regression surface. The

result (iii) is also caused by the false jump detections of the jump detectors based on the local

constant kernel smoothing.

In cases when n = 100 and σ = 0.3, the detected jumps by the four jump detectors with their

optimal bandwidths presented in Table 1 are shown in Figure 4, where the results are from the

simulation whose dKQ(Ŝn, S;hn) value is the median of the 100 dKQ(Ŝn, S;hn) values computed

from the 100 replications. From the figure, it can be seen that (i) the detected jumps in both plots

(a) and (b) contain some false detections in the region where the true regression surface is steep,

(ii) both the jump detectors LCK and LC2K fail to detect some true jump points, and (iii) the

detected jumps in plot (d) seem to be a little more variable than those in plot (c). All these results

are consistent with those in Table 1 and with our theoretical justifications discussed before. This

example demonstrates that the jump detectors LLK and LL2K can accommodate the slope effect

of the true regression surface well, while the jump detectors LCK and LC2K can not.

Next, we consider another example in which the true regression function is

f2(x, y) =


(x− 0.2)2 + 2, if 0 ≤ x ≤ 0.2

(x− 0.2)2, if 0.2 < x ≤ 0.7

(x− 0.7)2 + 1.25, if 0.7 < x ≤ 1,

and the psf is defined by (13) with

ρn(x, y) = 0.1(1− y).

Therefore, the true regression function f2 has two JLCs, both are parallel to the y-axis at x = 0.2

and x = 0.7, and the jump size is larger (i.e., 2.0) for x ≤ 0.2 and smaller (i.e., 1.0) for x > 0.7.

The psf is location-dependent in this example, with blurring extent increasing when y gets smaller.

The blurred version of f2 is shown in Figure 5(a). A noisy and blurred version of f2 with n = 100

and σ = 0.3 is shown in Figure 5(b).

In the same format as Table 1, the optimal bandwidths, the corresponding dKQ(Ŝn, S;hn)

values, and the bandwidths chosen by the bootstrap procedure, based on 100 replicated simulations,

are presented in Table 2. From the table, it can be seen that (i) the four jump detectors all perform
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Figure 4: Detected jumps for one realization of the simulation in example 1, for each of the four

jump detectors. (a): LCK; (b): LC2K; (c): LLK; (d): LL2K. See text for description of how the

realizations were chosen.
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Figure 5: (a): The blurred version of f2; (b): A noisy and blurred version of f2 with n = 100 and

σ = 0.3; (c)-(f): Detected jumps by the jump detectors LCK, LC2K, LLK and LL2K, respectively.
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better when the sample size increases, (ii) the jump detectors LLK and LL2K are more sensitive

to the noise level in the sense that their dKQ(Ŝn, S;hn) values increase more rapidly as the noise

level increases, compared to the jump detectors LCK and LC2K, (iii) for all four jump detectors,

a larger bandwidth is chosen when the noise level is larger, and (iv) the bandwidths chosen by the

bootstrap procedure are all quite close to the optimal bandwidths. The result (ii) is consistent with

the theoretical result that the local linear kernel estimators would have a larger variability than the

local constant kernel estimators, if their bandwidths are similar (cf., Qiu 2005, Chapter 2). The

results (i) and (iii) are intuitively reasonable.

Table 2: Numerical results for example 2 based on 100 replicated simulations. Each entry is

(optimal bandwidth, bandwidth chosen by the proposed bootstrap procedure) and the averaged

value of dKQ(Ŝn, S;hn) when hn is chosen to be the optimal bandwidth.

n Method σ = 0.2 σ = 0.3 σ = 0.4

100

LCK
(0.03, 0.05) (0.05, 0.06) (0.05, 0.06)

0.016 0.018 0.018

LC2K
(0.03, 0.05) (0.05, 0.06) (0.05, 0.07)

0.017 0.019 0.019

LLK
(0.14, 0.13) (0.15, 0.15) (0.16, 0.16)

0.015 0.020 0.023

LL2K
(0.12, 0.14) (0.14, 0.14) (0.15, 0.15)

0.016 0.019 0.024

200

LCK
(0.03, 0.04) (0.03, 0.05) (0.04, 0.05)

0.013 0.014 0.015

LC2K
(0.03, 0.04) (0.03, 0.05) (0.04, 0.05)

0.014 0.015 0.016

LLK
(0.11, 0.13) (0.13, 0.14) (0.14, 0.15)

0.010 0.011 0.014

LL2K
(0.10, 0.11) (0.11, 0.11) (0.12, 0.12)

0.011 0.012 0.014

Simulation results shown in Figure 5(c)-(f) have the same setup as that in Figure 4. From the
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plots, it can be seen that (i) all four jump detectors detect the larger jumps at x = 0.2 reasonably

well, (ii) the jump detectors LCK and LC2K that are based on the local constant kernel smoothing

detectors perform better than the jump detectors LLK and LL2K that are based on the local linear

kernel smoothing when detecting the smaller jumps at x = 0.7, (iii) by comparing plots (c) and

(d), it seems that the jump detector LC2K is slightly more robust to the blurring than the jump

detector LCK, and (iv) by comparing plots (e) and (f), the jump detector LL2K seems more robust

to the blurring than the jump detector LLK. This example demonstrates that (i) the jump detectors

LC2K and LL2K using 2 kernel functions in their construction seem more robust to the blurring,

compared to the other two jump detectors, and (ii) the results by the jump detectors LCK and

LC2K seem less variable, compared to the jump detectors LLK and LL2K.

Next, we consider a real test image shown in Figure 6(a), which is synthetic aperture radar

(SAR) image of an area near the Thetford forest in England. This image has 250× 250 pixels with

gray levels in the range [0, 255]. Its blurred and noisy version by the psf in (13) with ρn(x, y) ≡ 0.02

and by the i.i.d. noise from N(0, 52) is shown in Figure 6(b). The detected jumps by the four jump

detectors LCK, LC2K, LLK, and LL2K are presented in Figure 6(c)-(f), respectively. In all four

jump detectors, αn is fixed at 0.001, and their bandwidths are chosen by the bootstrap procedure

to be 3/250, 3/250,11/250 and 9/250. From the plots, it can be seen that (i) all four jump detectors

detect the major jump location curves reasonably well, (ii) the jump location curves detected by

LCK and LC2K are thinner and more straight than those detected by LLK and LL2K; but, some

false jumps are detected by them here and there, (iii) the jump detector LLK fails to detect certain

jumps (e.g., the jumps located in the upper-right portion of the image), and (iv) the jump detector

LL2K detects more true jumps than the jump detector LLK, which is consistent with our analysis

in Section 2. Given that the noise level in the SAR image is relatively high, we suggest using jump

detectors based on the local constant kernel smoothing (i.e., LCK or LC2K) in this example.

We conclude this section by considering an image shown in Figure 7. From the figure, it can

be seen that objects within the focus (e.g., the pen) are quite sharp but objects in distance (e.g.,

the child’s face) are blurred. So, this image provides us an example with spatially varying blur.

By the jump-preserving image restoration procedure suggested by Qiu (2004), an estimate of σ is

computed to be 4.558. The detected jump points by LCK, LC2K, LLK and LL2K are shown in

Figure 8(a)-(d), respectively. From the plots, it can be seen that both LCK and LLK fail to detect
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(a) (b) (c)

(d) (e) (f)

Figure 6: (a): Original SAR image; (b): A noisy and blurred version of the SAR image; (c)-(f):

Detected jumps by detectors LCK, LC2K, LLK and LL2K, respectively.

some edges in the blurred region, which is especially true for LLK. The detected jump points by

LC2K and LL2K look reasonably good. Because the blur is quite severe in this example, we suggest

using the jump detector LC2K or the jump detector LL2K.

5 Conclusions

We have presented four jump detectors for detecting jumps in blurred regression surfaces. All four

jump detectors are based on local constant or local linear kernel smoothing, two of which (i.e.,

LC2K and LL2K) take the possible blurring in the observed data into consideration while the other

two do not. Also, a new quantitative metric for measuring the performance of a jump detector is

proposed, which overcomes the major limitations of the Hausdorff distance and the distance metric

proposed by Qiu (2002). A data-driven bandwidth selection procedure via bootstrap is suggested

as well in the paper.
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Figure 7: A test image with spatially varying blur involved.

(a) (b)

(c) (d)

Figure 8: (a)-(d): Detected jumps from the image shown in Figure 7 by the jump detectors LCK,

LC2K, LLK and LL2K, respectively.
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Numerical examples presented in the previous section show that these jump detectors have

their own strengths and limitations when handling various different situations. These results can

be summarized as follows. (i) The jump detectors based on local constant kernel smoothing (i.e.,

LCK and LC2K) are more robust to noise and their detected jump location curves tend to be

thinner. However, they cannot accommodate the slope effect of the true regression surface well

and would detect many false jumps at places where the true regression surface is steep. (ii) The

jump detectors based on local linear kernel smoothing (i.e., LLK and LL2K) can accommodate the

slope effect of the true regression surface well; but they are more sensitive to noise. (iii) The jump

detectors using 2 kernel functions (i.e., LC2K and LL2K) are more robust to blurring; however,

their detected jumps tend to have a larger variability. Based on these results, we provide the

following guidelines for the use of these jump detectors in practice. (i) The two jump detectors

based on the local constant kernel smoothing (i.e., LCK and LC2K) are recommended in cases

when the noise level in the observed image is relatively high. (ii) The two jump detectors based on

the local linear kernel smoothing (i.e., LLK and LL2K) should be used in cases when the observed

image contains some parts at which the image intensity surface is steep. (iii) The jump detectors

using two kernel functions in their construction (i.e., LC2K and LL2K) are recommended in cases

when the observed image has a quite severe blur involved. Much future research is needed to find

an appropriate way to combine the major strengths of the four jump detectors and avoid their

major limitations at the same time.

Supplementary Materials

supplemental.pdf: This pdf file contains proofs for Theorem 3.1.

ComputerCodesAndData.zip: This zip file contains Fortran source code of our proposed jump

detection methods and the two test images used in the paper.
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