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Lemma A.1. Let ¢(-,-) be any continuous function, K(-,-) be a Lipschitz-1 continuous
bivariate density kernel function with support {(u,v) : u* +v* < 1}, and &;; be i.i.d. random
errors from model (2) with mean 0 and variance 0. Then, if the bandwidth h, used in
procedure (3) satisfies the condition that h,, = o(1) and 1/(nh,) = o(1), we have
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where 7° = 0° [, ooy 0*(u,v) K (u,v) dudv and (x;,y;), On(x,y) are defined to be the same
as those in (3).

Remark A direct conclusion of Lemma A.1 is that
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Proof This is a simple application of Lindeberg-Feller conditions. In fact, the terms in the
summation are all independent and have the mean 0. Also, we observe that
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Next, for any ¢ > 0, we have
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where C' is some constant. Thus, all the Lindeberg-Feller conditions are satisfied, and the

desired result follows immediately. |
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Lemma A.2. Under the condition of Theorem 3.1, the estimated gradient (b(z,y),c(x,y))
obtained from local linear kernel smoothing procedure (3) has the following properties:

(i) If (z,y) is not on any jump location curve, then

(O(z,y),c(z,y)) = (folzy), (2. 9)), as, as n — oo, (A2)
(i) If (x,y) is a nonsingular point on a jump location curve and the jump location curve

has a unique tangent line at (z,y), then

A~

(b(z, y), c(z,y))
Vola,y)? + ela,y)?

where 0 is the angle formed by the tangent line of the JLC at (z,y) and the z-axis.

— (—sin#,cosb), a.s, , as n — oo, (A.3)

(iii) If (x,y) is a nonsingular point on a jump location curve and the jump location curve

has two one-sided tangent lines at (x,y), then
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where 01 and 0y are angles formed by the two one-sided tangent lines and the x-axis

respectively.

Proof First, it is not difficult to verify that the solution of procedure (3) has the expressions
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where 74,5, = Z(%yj)eon(x,y) (z; — )" (y; — y)2 K <%, yj};y), for 51,50, =0,1,2.

To prove result (A.2), we notice that, for a given point (x,y), if (x,y) is not on any jump

location curve, then
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In the last equation of (A.8), we have used the symmetry of p. By (A.7) and (A.8), we have
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In the last equation of the above expression, we have used the results that rs, 5, = 0, for
s1,89 = 0,1,2 with s; + s9 being odd, using the circular symmetry of K, the equal spacing
of the design points, and the properties that rog = O(n?h?), which can be proved similarly
to expression (23) in Proposition 2 of Qiu (2009). Then, by Lemma A.1, we have
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where ¢(u,v) is any continuous function defined in the region {(u,v) : u? +v? < 1}. By

(A.7) and the fact that rog = O(n?hl), we have
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(A.2) is then obtained, after combining (A.11) and (A.12).

To prove (A.3), assume that (x,y) is a nonsingular point on a jump location curve. Then,
O, (x,y) consists of the following three disjoint parts O, ;(z,v), O, c(z,y), and O, .(z,y),
where O, .(z,y) is a band of width 2p,, containing the jump location curve segment, and
Oni(z,y) and O, (x,y) are two neighborhoods on its different sides. Since the jump location
curve has a unique tangent line at (z,y), difference between the curve and the tangent line
will be negligible. Thus, we may assume that the jump location curve segment is a straight

line in O, (x,y) and it forms an angle, denoted by 6, with the x-axis. Then,
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In the second equation of (A.13), (A.8) is used. In the third equation , we have used the
results that rog = O(n?hy), P{f}(x;,y;) are uniformly bounded when (z;,y;) € O, .(z,v),
and the fact that the ratio of the area of O, .(x, y) to the area of O,,(z, y) is of order O(p,,/hy,).

In the fourth equation, we have used the results that ZOW(WJ) (x; — ) K (%, %) =

O(n*hy), D0, wy(@i — ) K (mh;w, y;;y) = O(n*h3), roo = O(n?h}). In the last equation,
we have used the results that rig = 0 and ;=3 (2, —2)K (%, yf};y) =0 <,;’—’2;> By
(A.11), we have
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Similarly, we can check that
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Notice the following two facts:
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Therefore,
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which completes the proof of (A.3).

Next, assume that (z,y) is a nonsingular point on a jump location curve, and there exist
two one-sided tangent lines of the jump location curve at (x,y), forming angles #; and 65,

respectively, with the x-axis. See Figure A.1 for a demonstration. The difference between

On(xy)

Figure A.1: A demonstration for the case when (z,y) is on a jump location curve that has

two one-sided tangent lines at (z,y).

the polygonal line and the jump location curve in O, (x,y) is negligible when n is sufficiently
large. Hence, we may assume that the jump location curve is the same as the polygonal line
in O, (x,y) without loss of generality. By the same arguments in (A.13) and (A.14), we can
show that
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Also, we observe the following facts:
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Therefore, it follows after combining (A.18)— (A.21) that
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which finishes the proof of (A.4). [

Proof of Theorem 3.1

Let us first prove the theorem for the jump detector LL2K. Let §n be the set of detected
jump points by the jump detector LL2K. For any (x,y) € €y, we have
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D (i) €U () Wis (T 1)

fLL2K,+(957 ?J) =

7



>u, H{f i, y)wig (2, y) N > v, i Wi (T, y)
ZUn wi; (T, y) ZUn wi;(, y)
= Ii(z,y) + L(x,y), (A.22)

where ), denotes Z U U, is the upper half of O, (z,y) divided by a line perpendic-

ular to the estimated gradlent direction
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Let S, = {(z,y) € Q: dp((x,y),5) < hn}. Then, for any (z,y) € Qn, \ Sh,, On(z,y) does

G(z,y) =

not contain any jump point. Let ﬁn(m,y) be the half of the O,(z,y) separated by a line
passing (z,y) in the direction perpendicular to the asymptotic direction of (b( 1Y), c(z,y)),
which is discussed in Lemma A.2, and czj be the Euclidean distance from (z;,y;) to the
asymptotic dividing line (thus, C’i;'j is non-random). For a function ¢ satisfying the condition

that sup,z, 21 [¢(u, v)| < by < 0o, we have
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where 6,, denotes the acute angle between (b(ac y),c(x,y)) and its asymptotic direction and

Us(a,y) & Thla,y) = (Uh(a,9) \ Ulle,y)) U (T2, ) \ U(e,y)). In the first inequality of



(A.23), we have used the Lipschitz-1 continuity of L. In the last equation, Lemma A.2 has
been applied. Now, let
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Then, by using similar arguments to those in (A.23), we can check that
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In the second equation of (A.25), we have used the results that Bi(z,y) = O(n*h8),
Eg(m,y) = O(n®h?), §3(x,y) = O(n3h7) and i1782(x,y) = O (n?h15212) for sy,s9 = 0, 1.

Similar arguments to those in Lemma A.1 can be applied to ZUn(x 9) %ezj, since
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By (A.8), we have that
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where |A| = oo (2, y)Eao (2, )02 (2, y) + Fro (2, y)Eor (2, y)Eus (2, ) + Fro (0, ) (2, ) (2, ) —
tor(z,y)*tao(z, ) —t11 (2, 9) oo (2, y) —ti0(z, ¥)*toa (2, ). In the second equation of (A.27), we
have used (A.8). In the last equation, we have used the results that |£/| = By(z,y)too(x,y) +
By(, y)tro(x, y)+ Bs(, y)tor (z, y), ta1 (x, y) = 0 by the symmetry of K and L, By (, y)t1o(, y)
+ Bao(x,y)tao(w, y)+Bs(x, y) i (2, 9)=0, Bi(x, y)tor (z,y)+ Ba(x, y)trs (x, y) + Bs(w, y)toa (. y)
= 0, and that By(z,y) = O(n*h8), By(z,y) = O(n*h?), Bs(z,y) = O(n*h?), |A| = O(nSh10),
%;1732 (z,y) = O (n?h1752%2) for s1,s5 = 0,1. All these results can be proved similarly to the

result (23) in Proposition 2 in Qiu (2009). Now, after combining (A.24), (A.25), (A.26) and
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(A.27), we have the following result:

Frusie s (@,9) = f(z,9) + O(h) + O(p}) + O(8) + &, (A.28)
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where &, ~ N (O, 2). Similarly, we have
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proof of Lemma A.2, we know that, if (z,y) is not a jump point, then

where 7, —~~ N (O, 2>, g’ij(x,y) is defined similarly to gij(x,y). From the

0, =O(p2) + O(h2) + o (%) : (A.30)

Therefore, for any design point (z,y) € Qp, \ Sh,, by (A.28), (A.29) and (A.30), we have
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where v, —~~ N(0,1). Also, by using similar arguments to those in (A.23) and the fact
that b;(z,y) = O(n*h8), we have
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Then, it follows that
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By (A.24), (A.25), (A.27), (A.30) and (A.33), we have

LL2K, (z,y) nh,p2 nh3 log(n) log(n)
Zl—an B O (Zl—an + O Zl—an o hnzl—an o Zl—an

nh3
= 0 (Zlan> , a.s., (A.34)

where we have used the conditions that £2 = o(1), and log ) = o(1). Hence, if ZT%% = o(1),

any point (z,y) € Q\ Sy, will not be flagged as a jump candldate when n is sufficient large.

Now, let us consider a nonsingular design point (z,y) on a jump location curve that
has a unique tangent line at (z,y). As discussed in Lemma A.2, we may assume the jump
location curve is the same as the tangent line in a small neighbourhood. Let S,, be a band

of width 2p,, that containes S. Then we have in (A.27) and (A.13)

Y5 e bid (W) PLF H (i, )
Zﬁn(m,y) bij (ZE, y)
>0 NS, %}-m WPUNEeY) | Coenns., bij (@, y) P, )
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Db eans,, Ui (@) (fr(2,y) + O(ha) + O(p})) ( pn>
= — +0
Zﬁn(z,y) bij(l‘7 y) h

— st + 00+ 0] (1-0(22)) + 0 (1)
= £4() + O + Olou )

3

where fi(z,y) denotes the limit of f(u,v) as (u,v) approaching to (z,y) form ﬁn(as,y). In
the second equation we have used the fact that the ratio of the area of U, (z,y) () S,, to the

area of U, (z,y) is of order #=. In the third equation, (A.8) has been used. So, we have
L(z,y) = f+(2,9) + O(hy) + O(pn/hn) + O(6r). (A.35)

By (A.25) and Lemma A.1, we have

Lz,y)= ) bij(x, ) gi; +0(6,) =0 (log}En)) +0(6,) as. (A.36)
Un(z,y) Zﬁn(;c,y) bij(x,y) nh,
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From the proof of Lemma A.2, we know that, when (z,y) is a nonsingular jump point,

0, = O(hy) + O(pn/hn) + 0 (M) .

nh,,
Thus,
Faats(05) = £ () + OCha) + O/ ) 0 (<5 ). (A37)
Similarly, we can derive the result that
Faan(0.) = 1) + O(h) + Olpf ) 40 (5 ) (A.38)

where f_(z,y) is defined similarly to fi(z,y). Then, a direct conclusion from (A.37), (A.38)
and (A.33) is that

LL2K,(z,y) O(nhn(ﬁ(fc,y)—f(x,y)))
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where we have used the results that h, = o(1), £2 = o(1), and % = o(1). Thus, in

the case when (z,y) is a nonsingular jump point and the jump location curve has a unique
tangent line at (x,y), LL2K would detect (z,y) successfully when n is sufficiently large. The
parallel result to (A.39) can be derived for the case when the jump location curve has two
one-sided tangent lines at (z,y). Therefore, the LL2K jump detector can detect all points in
SO, N JIsn,- And, all points whose Euclidean distances to S are larger than h, would
not be detected. So, when n is large enough, S\, ﬂjs7hn is included in §n, and §n
is included in the band of S with width h,. By similar arguments, it can be shown that
this result also holds for the jump detectors LCK, LC2K and LLK. Thus, all results in the

theorem are valid. |
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