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Lemma A.1. Let φ(·, ·) be any continuous function, K(·, ·) be a Lipschitz-1 continuous

bivariate density kernel function with support {(u, v) : u2 + v2 ≤ 1}, and εij be i.i.d. random

errors from model (2) with mean 0 and variance σ2. Then, if the bandwidth hn used in

procedure (3) satisfies the condition that hn = o(1) and 1/(nhn) = o(1), we have

1

nhn

∑
(xi,yj)∈On(x,y)

εijφ

(
xi − x
hn

,
yj − y
hn

)
K

(
xi − x
hn

,
yj − y
hn

)
d→ N

(
0, σ̃2

)
, as n→∞,

where σ̃2 = σ2
∫
u2+v2≤1 φ

2(u, v)K2(u, v) dudv and (xi, yj), On(x, y) are defined to be the same

as those in (3).

Remark A direct conclusion of Lemma A.1 is that

1

n2h2n

∑
(xi,yj)∈On(x,y)

εijφ

(
xi − x
hn

,
yj − y
hn

)
K

(
xi − x
hn

,
yj − y
hn

)
= o

(
log(n)

nhn

)
a.s.

Proof This is a simple application of Lindeberg-Feller conditions. In fact, the terms in the

summation are all independent and have the mean 0. Also, we observe that∑
(xi,yj)∈On(x,y)

E{ε2ij}φ
(
xi − x
hn

,
yj − y
hn

)2

K

(
xi − x
hn

,
yj − y
hn

)2
1

n2h2n

→ σ2

∫
u2+v2≤1

φ2(u, v)K2(u, v) dudv, as n→∞.

Next, for any δ > 0, we have∑
(xi,yj)∈On(x,y)

φ
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xi − x
hn

,
yj − y
hn

)2

K
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xi − x
hn

,
yj − y
hn

)2
1

n2h2n
·

E

{
ε2ijI

{
1

nhn

∣∣∣φ(xi−xhn
,
yj−y
hn

)
K
(
xi−x
hn

,
yj−y
hn

)
εij

∣∣∣>δ}
}
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≤ C

n2h2n

∑
(xi,yj)∈On(x,y)

E
{
ε2ijI{|εij |> δnhn

C }
}

≤ C

n2h2n

h2n
1/n2

E
{
ε211I{|ε11|> δnhn

C }
}

→ 0, as n→∞, (A.1)

where C is some constant. Thus, all the Lindeberg-Feller conditions are satisfied, and the

desired result follows immediately.

Lemma A.2. Under the condition of Theorem 3.1, the estimated gradient (̂b(x, y), ĉ(x, y))

obtained from local linear kernel smoothing procedure (3) has the following properties:

(i) If (x, y) is not on any jump location curve, then

(̂b(x, y), ĉ(x, y))→ (f ′x(x, y), f ′y(x, y)), a.s, as n→∞. (A.2)

(ii) If (x, y) is a nonsingular point on a jump location curve and the jump location curve

has a unique tangent line at (x, y), then

(̂b(x, y), ĉ(x, y))√
b̂(x, y)2 + ĉ(x, y)2

→ (− sin θ, cos θ), a.s, , as n→∞, (A.3)

where θ is the angle formed by the tangent line of the JLC at (x, y) and the x-axis.

(iii) If (x, y) is a nonsingular point on a jump location curve and the jump location curve

has two one-sided tangent lines at (x, y), then

(̂b(x, y), ĉ(x, y))√
b̂(x, y)2 + ĉ(x, y)2

→
(

cos

(
θ1 + θ2

2

)
, sin

(
θ1 + θ2

2

))
, a.s, , as n→∞,

(A.4)

where θ1 and θ2 are angles formed by the two one-sided tangent lines and the x-axis

respectively.

Proof First, it is not difficult to verify that the solution of procedure (3) has the expressions

b̂(x, y) =
1

r20

∑
(xi,yj)∈On(x,y)

(xi − x)ZijK

(
xi − x
hn

,
yj − y
hn

)
, (A.5)

ĉ(x, y) =
1

r02

∑
(xi,yj)∈On(x,y)

(yj − y)ZijK

(
xi − x
hn

,
yj − y
hn

)
, (A.6)
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where rs1s2 =
∑

(xi,yj)∈On(x,y)(xi − x)s1(yj − y)s2K
(
xi−x
hn

,
yj−y
hn

)
, for s1, s2 = 0, 1, 2.

To prove result (A.2), we notice that, for a given point (x, y), if (x, y) is not on any jump

location curve, then

E(̂b(x, y)) =
1

r20

∑
(xi,yj)∈On(x,y)

P{f} (xi, yj) (xi − x)K

(
xi − x
hn

,
yj − y
hn

)
, (A.7)

where

P{f}(xi, yj) =

∫ ∫
u2+v2≤ρ2n

p(u, v;xi, yj)f(xi − u, yj − v) dudv

=

∫ ∫
u2+v2≤ρ2n

p(u, v;xi, yj) [f(xi, yj)− f ′x(xi, yj)u

− f ′y(xi, yj)v +O(ρ2n)
]
dudv

= f(xi, yj) +O(ρ2n). (A.8)

In the last equation of (A.8), we have used the symmetry of p. By (A.7) and (A.8), we have

E(̂b(x, y))

=
1

r20

∑
(xi,yj)∈On(x,y)

[f(xi, yj) +O(ρ2n)](xi − x)K

(
xi − x
hn

,
yj − y
hn

)

=
1

r20

∑
(xi,yj)∈On(x,y)

[
f(x, y) + f ′x(x, y)(xi − x) + f ′y(x, y)(yj − y) +

1

2
f ′′xx(x, y)(xi − x)2+

f ′′xy(x, y)(xi − x)(yj − y) +
1

2
f ′′yy(x, y)(yj − y)2 +O(h3n)

]
(xi − x)K

(
xi − x
hn

,
yj − y
hn

)
+

1

r20

∑
(xi,yj)∈On(x,y)

O(ρ2n)(xi − x)K

(
xi − x
hn

,
yj − y
hn

)
= f ′x(x, y) +O(ρ2n/hn) +O(h2n). (A.9)

In the last equation of the above expression, we have used the results that rs1,s2 = 0, for

s1, s2 = 0, 1, 2 with s1 + s2 being odd, using the circular symmetry of K, the equal spacing

of the design points, and the properties that r20 = O(n2h4n), which can be proved similarly

to expression (23) in Proposition 2 of Qiu (2009). Then, by Lemma A.1, we have

1

n2h2n

∑
(xi,yj)∈On(x,y)

εijφ

(
xi − x
hn

,
yj − y
hn

)
K

(
xi − x
hn

,
yj − y
hn

)
= o

(
log n

nhn

)
, a.s., (A.10)
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where φ(u, v) is any continuous function defined in the region {(u, v) : u2 + v2 ≤ 1}. By

(A.7) and the fact that r20 = O(n2h4n), we have

b̂(x, y)− E(̂b(x, y)) =
1

r20

∑
(xi,yj)∈On(x,y)

εij(xi − x)K

(
xi − x
hn

,
yj − y
hn

)
= o

(
log(n)

nh2n

)
, a.s.

(A.11)

Similarly,

ĉ(x, y)− E(ĉ(x, y)) =
1

r02

∑
(xi,yj)∈On(x,y)

εij(yj − y)K

(
xi − x
hn

,
yj − y
hn

)
= o

(
log(n)

nh2n

)
, a.s.

(A.12)

(A.2) is then obtained, after combining (A.11) and (A.12).

To prove (A.3), assume that (x, y) is a nonsingular point on a jump location curve. Then,

On(x, y) consists of the following three disjoint parts On,l(x, y), On,c(x, y), and On,r(x, y),

where On,c(x, y) is a band of width 2ρn containing the jump location curve segment, and

On,l(x, y) and On,r(x, y) are two neighborhoods on its different sides. Since the jump location

curve has a unique tangent line at (x, y), difference between the curve and the tangent line

will be negligible. Thus, we may assume that the jump location curve segment is a straight

line in On(x, y) and it forms an angle, denoted by θ, with the x-axis. Then,

E(̂b(x, y))

=
1

r20

 ∑
On,l(x,y)

+
∑

On,c(x,y)

+
∑

On,r(x,y)

P{f}(xi, yj)(xi − x)K

(
xi − x
hn

,
yj − y
hn

)

=
1

r20

∑
On,l(x,y)

[f(xi, yj) +O(ρ2n)](xi − x)K

(
xi − x
hn

,
yj − y
hn

)
+

1

r20

∑
On,c(x,y)

P{f}(xi, yj)(xi − x)K

(
xi − x
hn

,
yj − y
hn

)
+

1

r20

∑
On,r(x,y)

[f(xi, yj) +O(ρ2n)](xi − x)K

(
xi − x
hn

,
yj − y
hn

)

=
1

r20

∑
On,l(x,y)

[f−(x, y) +O(hn) +O(ρ2n)](xi − x)K

(
xi − x
hn

,
yj − y
hn

)
+O

(
ρn
h2n

)
+
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1

r20

∑
On,r(x,y)

[f+(x, y) +O(hn) +O(ρ2n)](xi − x)K
(
xi − x
hn

,
yj − y
hn

)

=
1

r20
f−(x, y)

n∑
i=1

n∑
j=1

(xi − x)K
(
xi − x
hn

,
yj − y
hn

)
−

1

r20
f−(x, y)

∑
On,r(x,y)

(xi − x)K
(
xi − x
hn

,
yj − y
hn

)
+O

(
ρ2n
hn

)
−

1

r20
f−(x, y)

∑
On,c(x,y)

(xi − x)K
(
xi − x
hn

,
yj − y
hn

)
+

1

r20
f+(x, y)

∑
On,r(x,y)

(xi − x)K
(
xi − x
hn

,
yj − y
hn

)
+O (1) +O

(
ρn
h2n

)

=
f+(x, y)− f−(x, y)

r20

∑
On,r(x,y)

(xi − x)K
(
xi − x
hn

,
yj − y
hn

)
+O (1) +O

(
ρn
h2n

)
. (A.13)

In the second equation of (A.13), (A.8) is used. In the third equation , we have used the

results that r20 = O(n2h4n), P{f}(xi, yj) are uniformly bounded when (xi, yj) ∈ On,c(x, y),

and the fact that the ratio of the area of On,c(x, y) to the area of On(x, y) is of order O(ρn/hn).

In the fourth equation, we have used the results that
∑

On,r(x,y)
(xi − x)K

(
xi−x
hn

,
yj−y
hn

)
=

O(n2h3n),
∑

On,l(x,y)
(xi − x)K

(
xi−x
hn

,
yj−y
hn

)
= O(n2h3n), r20 = O(n2h4n). In the last equation,

we have used the results that r10 = 0 and 1
r20

∑
On,c(x,y)

(xi−x)K
(
xi−x
hn

,
yj−y
hn

)
= O

(
ρn
h2n

)
. By

(A.11), we have

b̂(x, y) =
f+(x, y)− f−(x, y)

r20

∑
On,r(x,y)

(xi−x)K
(
xi − x
hn

,
yj − y
hn

)
+O (1)+O

(
ρn
h2n

)
+o

(
log(n)

nh2n

)
, a.s.

(A.14)

Similarly, we can check that

ĉ(x, y) =
f+(x, y)− f−(x, y)

r02

∑
On,r(x,y)

(yj−y)K
(
xi − x
hn

,
yj − y
hn

)
+O (1)+O

(
ρn
h2n

)
+o

(
log(n)

nh2n

)
, a.s.

(A.15)

Notice the following two facts:

hn
r20

∑
On,r(x,y)

(xi − x)K
(
xi − x
hn

,
yj − y
hn

)
→
∫ θ+π
θ dϕ

∫ 1
0 r

2 cosϕK(r) dr∫ 2π
0 dϕ

∫ 1
0 r

3 cos2 ϕK(r) dr
=
−2
∫ 1
0 r

2K(r) dr

π
∫ 1
0 r

3K(r) dr
sin θ.

(A.16)

hn
r02

∑
On,r(x,y)

(yj − y)K
(
xi − x
hn

,
yj − y
hn

)
→
∫ θ+π
θ dϕ

∫ 1
0 r

2 sinϕK(r) dr∫ 2π
0 dϕ

∫ 1
0 r

3 sin2 ϕK(r) dr
=

2
∫ 1
0 r

2K(r) dr

π
∫ 1
0 r

3K(r) dr
cos θ.

(A.17)
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Therefore,

(̂b(x, y), ĉ(x, y))√
b̂(x, y)2 + ĉ(x, y)2

=
(hnb̂(x, y), hnĉ(x, y))√
h2nb̂(x, y)2 + h2nĉ(x, y)2

→ (− sin θ, cos θ), a.s,

which completes the proof of (A.3).

Next, assume that (x, y) is a nonsingular point on a jump location curve, and there exist

two one-sided tangent lines of the jump location curve at (x, y), forming angles θ1 and θ2,

respectively, with the x-axis. See Figure A.1 for a demonstration. The difference between

On(x, y)

θ1

θ2

θ1 + θ2

2

(x, y)

On,r(x, y)

Figure A.1: A demonstration for the case when (x, y) is on a jump location curve that has

two one-sided tangent lines at (x, y).

the polygonal line and the jump location curve in On(x, y) is negligible when n is sufficiently

large. Hence, we may assume that the jump location curve is the same as the polygonal line

in On(x, y) without loss of generality. By the same arguments in (A.13) and (A.14), we can

show that

b̂(x, y) =
f+(x, y)− f−(x, y)

r20

∑
On,r(x,y)

(xi − x)K

(
xi − x
hn

,
yj − y
hn

)
+

O (1) +O

(
ρn
h2n

)
+ o

(
log(n)

nh2n

)
, a.s. (A.18)
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ĉ(x, y) =
f+(x, y)− f−(x, y)

r02

∑
On,r(x,y)

(yj − y)K

(
xi − x
hn

,
yj − y
hn

)
+

O (1) +O

(
ρn
h2n

)
+ o

(
log(n)

nh2n

)
, a.s. (A.19)

Also, we observe the following facts:

hn
r20

∑
On,r(x,y)

(xi − x)K

(
xi − x
hn

,
yj − y
hn

)

→
∫ θ1+2π

θ2
dϕ
∫ 1

0
r2 cosϕK(r) dr∫ 2π

0
dϕ
∫ 1

0
r3 cos2 ϕK(r) dr

=

∫ 1

0
r2K(r) dr

π
∫ 1

0
r3K(r) dr

(sin θ1 − sin θ2)

=
2
∫ 1

0
r2K(r) dr

π
∫ 1

0
r3K(r) dr

sin

(
θ1 − θ2

2

)
cos

(
θ1 + θ2

2

)
. (A.20)

hn
r02

∑
On,r(x,y)

(yj − y)K

(
xi − x
hn

,
yj − y
hn

)

→
∫ θ1+2π

θ2
dϕ
∫ 1

0
r2 sinϕK(r) dr∫ 2π

0
dϕ
∫ 1

0
r3 sin2 ϕK(r) dr

=

∫ 1

0
r2K(r) dr

π
∫ 1

0
r3K(r) dr

(cos θ2 − cos θ1)

=
2
∫ 1

0
r2K(r) dr

π
∫ 1

0
r3K(r) dr

sin

(
θ1 − θ2

2

)
sin

(
θ1 + θ2

2

)
. (A.21)

Therefore, it follows after combining (A.18)– (A.21) that

(̂b(x, y), ĉ(x, y))√
b̂(x, y)2 + ĉ(x, y)2

=
(hnb̂(x, y), hnĉ(x, y))√
h2nb̂(x, y)2 + h2nĉ(x, y)2

→
(

cos

(
θ1 + θ2

2

)
, sin

(
θ1 + θ2

2

))
, a.s,

which finishes the proof of (A.4).

Proof of Theorem 3.1

Let us first prove the theorem for the jump detector LL2K. Let Ŝn be the set of detected

jump points by the jump detector LL2K. For any (x, y) ∈ Ωhn , we have

f̂LL2K,+(x, y) =

∑
(xi,yj)∈Un(x,y) w̃ij(x, y)Zij∑
(xi,yj)∈Un(x,y) w̃ij(x, y)
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=

∑
Un
H{f}(xi, yj)w̃ij(x, y)∑

Un
w̃ij(x, y)

+

∑
Un
εijw̃ij(x, y)∑

Un
w̃ij(x, y)

=: I1(x, y) + I2(x, y), (A.22)

where
∑

Un
denotes

∑
(xi,yj)∈Un , Un is the upper half of On(x, y) divided by a line perpendic-

ular to the estimated gradient direction

Ĝ(x, y) =

 ĉ(x, y)√
b̂(x, y)2 + ĉ(x, y)2

,
−b̂(x, y)√

b̂(x, y)2 + ĉ(x, y)2

.
Let Shn = {(x, y) ∈ Ω : dE((x, y), S) ≤ hn}. Then, for any (x, y) ∈ Ωhn \ Shn , On(x, y) does

not contain any jump point. Let Ũn(x, y) be the half of the On(x, y) separated by a line

passing (x, y) in the direction perpendicular to the asymptotic direction of (̂b(x, y), ĉ(x, y)),

which is discussed in Lemma A.2, and d̃ij be the Euclidean distance from (xi, yj) to the

asymptotic dividing line (thus, d̃ij is non-random). For a function φ satisfying the condition

that supu2+v2≤1 |φ(u, v)| ≤ bφ <∞, we have∣∣∣∣∣∣
∑

Un(x,y)

φ(
xi − x
hn

,
yj − y
hn

)K(
xi − x
hn

,
yj − y
hn

)L(dij/hn)
1

n2h2n
−

∑
Ũn(x,y)

φ(
xi − x
hn

,
yj − y
hn

)K(
xi − x
hn

,
yj − y
hn

)L(d̃ij/hn)
1

n2h2n

∣∣∣∣∣∣
≤ 1

n2h2n

∣∣∣∣∣∣
∑

Un(x,y)

φ(
xi − x
hn

,
yj − y
hn

)K(
xi − x
hn

,
yj − y
hn

)L(d̃ij/hn)−

∑
Ũn(x,y)

φ(
xi − x
hn

,
yj − y
hn

)K(
xi − x
hn

,
yj − y
hn

)L(d̃ij/hn)

∣∣∣∣∣∣+O

(
|dij − d̃ij|

hn

)

≤ bφ‖K‖∞‖L‖∞

∣∣∣∣∣∣ 1

n2h2n

∑
Un(x,y)4Ũn(x,y)

1

∣∣∣∣∣∣+O

(
|dij − d̃ij|

hn

)
= O(θn) = o(1), a.s., (A.23)

where θn denotes the acute angle between (̂b(x, y), ĉ(x, y)) and its asymptotic direction and

U ′n(x, y)4 Ũ ′n(x, y) = (U ′n(x, y) \ Ũ ′n(x, y)) ∪ (Ũ ′n(x, y) \ U ′n(x, y)). In the first inequality of
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(A.23), we have used the Lipschitz-1 continuity of L. In the last equation, Lemma A.2 has

been applied. Now, let

b̃i,j(x, y) = [B̃1(x, y) + B̃2(x, y)(xi − x) + B̃3(x, y)(yj − y)K

(
xi − x
hn

,
yj − y
hn

)
L(d̃ij/hn),

B̃1(x, y) = t̃20(x, y)t̃02(x, y)− t̃11(x, y)t̃11(x, y),

B̃2(x, y) = t̃01(x, y)t̃11(x, y)− t̃10(x, y)t̃02(x, y),

B̃3(x, y) = t̃10(x, y)t̃11(x, y)− t̃01(x, y)t̃20(x, y),

t̃s1,s2(x, y) =
∑

Ũn(x,y)

(xi − x)s1(yj − y)s2K

(
xi − x
hn

,
yj − y
hn

)
L(d̃ij/hn).

Then, by using similar arguments to those in (A.23), we can check that

I1(x, y) =

∑
Ũn(x,y)

b̃ij(x, y)P{f}(xi, yj)∑
Ũn(x,y)

b̃ij(x, y)
+O(θn), a.s. (A.24)

By using (A.23), we have

I2(x, y) =
∑

Un(x,y)

w̃ij(x, y) 1
n4h8n

1
n6h10n

∑
Un(x,y)

w̃ij(x, y)

1

n2h2n
εij

=
∑

Un(x,y)

1
n4h8n

b̃ij(x, y) +O(θn)

1
n6h10n

∑
Ũn(x,y)

b̃ij(x, y) +O(θn)

1

n2h2n
εij

=
∑

Un(x,y)

(
1

n4h8n
b̃ij(x, y)

1
n6h10n

∑
Ũn(x,y)

b̃ij(x, y)
+O(θn)

)
1

n2h2n
εij

=
∑

Un(x,y)

b̃ij(x, y)∑
Ũn(x,y)

b̃ij(x, y)
εij +

1

n2h2n

∑
Un(x,y)

O(θn)εij

=
∑

Un(x,y)

b̃ij(x, y)∑
Ũn(x,y)

b̃ij(x, y)
εij +O(θn), a.s. (A.25)

In the second equation of (A.25), we have used the results that B̃1(x, y) = O(n4h8n),

B̃2(x, y) = O(n3h7n), B̃3(x, y) = O(n3h7n) and t̃s1,s2(x, y) = O (n2hs1+s2+2
n ) for s1, s2 = 0, 1.

Similar arguments to those in Lemma A.1 can be applied to
∑

Un(x,y)
b̃ij(x,y)∑

Ũn(x,y)
b̃ij(x,y)

εij, since

b̃ij(x, y) is deterministic. Consequently, we have

∑
Un(x,y)

b̃ij(x, y)∑
Ũn(x,y)

b̃ij(x, y)
εij

asy.∼ N

0,
∑

Un(x,y)

b̃2ij(x, y)[∑
Ũn(x,y)

b̃ij(x, y)
]2
 . (A.26)
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By (A.8), we have that∑
Ũn(x,y)

b̃ij(x, y)P{f}(xi, yj)∑
Ũn(x,y)

b̃ij(x, y)

=

∑
Ũn(x,y)

b̃ij(x, y)(f(xi, yj) +O(ρ2n))∑
Ũn(x,y)

b̃ij(x, y)

=
B̃1(x, y)

|4̃|

∑
Ũn(x,y)

(f(x, y) + f ′x(x, y)(xi − x) + f ′y(x, y)(yj − y) +O(h2n) +

O(ρ2n))K

(
xi − x
hn

,
yj − y
hn

)
L(d̃ij/hn)+

B̃2(x, y)

|4̃|

∑
Ũn(x,y)

(f(x, y) + f ′x(x, y)(xi − x) + f ′y(x, y)(yj − y) +O(h2n) +

O(ρ2n))(xi − x)K

(
xi − x
hn

,
yj − y
hn

)
L(d̃ij/hn) +

B̃3(x, y)

|4̃|

∑
Ũn(x,y)

(f(x, y) + f ′x(x, y)(xi − x) + f ′y(x, y)(yj − y) +O(h2n) +

O(ρ2n))(yj − y)K

(
xi − x
hn

,
yj − y
hn

)
L(d̃ij/hn)

= f(x, y) +
f ′x(x, y)

|4̃|
(B̃1(x, y)t̃10(x, y) + B̃2(x, y)t̃20(x, y) + B̃3(x, y)t̃11(x, y)) +

f ′y(x, y)

|4̃|
(B̃1(x, y)t̃01(x, y) + B̃2(x, y)t̃11(x, y) + B̃3(x, y)t̃02(x, y)) +O(h2n) +O(ρ2n)

= f(x, y) +O(h2n) +O(ρ2n), (A.27)

where |4̃| = t̃00(x, y)t̃20(x, y)t̃02(x, y) + t̃10(x, y)t̃01(x, y)t̃11(x, y) + t̃10(x, y)t̃01(x, y)t̃11(x, y)−

t̃01(x, y)2t̃20(x, y)− t̃11(x, y)2t̃00(x, y)− t̃10(x, y)2t̃02(x, y). In the second equation of (A.27), we

have used (A.8). In the last equation, we have used the results that |4̃| = B̃1(x, y)t̃00(x, y)+

B̃2(x, y)t̃10(x, y)+B̃3(x, y)t̃01(x, y), t̃11(x, y) = 0 by the symmetry ofK and L, B̃1(x, y)t̃10(x, y)

+ B̃2(x, y)t̃20(x, y)+B̃3(x, y)t̃11(x, y)=0, B̃1(x, y)t̃01(x, y)+B̃2(x, y)t̃11(x, y)+B̃3(x, y)t̃02(x, y)

= 0, and that B̃1(x, y) = O(n4h8n), B̃2(x, y) = O(n4h7n), B̃3(x, y) = O(n4h7n), |4̃| = O(n6h10n ),

t̃s1,s2(x, y) = O (n2hs1+s2+2
n ), for s1, s2 = 0, 1. All these results can be proved similarly to the

result (23) in Proposition 2 in Qiu (2009). Now, after combining (A.24), (A.25), (A.26) and
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(A.27), we have the following result:

f̂LL2K,+(x, y) = f(x, y) +O(h2n) +O(ρ2n) +O(θn) + ξn, (A.28)

where ξn
asy.∼ N

(
0,

∑
Un(x,y) b̃

2
ij(x,y)

[
∑
Ũn(x,y)

b̃ij(x,y)]
2

)
. Similarly, we have

f̂LL2K,−(x, y) = f(x, y) +O(h2n) +O(ρ2n) +O(θn) + ηn, (A.29)

where ηn
asy.∼ N

(
0,

∑
Vn(x,y) b̃

′2
ij(x,y)

[
∑
Ṽn(x,y)

b̃′ij(x,y)]
2

)
, b̃′ij(x, y) is defined similarly to b̃ij(x, y). From the

proof of Lemma A.2, we know that, if (x, y) is not a jump point, then

θn = O(ρ2n) +O(h2n) + o

(
log(n)

nh2n

)
. (A.30)

Therefore, for any design point (x, y) ∈ Ωhn \ Shn , by (A.28), (A.29) and (A.30), we have

f̂LL2K,+ − f̂LL2K,− = O(h2n) +O(ρ2n) + o

(
log(n)

nh2n

)

+ γn ·

√√√√√ ∑
Un(x,y)

b̃2ij(x, y)[∑
Ũn(x,y)

b̃ij(x, y)
]2 +

∑
Vn(x,y)

b̃′
2

ij(x, y)[∑
Ṽn(x,y)

b̃′ij(x, y)
]2 , (A.31)

where γn
asy.∼ N(0, 1). Also, by using similar arguments to those in (A.23) and the fact

that b̃ij(x, y) = O(n4h8n), we have∑
Un(x,y)

w2
ij(x, y)

[
∑

Un(x,y)
wij(x, y)]2

=
n10h18n

1
n10h18n

∑
Un(x,y)

w2
ij(x, y)[

n6h10n
1

n6h10n

∑
Un(x,y)

wij(x, y)
]2

=
n10h18n

(
1

n10h18n

∑
Ũn(x,y)

b̃2ij(x, y) +O(θn)
)

n12h20n

[(
1

n6h10n

∑
Ũn(x,y)

b̃ij(x, y) +O(θn)
)]2

=
1

n2h2n

1
n10h18n

∑
Ũn(x,y)

b̃2ij(x, y) +O(θn)[
1

n6h10n

∑
Ũn(x,y)

b̃ij(x, y) +O(θn)
]2

=
1

n2h2n


1

n10h18n

∑
Ũn(x,y)

b̃2ij(x, y)[
1

n6h10n

∑
Ũn(x,y)

b̃ij(x, y)
]2 +O(θn)

 , a.s. (A.32)

Then, it follows that√ ∑
Un(x,y)

w2
ij(x, y)

[
∑

Un(x,y)
wij(x, y)]2

+

∑
Vn(x,y)

w′2ij(x, y)

[
∑

Vn(x,y)
w′ij(x, y)]2

= O

(
1

nhn

)
, a.s. (A.33)
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By (A.24), (A.25), (A.27), (A.30) and (A.33), we have

LL2Kn(x, y)

Z1−αn
= O

(
nhnρ

2
n

Z1−αn

)
+O

(
nh3n
Z1−αn

)
+ o

(
log(n)

hnZ1−αn

)
+ o

(
log(n)

Z1−αn

)
= O

(
nh3n
Z1−αn

)
, a.s., (A.34)

where we have used the conditions that ρn
hn

= o(1), and log(n)
nh4n

= o(1). Hence, if nh3n
Z1−αn

= o(1),

any point (x, y) ∈ Ω \ Shn will not be flagged as a jump candidate when n is sufficient large.

Now, let us consider a nonsingular design point (x, y) on a jump location curve that

has a unique tangent line at (x, y). As discussed in Lemma A.2, we may assume the jump

location curve is the same as the tangent line in a small neighbourhood. Let Sρn be a band

of width 2ρn that containes S. Then we have in (A.27) and (A.13)∑
Ũn(x,y)

b̃ij(x, y)P{f}(xi, yj)∑
Ũn(x,y)

b̃ij(x, y)

=

∑
Ũn(x,y)\Sρn

b̃ij(x, y)P{f}(xi, yj)∑
Ũn(x,y)

b̃ij(x, y)
+

∑
Ũn(x,y)

⋂
Sρn

b̃ij(x, y)P{f}(xi, yj)∑
Ũn(x,y)

b̃ij(x, y)

=

∑
Ũn(x,y)\Sρn

b̃ij(x, y)(f+(x, y) +O(hn) +O(ρ2n))∑
Ũn(x,y)

b̃ij(x, y)
+O

(
ρn
hn

)
= [f+(x, y) +O(hn) +O(ρ2n))]

(
1−O

(
ρn
hn

))
+O

(
ρn
hn

)
= f+(x, y) +O(hn) +O(ρn/hn),

where f+(x, y) denotes the limit of f(u, v) as (u, v) approaching to (x, y) form Ũn(x, y). In

the second equation we have used the fact that the ratio of the area of Ũn(x, y)
⋂
Sρn to the

area of Ũn(x, y) is of order ρn
hn

. In the third equation, (A.8) has been used. So, we have

I1(x, y) = f+(x, y) +O(h2n) +O(ρn/hn) +O(θn). (A.35)

By (A.25) and Lemma A.1, we have

I2(x, y) =
∑

Un(x,y)

b̃ij(x, y)∑
Ũn(x,y)

b̃ij(x, y)
εij +O(θn) = o

(
log(n)

nhn

)
+O(θn) a.s. (A.36)
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From the proof of Lemma A.2, we know that, when (x, y) is a nonsingular jump point,

θn = O(hn) +O(ρn/hn) + o

(
log(n)

nhn

)
.

Thus,

f̂LL2K,+(x, y) = f+(x, y) +O(hn) +O(ρn/hn) + o

(
log(n)

nhn

)
. (A.37)

Similarly, we can derive the result that

f̂LL2K,−(x, y) = f−(x, y) +O(hn) +O(ρn/hn) + o

(
log(n)

nhn

)
, (A.38)

where f−(x, y) is defined similarly to f+(x, y). Then, a direct conclusion from (A.37), (A.38)

and (A.33) is that

LL2Kn(x, y)

Z1−αn
= O

(
nhn(f+(x, y)− f−(x, y))

Z1−αn

)
+ O(nρn/Z1−αn) +O

(
nh2n
Z1−αn

)
+O

(
log(n)

hnZ1−αn

)
= O

(
nhn(f+(x, y)− f−(x, y))

Z1−αn

)
, a.s., (A.39)

where we have used the results that hn = o(1), ρn
hn

= o(1), and log(n)
nh2n

= o(1). Thus, in

the case when (x, y) is a nonsingular jump point and the jump location curve has a unique

tangent line at (x, y), LL2K would detect (x, y) successfully when n is sufficiently large. The

parallel result to (A.39) can be derived for the case when the jump location curve has two

one-sided tangent lines at (x, y). Therefore, the LL2K jump detector can detect all points in

S
⋂

Ωhn

⋂
JS,hn . And, all points whose Euclidean distances to S are larger than hn would

not be detected. So, when n is large enough, S
⋂

Ωhn

⋂
JS,hn is included in Ŝn, and Ŝn

is included in the band of S with width hn. By similar arguments, it can be shown that

this result also holds for the jump detectors LCK, LC2K and LLK. Thus, all results in the

theorem are valid.
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