Supplemental file for the paper titled "Jump Detection In Blurred Regression Surfaces"

Yicheng Kang and Peihua Qiu
Department of Biostatistics, University of Florida

Lemma A.1. Let $\phi(\cdot, \cdot)$ be any continuous function, $K(\cdot, \cdot)$ be a Lipschitz-1 continuous bivariate density kernel function with support $\left\{(u, v): u^{2}+v^{2} \leq 1\right\}$, and $\varepsilon_{i j}$ be i.i.d. random errors from model (2) with mean 0 and variance σ^{2}. Then, if the bandwidth h_{n} used in procedure (3) satisfies the condition that $h_{n}=o(1)$ and $1 /\left(n h_{n}\right)=o(1)$, we have

$$
\frac{1}{n h_{n}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)} \varepsilon_{i j} \phi\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \xrightarrow{d} N\left(0, \widetilde{\sigma}^{2}\right) \text {, as } n \rightarrow \infty,
$$

where $\widetilde{\sigma}^{2}=\sigma^{2} \int_{u^{2}+v^{2} \leq 1} \phi^{2}(u, v) K^{2}(u, v) d u d v$ and $\left(x_{i}, y_{j}\right), O_{n}(x, y)$ are defined to be the same as those in (3).

Remark A direct conclusion of Lemma A. 1 is that

$$
\frac{1}{n^{2} h_{n}^{2}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)} \varepsilon_{i j} \phi\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)=o\left(\frac{\log (n)}{n h_{n}}\right) \text { a.s. }
$$

Proof This is a simple application of Lindeberg-Feller conditions. In fact, the terms in the summation are all independent and have the mean 0 . Also, we observe that

$$
\begin{aligned}
& \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)} \mathrm{E}\left\{\varepsilon_{i j}^{2}\right\} \phi\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)^{2} K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)^{2} \frac{1}{n^{2} h_{n}^{2}} \\
& \rightarrow \quad \sigma^{2} \int_{u^{2}+v^{2} \leq 1} \phi^{2}(u, v) K^{2}(u, v) d u d v, \text { as } n \rightarrow \infty
\end{aligned}
$$

Next, for any $\delta>0$, we have

$$
\begin{aligned}
\sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)} & \phi\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)^{2} K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)^{2} \frac{1}{n^{2} h_{n}^{2}} . \\
& \mathrm{E}\left\{\varepsilon_{i j}^{2} I_{\left.\left\{\frac{1}{n h_{n}}\left|\phi\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \varepsilon_{i j}\right|>\delta\right\}\right\}}\right.
\end{aligned}
$$

$$
\begin{align*}
& \leq \quad \frac{C}{n^{2} h_{n}^{2}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)} \mathrm{E}\left\{\varepsilon_{i j}^{2} I_{\left\{\left|\varepsilon_{i j}\right|>\frac{\delta n h_{n}}{C}\right\}}\right\} \\
& \leq \quad \frac{C}{n^{2} h_{n}^{2}} \frac{h_{n}^{2}}{1 / n^{2}} \mathrm{E}\left\{\varepsilon_{11}^{2} I_{\left\{\left|\varepsilon_{11}\right|>\frac{\delta n h_{n}}{C}\right\}}\right\} \\
& \rightarrow \quad 0, \quad \text { as } n \rightarrow \infty, \tag{A.1}
\end{align*}
$$

where C is some constant. Thus, all the Lindeberg-Feller conditions are satisfied, and the desired result follows immediately.

Lemma A.2. Under the condition of Theorem 3.1, the estimated gradient $(\widehat{b}(x, y), \widehat{c}(x, y))$ obtained from local linear kernel smoothing procedure (3) has the following properties:
(i) If (x, y) is not on any jump location curve, then

$$
\begin{equation*}
\widehat{b}(x, y), \widehat{c}(x, y)) \rightarrow\left(f_{x}^{\prime}(x, y), f_{y}^{\prime}(x, y)\right), \text { a.s, } \quad \text { as } n \rightarrow \infty . \tag{A.2}
\end{equation*}
$$

(ii) If (x, y) is a nonsingular point on a jump location curve and the jump location curve has a unique tangent line at (x, y), then

$$
\begin{equation*}
\frac{\widehat{b}(x, y), \widehat{c}(x, y))}{\sqrt{\widehat{b}(x, y)^{2}+\widehat{c}(x, y)^{2}}} \rightarrow(-\sin \theta, \cos \theta), \text { a.s, }, \quad \text { as } n \rightarrow \infty \tag{A.3}
\end{equation*}
$$

where θ is the angle formed by the tangent line of the JLC at (x, y) and the x-axis.
(iii) If (x, y) is a nonsingular point on a jump location curve and the jump location curve has two one-sided tangent lines at (x, y), then

$$
\begin{equation*}
\frac{(\widehat{b}(x, y), \widehat{c}(x, y))}{\sqrt{\widehat{b}(x, y)^{2}+\widehat{c}(x, y)^{2}}} \rightarrow\left(\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right), \sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)\right), \text { a.s, }, \quad \text { as } n \rightarrow \infty \tag{A.4}
\end{equation*}
$$

where θ_{1} and θ_{2} are angles formed by the two one-sided tangent lines and the x-axis respectively.

Proof First, it is not difficult to verify that the solution of procedure (3) has the expressions

$$
\begin{align*}
& \widehat{b}(x, y)=\frac{1}{r_{20}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)}\left(x_{i}-x\right) Z_{i j} K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right), \tag{A.5}\\
& \widehat{c}(x, y)=\frac{1}{r_{02}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)}\left(y_{j}-y\right) Z_{i j} K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right), \tag{A.6}
\end{align*}
$$

where $r_{s_{1} s_{2}}=\sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)}\left(x_{i}-x\right)^{s_{1}}\left(y_{j}-y\right)^{s_{2}} K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)$, for $s_{1}, s_{2}=0,1,2$.
To prove result (A.2), we notice that, for a given point (x, y), if (x, y) is not on any jump location curve, then

$$
\begin{equation*}
\mathrm{E}(\widehat{b}(x, y))=\frac{1}{r_{20}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)} P\{f\}\left(x_{i}, y_{j}\right)\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right), \tag{A.7}
\end{equation*}
$$

where

$$
\begin{align*}
P\{f\}\left(x_{i}, y_{j}\right)= & \iint_{u^{2}+v^{2} \leq \rho_{n}^{2}} p\left(u, v ; x_{i}, y_{j}\right) f\left(x_{i}-u, y_{j}-v\right) d u d v \\
= & \iint_{u^{2}+v^{2} \leq \rho_{n}^{2}} p\left(u, v ; x_{i}, y_{j}\right)\left[f\left(x_{i}, y_{j}\right)-f_{x}^{\prime}\left(x_{i}, y_{j}\right) u\right. \\
& \left.-f_{y}^{\prime}\left(x_{i}, y_{j}\right) v+O\left(\rho_{n}^{2}\right)\right] d u d v \\
= & f\left(x_{i}, y_{j}\right)+O\left(\rho_{n}^{2}\right) \tag{A.8}
\end{align*}
$$

In the last equation of (A.8), we have used the symmetry of p. By (A.7) and (A.8), we have

$$
\begin{align*}
& \mathrm{E}(\widehat{b}(x, y)) \\
= & \frac{1}{r_{20}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)}\left[f\left(x_{i}, y_{j}\right)+O\left(\rho_{n}^{2}\right)\right]\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \\
= & \frac{1}{r_{20}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)}\left[f(x, y)+f_{x}^{\prime}(x, y)\left(x_{i}-x\right)+f_{y}^{\prime}(x, y)\left(y_{j}-y\right)+\frac{1}{2} f_{x x}^{\prime \prime}(x, y)\left(x_{i}-x\right)^{2}+\right. \\
& \left.f_{x y}^{\prime \prime}(x, y)\left(x_{i}-x\right)\left(y_{j}-y\right)+\frac{1}{2} f_{y y}^{\prime \prime}(x, y)\left(y_{j}-y\right)^{2}+O\left(h_{n}^{3}\right)\right]\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \\
& +\frac{1}{r_{20}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)} O\left(\rho_{n}^{2}\right)\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \\
= & f_{x}^{\prime}(x, y)+O\left(\rho_{n}^{2} / h_{n}\right)+O\left(h_{n}^{2}\right) . \tag{A.9}
\end{align*}
$$

In the last equation of the above expression, we have used the results that $r_{s_{1}, s_{2}}=0$, for $s_{1}, s_{2}=0,1,2$ with $s_{1}+s_{2}$ being odd, using the circular symmetry of K, the equal spacing of the design points, and the properties that $r_{20}=O\left(n^{2} h_{n}^{4}\right)$, which can be proved similarly to expression (23) in Proposition 2 of Qiu (2009). Then, by Lemma A.1, we have

$$
\begin{equation*}
\frac{1}{n^{2} h_{n}^{2}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)} \varepsilon_{i j} \phi\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)=o\left(\frac{\log n}{n h_{n}}\right), \text { a.s., } \tag{A.10}
\end{equation*}
$$

where $\phi(u, v)$ is any continuous function defined in the region $\left\{(u, v): u^{2}+v^{2} \leq 1\right\}$. By (A.7) and the fact that $r_{20}=O\left(n^{2} h_{n}^{4}\right)$, we have

$$
\begin{equation*}
\widehat{b}(x, y)-\mathrm{E}(\widehat{b}(x, y))=\frac{1}{r_{20}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)} \varepsilon_{i j}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)=o\left(\frac{\log (n)}{n h_{n}^{2}}\right), \text { a.s. } \tag{A.11}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\widehat{c}(x, y)-\mathrm{E}(\widehat{c}(x, y))=\frac{1}{r_{02}} \sum_{\left(x_{i}, y_{j}\right) \in O_{n}(x, y)} \varepsilon_{i j}\left(y_{j}-y\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)=o\left(\frac{\log (n)}{n h_{n}^{2}}\right), \text { a.s. } \tag{A.12}
\end{equation*}
$$

(A.2) is then obtained, after combining (A.11) and (A.12).

To prove (A.3), assume that (x, y) is a nonsingular point on a jump location curve. Then, $O_{n}(x, y)$ consists of the following three disjoint parts $O_{n, l}(x, y), O_{n, c}(x, y)$, and $O_{n, r}(x, y)$, where $O_{n, c}(x, y)$ is a band of width $2 \rho_{n}$ containing the jump location curve segment, and $O_{n, l}(x, y)$ and $O_{n, r}(x, y)$ are two neighborhoods on its different sides. Since the jump location curve has a unique tangent line at (x, y), difference between the curve and the tangent line will be negligible. Thus, we may assume that the jump location curve segment is a straight line in $O_{n}(x, y)$ and it forms an angle, denoted by θ, with the x-axis. Then,

$$
\begin{aligned}
& \mathrm{E}(\widehat{b}(x, y)) \\
= & \frac{1}{r_{20}}\left(\sum_{O_{n, l}(x, y)}+\sum_{O_{n, c}(x, y)}+\sum_{O_{n, r}(x, y)}\right) P\{f\}\left(x_{i}, y_{j}\right)\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \\
= & \frac{1}{r_{20}} \sum_{O_{n, l}(x, y)}\left[f\left(x_{i}, y_{j}\right)+O\left(\rho_{n}^{2}\right)\right]\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+ \\
& \frac{1}{r_{20}} \sum_{O_{n, c}(x, y)} P\{f\}\left(x_{i}, y_{j}\right)\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+ \\
& \frac{1}{r_{20}} \sum_{O_{n, r}(x, y)}\left[f\left(x_{i}, y_{j}\right)+O\left(\rho_{n}^{2}\right)\right]\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \\
= & \frac{1}{r_{20}} \sum_{O_{n, l}(x, y)}\left[f_{-}(x, y)+O\left(h_{n}\right)+O\left(\rho_{n}^{2}\right)\right]\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+O\left(\frac{\rho_{n}}{h_{n}^{2}}\right)+
\end{aligned}
$$

$$
\begin{align*}
& \frac{1}{r_{20}} \sum_{O_{n, r}(x, y)}\left[f_{+}(x, y)+O\left(h_{n}\right)+O\left(\rho_{n}^{2}\right)\right]\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \\
= & \frac{1}{r_{20}} f_{-}(x, y) \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)- \\
& \frac{1}{r_{20}} f_{-}(x, y) \sum_{O_{n, r}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+O\left(\frac{\rho_{n}^{2}}{h_{n}}\right)- \\
& \frac{1}{r_{20}} f_{-}(x, y) \sum_{O_{n, c}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+ \\
& \frac{1}{r_{20}} f_{+}(x, y) \sum_{O_{n, r}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+O(1)+O\left(\frac{\rho_{n}}{h_{n}^{2}}\right) \\
= & \frac{f_{+}(x, y)-f_{-}(x, y)}{r_{20}} \sum_{O_{n, r}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+O(1)+O\left(\frac{\rho_{n}}{h_{n}^{2}}\right) . \tag{A.13}
\end{align*}
$$

In the second equation of (A.13), (A.8) is used. In the third equation, we have used the results that $r_{20}=O\left(n^{2} h_{n}^{4}\right), P\{f\}\left(x_{i}, y_{j}\right)$ are uniformly bounded when $\left(x_{i}, y_{j}\right) \in O_{n, c}(x, y)$, and the fact that the ratio of the area of $O_{n, c}(x, y)$ to the area of $O_{n}(x, y)$ is of order $O\left(\rho_{n} / h_{n}\right)$. In the fourth equation, we have used the results that $\sum_{O_{n, r}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)=$ $O\left(n^{2} h_{n}^{3}\right), \sum_{O_{n, l}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)=O\left(n^{2} h_{n}^{3}\right), r_{20}=O\left(n^{2} h_{n}^{4}\right)$. In the last equation, we have used the results that $r_{10}=0$ and $\frac{1}{r_{20}} \sum_{O_{n, c}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)=O\left(\frac{\rho_{n}}{h_{n}^{2}}\right)$. By (A.11), we have
$\widehat{b}(x, y)=\frac{f_{+}(x, y)-f_{-}(x, y)}{r_{20}} \sum_{O_{n, r}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+O(1)+O\left(\frac{\rho_{n}}{h_{n}^{2}}\right)+o\left(\frac{\log (n)}{n h_{n}^{2}}\right)$, a.s.

Similarly, we can check that
$\widehat{c}(x, y)=\frac{f_{+}(x, y)-f_{-}(x, y)}{r_{02}} \sum_{O_{n, r}(x, y)}\left(y_{j}-y\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+O(1)+O\left(\frac{\rho_{n}}{h_{n}^{2}}\right)+o\left(\frac{\log (n)}{n h_{n}^{2}}\right)$, a.s.

Notice the following two facts:

$$
\begin{align*}
& \frac{h_{n}}{r_{20}} \sum_{O_{n, r}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \rightarrow \frac{\int_{\theta}^{\theta+\pi} d \varphi \int_{0}^{1} r^{2} \cos \varphi K(r) d r}{\int_{0}^{2 \pi} d \varphi \int_{0}^{1} r^{3} \cos ^{2} \varphi K(r) d r}=\frac{-2 \int_{0}^{1} r^{2} K(r) d r}{\pi \int_{0}^{1} r^{3} K(r) d r} \sin \theta \\
& \frac{h_{n}}{r_{02}} \sum_{O_{n, r}(x, y)}\left(y_{j}-y\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \rightarrow \frac{\int_{\theta}^{\theta+\pi} d \varphi \int_{0}^{1} r^{2} \sin \varphi K(r) d r}{\int_{0}^{2 \pi} d \varphi \int_{0}^{1} r^{3} \sin ^{2} \varphi K(r) d r}=\frac{2 \int_{0}^{1} r^{2} K(r) d r}{\pi \int_{0}^{1} r^{3} K(r) d r} \cos \theta \tag{A.16}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\frac{\widehat{b}(x, y), \widehat{c}(x, y))}{\sqrt{\widehat{b}(x, y)^{2}+\widehat{c}(x, y)^{2}}} & =\frac{\left(h_{n} \widehat{b}(x, y), h_{n} \widehat{c}(x, y)\right)}{\sqrt{h_{n}^{2} \widehat{b}(x, y)^{2}+h_{n}^{2} \widehat{c}(x, y)^{2}}} \\
& \rightarrow(-\sin \theta, \cos \theta), \text { a.s }
\end{aligned}
$$

which completes the proof of (A.3).
Next, assume that (x, y) is a nonsingular point on a jump location curve, and there exist two one-sided tangent lines of the jump location curve at (x, y), forming angles θ_{1} and θ_{2}, respectively, with the x-axis. See Figure A. 1 for a demonstration. The difference between

$$
\mathrm{O}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})
$$

Figure A.1: A demonstration for the case when (x, y) is on a jump location curve that has two one-sided tangent lines at (x, y).
the polygonal line and the jump location curve in $O_{n}(x, y)$ is negligible when n is sufficiently large. Hence, we may assume that the jump location curve is the same as the polygonal line in $O_{n}(x, y)$ without loss of generality. By the same arguments in (A.13) and (A.14), we can show that

$$
\begin{align*}
\widehat{b}(x, y)= & \frac{f_{+}(x, y)-f_{-}(x, y)}{r_{20}} \sum_{O_{n, r}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+ \\
& O(1)+O\left(\frac{\rho_{n}}{h_{n}^{2}}\right)+o\left(\frac{\log (n)}{n h_{n}^{2}}\right), \text { a.s. } \tag{A.18}
\end{align*}
$$

$$
\begin{align*}
\widehat{c}(x, y)= & \frac{f_{+}(x, y)-f_{-}(x, y)}{r_{02}} \sum_{O_{n, r}(x, y)}\left(y_{j}-y\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right)+ \\
& O(1)+O\left(\frac{\rho_{n}}{h_{n}^{2}}\right)+o\left(\frac{\log (n)}{n h_{n}^{2}}\right), \text { a.s. } \tag{A.19}
\end{align*}
$$

Also, we observe the following facts:

$$
\begin{align*}
& \frac{h_{n}}{r_{20}} \sum_{O_{n, r}(x, y)}\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \\
\rightarrow & \frac{\int_{\theta_{2}}^{\theta_{1}+2 \pi} d \varphi \int_{0}^{1} r^{2} \cos \varphi K(r) d r}{\int_{0}^{2 \pi} d \varphi \int_{0}^{1} r^{3} \cos ^{2} \varphi K(r) d r}=\frac{\int_{0}^{1} r^{2} K(r) d r}{\pi \int_{0}^{1} r^{3} K(r) d r}\left(\sin \theta_{1}-\sin \theta_{2}\right) \\
= & \frac{2 \int_{0}^{1} r^{2} K(r) d r}{\pi \int_{0}^{1} r^{3} K(r) d r} \sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right) \cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right) . \tag{A.20}\\
& \frac{h_{n}}{r_{02}} \sum_{O_{n, r}(x, y)}\left(y_{j}-y\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) \\
\rightarrow & \frac{\int_{\theta_{2}}^{\theta_{1}+2 \pi} d \varphi \int_{0}^{1} r^{2} \sin \varphi K(r) d r}{\int_{0}^{2 \pi} d \varphi \int_{0}^{1} r^{3} \sin ^{2} \varphi K(r) d r}=\frac{\int_{0}^{1} r^{2} K(r) d r}{\pi \int_{0}^{1} r^{3} K(r) d r}\left(\cos \theta_{2}-\cos \theta_{1}\right) \\
= & \frac{2 \int_{0}^{1} r^{2} K(r) d r}{\pi \int_{0}^{1} r^{3} K(r) d r} \sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right) \sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right) . \tag{A.21}
\end{align*}
$$

Therefore, it follows after combining (A.18)- (A.21) that

$$
\begin{aligned}
\frac{(\widehat{b}(x, y), \widehat{c}(x, y))}{\sqrt{\widehat{b}(x, y)^{2}+\widehat{c}(x, y)^{2}}} & =\frac{\left(h_{n} \widehat{b}(x, y), h_{n} \widehat{c}(x, y)\right)}{\sqrt{h_{n}^{2} \widehat{b}(x, y)^{2}+h_{n}^{2} \widehat{c}(x, y)^{2}}} \\
& \rightarrow\left(\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right), \sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right)\right), \text { a.s }
\end{aligned}
$$

which finishes the proof of (A.4).

Proof of Theorem 3.1

Let us first prove the theorem for the jump detector LL2K. Let \widehat{S}_{n} be the set of detected jump points by the jump detector LL2K. For any $(x, y) \in \Omega_{h_{n}}$, we have

$$
\widehat{f}_{L L 2 K,+}(x, y)=\frac{\sum_{\left(x_{i}, y_{j}\right) \in U_{n}(x, y)} \widetilde{w}_{i j}(x, y) Z_{i j}}{\sum_{\left(x_{i}, y_{j}\right) \in U_{n}(x, y)} \widetilde{w}_{i j}(x, y)}
$$

$$
\begin{align*}
& =\frac{\sum_{U_{n}} H\{f\}\left(x_{i}, y_{j}\right) \widetilde{w}_{i j}(x, y)}{\sum_{U_{n}} \widetilde{w}_{i j}(x, y)}+\frac{\sum_{U_{n}} \varepsilon_{i j} \widetilde{w}_{i j}(x, y)}{\sum_{U_{n}} \widetilde{w}_{i j}(x, y)} \\
& =: I_{1}(x, y)+I_{2}(x, y), \tag{A.22}
\end{align*}
$$

where $\sum_{U_{n}}$ denotes $\sum_{\left(x_{i}, y_{j}\right) \in U_{n}}, U_{n}$ is the upper half of $O_{n}(x, y)$ divided by a line perpendicular to the estimated gradient direction

$$
\widehat{G}(x, y)=\left(\frac{\widehat{c}(x, y)}{\sqrt{\widehat{b}(x, y)^{2}+\widehat{c}(x, y)^{2}}}, \frac{-\widehat{b}(x, y)}{\sqrt{\widehat{b}(x, y)^{2}+\widehat{c}(x, y)^{2}}}\right) .
$$

Let $S_{h_{n}}=\left\{(x, y) \in \Omega: d_{E}((x, y), S) \leq h_{n}\right\}$. Then, for any $(x, y) \in \Omega_{h_{n}} \backslash S_{h_{n}}, O_{n}(x, y)$ does not contain any jump point. Let $\widetilde{U}_{n}(x, y)$ be the half of the $O_{n}(x, y)$ separated by a line passing (x, y) in the direction perpendicular to the asymptotic direction of $(\widehat{b}(x, y), \widehat{c}(x, y))$, which is discussed in Lemma A.2, and $\widetilde{d}_{i j}$ be the Euclidean distance from $\left(x_{i}, y_{j}\right)$ to the asymptotic dividing line (thus, $\widetilde{d}_{i j}$ is non-random). For a function ϕ satisfying the condition that $\sup _{u^{2}+v^{2} \leq 1}|\phi(u, v)| \leq b_{\phi}<\infty$, we have

$$
\begin{align*}
& \left\lvert\, \sum_{U_{n}(x, y)} \phi\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) L\left(d_{i j} / h_{n}\right) \frac{1}{n^{2} h_{n}^{2}}-\right. \\
& \left.\sum_{\widetilde{U}_{n}(x, y)} \phi\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) L\left(\widetilde{d}_{i j} / h_{n}\right) \frac{1}{n^{2} h_{n}^{2}} \right\rvert\, \\
\leq & \frac{1}{n^{2} h_{n}^{2}} \left\lvert\, \sum_{U_{n}(x, y)} \phi\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) L\left(\widetilde{d}_{i j} / h_{n}\right)-\right. \\
& \left.\sum_{\widetilde{U}_{n}(x, y)} \phi\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) L\left(\widetilde{d}_{i j} / h_{n}\right) \right\rvert\,+O\left(\frac{\left|d_{i j}-\widetilde{d}_{i j}\right|}{h_{n}}\right) \\
\leq & b_{\phi}\|K\|_{\infty}\|L\|_{\infty}\left|\frac{1}{n^{2} h_{n}^{2}} \sum_{U_{n}(x, y) \Delta \widetilde{U}_{n}(x, y)} 1\right|+O\left(\frac{\left|d_{i j}-\widetilde{d}_{i j}\right|}{h_{n}}\right) \\
= & O\left(\theta_{n}\right)=o(1), a . s ., \tag{A.23}
\end{align*}
$$

where θ_{n} denotes the acute angle between $(\widehat{b}(x, y), \widehat{c}(x, y))$ and its asymptotic direction and $U_{n}^{\prime}(x, y) \triangle \widetilde{U}_{n}^{\prime}(x, y)=\left(U_{n}^{\prime}(x, y) \backslash \widetilde{U}_{n}^{\prime}(x, y)\right) \cup\left(\widetilde{U}_{n}^{\prime}(x, y) \backslash U_{n}^{\prime}(x, y)\right)$. In the first inequality of
(A.23), we have used the Lipschitz- 1 continuity of L. In the last equation, Lemma A. 2 has been applied. Now, let

$$
\begin{aligned}
\widetilde{b}_{i, j}(x, y) & =\left[\widetilde{B}_{1}(x, y)+\widetilde{B}_{2}(x, y)(x-x)+\widetilde{B}_{3}(x, y)\left(y_{j}-y\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) L\left(\widetilde{d}_{i j} / h_{n}\right),\right. \\
\widetilde{B}_{1}(x, y) & =\widetilde{t}_{20}(x, y) \widetilde{t}_{02}(x, y)-\widetilde{t}_{11}(x, y) \widetilde{t}_{11}(x, y) \\
\widetilde{B}_{2}(x, y) & =\widetilde{t}_{01}(x, y) \widetilde{t}_{11}(x, y)-\widetilde{t}_{10}(x, y) \widetilde{t}_{02}(x, y) \\
\widetilde{B}_{3}(x, y) & =\widetilde{t}_{10}(x, y) \widetilde{t}_{11}(x, y)-\widetilde{t}_{01}(x, y) \widetilde{t}_{20}(x, y), \\
\widetilde{t}_{s_{1}, s_{2}}(x, y) & =\sum_{\widetilde{U}_{n}(x, y)}\left(x_{i}-x\right)^{s_{1}}\left(y_{j}-y\right)^{s_{2}} K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) L\left(\widetilde{d}_{i j} / h_{n}\right) .
\end{aligned}
$$

Then, by using similar arguments to those in (A.23), we can check that

$$
\begin{equation*}
I_{1}(x, y)=\frac{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y) P\{f\}\left(x_{i}, y_{j}\right)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)}+O\left(\theta_{n}\right), \text { a.s. } \tag{A.24}
\end{equation*}
$$

By using (A.23), we have

$$
\begin{align*}
I_{2}(x, y) & =\sum_{U_{n}(x, y)} \frac{\widetilde{w}_{i j}(x, y) \frac{1}{n^{4} h_{n}^{8}}}{\frac{1}{n^{6} h_{n}^{10}} \sum_{U_{n}(x, y)} \widetilde{w}_{i j}(x, y)} \frac{1}{n^{2} h_{n}^{2}} \varepsilon_{i j} \\
& =\sum_{U_{n}(x, y)} \frac{\frac{1}{n^{4} h_{n}^{8}} \widetilde{b}_{i j}(x, y)+O\left(\theta_{n}\right)}{\frac{1}{n^{6} h_{n}^{10}} \sum_{U_{n}(x, y)} \widetilde{b}_{i j}(x, y)+O\left(\theta_{n}\right)} \frac{1}{n^{2} h_{n}^{2}} \varepsilon_{i j} \\
& =\sum_{U_{n}(x, y)}\left(\frac{\frac{1}{n^{4} h_{n}^{8}} \widetilde{b}_{i j}(x, y)}{\frac{1}{n^{6} h_{n}^{10}} \sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)}+O\left(\theta_{n}\right)\right) \frac{1}{n^{2} h_{n}^{2}} \varepsilon_{i j} \\
& =\sum_{U_{n}(x, y)} \frac{\widetilde{b}_{i j}(x, y)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)} \varepsilon_{i j}+\frac{1}{n^{2} h_{n}^{2}} \sum_{U_{n}(x, y)} O\left(\theta_{n}\right) \varepsilon_{i j} \\
& =\sum_{U_{n}(x, y)} \frac{\widetilde{b}_{i j}(x, y)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)} \varepsilon_{i j}+O\left(\theta_{n}\right), \text { a.s. } \tag{A.25}
\end{align*}
$$

In the second equation of (A.25), we have used the results that $\widetilde{B}_{1}(x, y)=O\left(n^{4} h_{n}^{8}\right)$, $\widetilde{B}_{2}(x, y)=O\left(n^{3} h_{n}^{7}\right), \widetilde{B}_{3}(x, y)=O\left(n^{3} h_{n}^{7}\right)$ and $\widetilde{t}_{s_{1}, s_{2}}(x, y)=O\left(n^{2} h_{n}^{s_{1}+s_{2}+2}\right)$ for $s_{1}, s_{2}=0,1$. Similar arguments to those in Lemma A. 1 can be applied to $\sum_{U_{n}(x, y)} \frac{\widetilde{b}_{i j}(x, y)}{\sum_{\tilde{U}_{n}(x, y)} \tilde{b}_{i j}(x, y)} \varepsilon_{i j}$, since $\widetilde{b}_{i j}(x, y)$ is deterministic. Consequently, we have

$$
\begin{equation*}
\sum_{U_{n}(x, y)} \frac{\widetilde{b}_{i j}(x, y)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)} \varepsilon_{i j} \stackrel{a s y .}{\sim} N\left(0, \sum_{U_{n}(x, y)} \frac{\widetilde{b}_{i j}^{2}(x, y)}{\left[\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)\right]^{2}}\right) . \tag{A.26}
\end{equation*}
$$

By (A.8), we have that

$$
\begin{align*}
& \quad \frac{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y) P\{f\}\left(x_{i}, y_{j}\right)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)} \\
& =\frac{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)\left(f\left(x_{i}, y_{j}\right)+O\left(\rho_{n}^{2}\right)\right)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)} \\
& =\frac{\widetilde{B}_{1}(x, y)}{|\widetilde{\triangle}|} \sum_{\widetilde{U}_{n}(x, y)}\left(f(x, y)+f_{x}^{\prime}(x, y)\left(x_{i}-x\right)+f_{y}^{\prime}(x, y)\left(y_{j}-y\right)+O\left(h_{n}^{2}\right)+\right. \\
& \\
& \left.\quad O\left(\rho_{n}^{2}\right)\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) L\left(\widetilde{d}_{i j} / h_{n}\right)+ \\
& \frac{\widetilde{B}_{2}(x, y)}{\mid \widetilde{\triangle \mid}} \sum_{\widetilde{U}_{n}(x, y)}\left(f(x, y)+f_{x}^{\prime}(x, y)\left(x_{i}-x\right)+f_{y}^{\prime}(x, y)\left(y_{j}-y\right)+O\left(h_{n}^{2}\right)+\right. \\
& \left.O\left(\rho_{n}^{2}\right)\right)\left(x_{i}-x\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) L\left(\widetilde{d}_{i j} / h_{n}\right)+ \\
& \frac{\widetilde{B}_{3}(x, y)}{\mid \widetilde{\Delta \mid}} \sum_{\widetilde{U}_{n}(x, y)}\left(f(x, y)+f_{x}^{\prime}(x, y)\left(x_{i}-x\right)+f_{y}^{\prime}(x, y)\left(y_{j}-y\right)+O\left(h_{n}^{2}\right)+\right. \\
& \left.O\left(\rho_{n}^{2}\right)\right)\left(y_{j}-y\right) K\left(\frac{x_{i}-x}{h_{n}}, \frac{y_{j}-y}{h_{n}}\right) L\left(\widetilde{d}_{i j} / h_{n}\right) \\
& = \\
& f(x, y)+\frac{f_{x}^{\prime}(x, y)}{\mid \widetilde{\triangle \mid}\left(\widetilde{B}_{1}(x, y) \widetilde{t}_{10}(x, y)+\widetilde{B}_{2}(x, y) \widetilde{t}_{20}(x, y)+\widetilde{B}_{3}(x, y) \widetilde{t}_{11}(x, y)\right)+} \tag{A.27}\\
& \frac{f_{y}^{\prime}(x, y)}{\mid \widetilde{\triangle \mid}\left(\widetilde{B}_{1}(x, y) \widetilde{t}_{01}(x, y)+\widetilde{B}_{2}(x, y) \widetilde{t}_{11}(x, y)+\widetilde{B}_{3}(x, y) \widetilde{t}_{02}(x, y)\right)+O\left(h_{n}^{2}\right)+O\left(\rho_{n}^{2}\right)} \\
& =
\end{align*}
$$

where $|\widetilde{\triangle}|=\widetilde{t}_{00}(x, y) \widetilde{t}_{20}(x, y) \widetilde{t}_{02}(x, y)+\widetilde{t}_{10}(x, y) \widetilde{t}_{01}(x, y) \widetilde{t}_{11}(x, y)+\widetilde{t}_{10}(x, y) \widetilde{t}_{01}(x, y) \widetilde{t}_{11}(x, y)-$ $\widetilde{t}_{01}(x, y)^{2} \widetilde{t}_{20}(x, y)-\widetilde{t}_{11}(x, y)^{2} \widetilde{t}_{00}(x, y)-\widetilde{t}_{10}(x, y)^{2} \widetilde{t}_{02}(x, y)$. In the second equation of (A.27), we have used (A.8). In the last equation, we have used the results that $|\widetilde{\triangle}|=\widetilde{B}_{1}(x, y) \widetilde{t}_{00}(x, y)+$ $\widetilde{B}_{2}(x, y) \widetilde{t}_{10}(x, y)+\widetilde{B}_{3}(x, y) \widetilde{t}_{01}(x, y), \widetilde{t}_{11}(x, y)=0$ by the symmetry of K and $L, \widetilde{B}_{1}(x, y) \widetilde{t}_{10}(x, y)$ $+\widetilde{B}_{2}(x, y) \widetilde{t}_{20}(x, y)+\widetilde{B}_{3}(x, y) \widetilde{t}_{11}(x, y)=0, \widetilde{B}_{1}(x, y) \widetilde{t}_{01}(x, y)+\widetilde{B}_{2}(x, y) \widetilde{t}_{11}(x, y)+\widetilde{B}_{3}(x, y) \widetilde{t}_{02}(x, y)$ $=0$, and that $\widetilde{B}_{1}(x, y)=O\left(n^{4} h_{n}^{8}\right), \widetilde{B}_{2}(x, y)=O\left(n^{4} h_{n}^{7}\right), \widetilde{B}_{3}(x, y)=O\left(n^{4} h_{n}^{7}\right),|\widetilde{\triangle}|=O\left(n^{6} h_{n}^{10}\right)$, $\widetilde{t}_{s_{1}, s_{2}}(x, y)=O\left(n^{2} h_{n}^{s_{1}+s_{2}+2}\right)$, for $s_{1}, s_{2}=0,1$. All these results can be proved similarly to the result (23) in Proposition 2 in Qiu (2009). Now, after combining (A.24), (A.25), (A.26) and
(A.27), we have the following result:

$$
\begin{equation*}
\widehat{f}_{L L 2 K,+}(x, y)=f(x, y)+O\left(h_{n}^{2}\right)+O\left(\rho_{n}^{2}\right)+O\left(\theta_{n}\right)+\xi_{n}, \tag{A.28}
\end{equation*}
$$

where $\xi_{n} \stackrel{\text { asy. }}{\sim} N\left(0, \frac{\sum_{U_{n}(x, y)} \widetilde{b}_{2}^{2}(x, y)}{\left[\sum_{\tilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)\right]^{2}}\right)$. Similarly, we have

$$
\begin{equation*}
\widehat{f}_{L L 2 K,-}(x, y)=f(x, y)+O\left(h_{n}^{2}\right)+O\left(\rho_{n}^{2}\right)+O\left(\theta_{n}\right)+\eta_{n} \tag{A.29}
\end{equation*}
$$

where $\eta_{n} \stackrel{\text { asy. }}{ } N\left(0, \frac{\sum_{V_{n}(x, y)}{\widetilde{b^{\prime}}}_{i j}^{2}(x, y)}{\left[\sum_{\tilde{V}_{n}(x, y)} \widetilde{b}_{i j}(x, y)\right]^{2}}\right), \widetilde{b}_{i j}^{\prime}(x, y)$ is defined similarly to $\widetilde{b}_{i j}(x, y)$. From the proof of Lemma A.2, we know that, if (x, y) is not a jump point, then

$$
\begin{equation*}
\theta_{n}=O\left(\rho_{n}^{2}\right)+O\left(h_{n}^{2}\right)+o\left(\frac{\log (n)}{n h_{n}^{2}}\right) \tag{A.30}
\end{equation*}
$$

Therefore, for any design point $(x, y) \in \Omega_{h_{n}} \backslash S_{h_{n}}$, by (A.28), (A.29) and (A.30), we have

$$
\begin{align*}
\widehat{f}_{\mathrm{LL} 2 K,+}-\widehat{f}_{\mathrm{LL} 2 K,-} & =O\left(h_{n}^{2}\right)+O\left(\rho_{n}^{2}\right)+o\left(\frac{\log (n)}{n h_{n}^{2}}\right) \\
& +\gamma_{n} \cdot \sqrt{\frac{\sum_{U_{n}(x, y)} \widetilde{b}_{i j}^{2}(x, y)}{\left[\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)\right]^{2}}+\frac{\sum_{V_{n}(x, y)} \widetilde{b}_{i j}^{2}(x, y)}{\left[\sum_{\widetilde{V}_{n}(x, y)} \widetilde{b}_{i j}^{\prime}(x, y)\right]^{2}}} \tag{A.31}
\end{align*}
$$

where $\gamma_{n} \stackrel{\text { asy. }}{ } N(0,1)$. Also, by using similar arguments to those in (A.23) and the fact that $\widetilde{b}_{i j}(x, y)=O\left(n^{4} h_{n}^{8}\right)$, we have

$$
\begin{align*}
\frac{\sum_{U_{n}(x, y)} w_{i j}^{2}(x, y)}{\left[\sum_{U_{n}(x, y)} w_{i j}(x, y)\right]^{2}} & =\frac{n^{10} h_{n}^{18} \frac{1}{n^{10} h_{n}^{18}} \sum_{U_{n}(x, y)} w_{i j}^{2}(x, y)}{\left[n^{6} h_{n}^{10} \frac{1}{n^{6} h_{n}^{10}} \sum_{U_{n}(x, y)} w_{i j}(x, y)\right]^{2}} \\
& =\frac{n^{10} h_{n}^{18}\left(\frac{1}{n^{10} h_{n}^{18}} \sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}^{2}(x, y)+O\left(\theta_{n}\right)\right)}{n^{12} h_{n}^{20}\left[\left(\frac{1}{n^{6} h_{n}^{10}} \sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)+O\left(\theta_{n}\right)\right)\right]^{2}} \\
& =\frac{1}{n^{2} h_{n}^{2}} \frac{\frac{1}{n^{10} h_{n}^{18}} \sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}^{2}(x, y)+O\left(\theta_{n}\right)}{\left.\frac{1}{n^{6} h_{n}^{10}} \sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)+O\left(\theta_{n}\right)\right]^{2}} \\
& =\frac{1}{n^{2} h_{n}^{2}}\left\{\frac{\frac{1}{n^{10} h_{n}^{11}} \sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}^{2}(x, y)}{\left[\frac{1}{n^{6} h_{n}^{10}} \sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)\right]^{2}}+O\left(\theta_{n}\right)\right\}, a . s . \tag{A.32}
\end{align*}
$$

Then, it follows that

$$
\begin{equation*}
\sqrt{\frac{\sum_{U_{n}(x, y)} w_{i j}^{2}(x, y)}{\left[\sum_{U_{n}(x, y)} w_{i j}(x, y)\right]^{2}}+\frac{\sum_{V_{n}(x, y)} w_{i j}^{\prime 2}(x, y)}{\left[\sum_{V_{n}(x, y)} w_{i j}^{\prime}(x, y)\right]^{2}}}=O\left(\frac{1}{n h_{n}}\right) \text {, a.s. } \tag{A.33}
\end{equation*}
$$

By (A.24), (A.25), (A.27), (A.30) and (A.33), we have

$$
\begin{align*}
& \frac{{\operatorname{LL} 2 \mathrm{~K}_{n}(x, y)}^{Z_{1-\alpha_{n}}}}{}=O\left(\frac{n h_{n} \rho_{n}^{2}}{Z_{1-\alpha_{n}}}\right)+O\left(\frac{n h_{n}^{3}}{Z_{1-\alpha_{n}}}\right)+o\left(\frac{\log (n)}{h_{n} Z_{1-\alpha_{n}}}\right)+o\left(\frac{\log (n)}{Z_{1-\alpha_{n}}}\right) \\
&=O\left(\frac{n h_{n}^{3}}{Z_{1-\alpha_{n}}}\right), \text { a.s. } \tag{A.34}
\end{align*}
$$

where we have used the conditions that $\frac{\rho_{n}}{h_{n}}=o(1)$, and $\frac{\log (n)}{n h_{n}^{4}}=o(1)$. Hence, if $\frac{n h_{n}^{3}}{Z_{1-\alpha_{n}}}=o(1)$, any point $(x, y) \in \Omega \backslash S_{h_{n}}$ will not be flagged as a jump candidate when n is sufficient large.

Now, let us consider a nonsingular design point (x, y) on a jump location curve that has a unique tangent line at (x, y). As discussed in Lemma A.2, we may assume the jump location curve is the same as the tangent line in a small neighbourhood. Let $S_{\rho_{n}}$ be a band of width $2 \rho_{n}$ that containes S. Then we have in (A.27) and (A.13)

$$
\begin{aligned}
& \frac{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y) P\{f\}\left(x_{i}, y_{j}\right)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)} \\
= & \frac{\sum_{\widetilde{U}_{n}(x, y) \backslash S_{\rho n}} \widetilde{b}_{i j}(x, y) P\{f\}\left(x_{i}, y_{j}\right)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)}+\frac{\sum_{\widetilde{U}_{n}(x, y) \cap S_{\rho_{n}}} \widetilde{b}_{i j}(x, y) P\{f\}\left(x_{i}, y_{j}\right)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)} \\
= & \frac{\sum_{\widetilde{U}_{n}(x, y) \backslash S_{\rho_{n}}} \widetilde{b}_{i j}(x, y)\left(f_{+}(x, y)+O\left(h_{n}\right)+O\left(\rho_{n}^{2}\right)\right)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)}+O\left(\frac{\rho_{n}}{h_{n}}\right) \\
= & {\left.\left[f_{+}(x, y)+O\left(h_{n}\right)+O\left(\rho_{n}^{2}\right)\right)\right]\left(1-O\left(\frac{\rho_{n}}{h_{n}}\right)\right)+O\left(\frac{\rho_{n}}{h_{n}}\right) } \\
= & f_{+}(x, y)+O\left(h_{n}\right)+O\left(\rho_{n} / h_{n}\right),
\end{aligned}
$$

where $f_{+}(x, y)$ denotes the limit of $f(u, v)$ as (u, v) approaching to (x, y) form $\widetilde{U}_{n}(x, y)$. In the second equation we have used the fact that the ratio of the area of $\widetilde{U}_{n}(x, y) \bigcap S_{\rho_{n}}$ to the area of $\widetilde{U}_{n}(x, y)$ is of order $\frac{\rho_{n}}{h_{n}}$. In the third equation, (A.8) has been used. So, we have

$$
\begin{equation*}
I_{1}(x, y)=f_{+}(x, y)+O\left(h_{n}^{2}\right)+O\left(\rho_{n} / h_{n}\right)+O\left(\theta_{n}\right) \tag{A.35}
\end{equation*}
$$

By (A.25) and Lemma A.1, we have

$$
\begin{equation*}
I_{2}(x, y)=\sum_{U_{n}(x, y)} \frac{\widetilde{b}_{i j}(x, y)}{\sum_{\widetilde{U}_{n}(x, y)} \widetilde{b}_{i j}(x, y)} \varepsilon_{i j}+O\left(\theta_{n}\right)=o\left(\frac{\log (n)}{n h_{n}}\right)+O\left(\theta_{n}\right) \text { a.s. } \tag{A.36}
\end{equation*}
$$

From the proof of Lemma A.2, we know that, when (x, y) is a nonsingular jump point,

$$
\theta_{n}=O\left(h_{n}\right)+O\left(\rho_{n} / h_{n}\right)+o\left(\frac{\log (n)}{n h_{n}}\right)
$$

Thus,

$$
\begin{equation*}
\widehat{f}_{\mathrm{LL} 2 K,+}(x, y)=f_{+}(x, y)+O\left(h_{n}\right)+O\left(\rho_{n} / h_{n}\right)+o\left(\frac{\log (n)}{n h_{n}}\right) \tag{A.37}
\end{equation*}
$$

Similarly, we can derive the result that

$$
\begin{equation*}
\widehat{f}_{\mathrm{LL} 2 \mathrm{~K},-}(x, y)=f_{-}(x, y)+O\left(h_{n}\right)+O\left(\rho_{n} / h_{n}\right)+o\left(\frac{\log (n)}{n h_{n}}\right) \tag{A.38}
\end{equation*}
$$

where $f_{-}(x, y)$ is defined similarly to $f_{+}(x, y)$. Then, a direct conclusion from (A.37), (A.38) and (A.33) is that

$$
\begin{align*}
\frac{\operatorname{LL2K}_{n}(x, y)}{Z_{1-\alpha_{n}}} & =O\left(\frac{n h_{n}\left(f_{+}(x, y)-f_{-}(x, y)\right)}{Z_{1-\alpha_{n}}}\right) \\
& +O\left(n \rho_{n} / Z_{1-\alpha_{n}}\right)+O\left(\frac{n h_{n}^{2}}{Z_{1-\alpha_{n}}}\right)+O\left(\frac{\log (n)}{h_{n} Z_{1-\alpha_{n}}}\right) \\
& =O\left(\frac{n h_{n}\left(f_{+}(x, y)-f_{-}(x, y)\right)}{Z_{1-\alpha_{n}}}\right), \text { a.s., } \tag{A.39}
\end{align*}
$$

where we have used the results that $h_{n}=o(1), \frac{\rho_{n}}{h_{n}}=o(1)$, and $\frac{\log (n)}{n h_{n}^{2}}=o(1)$. Thus, in the case when (x, y) is a nonsingular jump point and the jump location curve has a unique tangent line at (x, y), LL2K would detect (x, y) successfully when n is sufficiently large. The parallel result to (A.39) can be derived for the case when the jump location curve has two one-sided tangent lines at (x, y). Therefore, the LL2K jump detector can detect all points in $S \bigcap \Omega_{h_{n}} \bigcap \bar{J}_{S, h_{n}}$. And, all points whose Euclidean distances to S are larger than h_{n} would not be detected. So, when n is large enough, $S \bigcap \Omega_{h_{n}} \bigcap \bar{J}_{S, h_{n}}$ is included in \widehat{S}_{n}, and \widehat{S}_{n} is included in the band of S with width h_{n}. By similar arguments, it can be shown that this result also holds for the jump detectors LCK, LC2K and LLK. Thus, all results in the theorem are valid.

