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This file gives proofs of the two theorems in the paper and provides some extra numerical

results.

Proof of Theorem 1
By the strong law of large numbers (SLLN), we have ξ → f(x, y) a.s. Suppose, s

induces the clustering of sizes n1 and n2, i.e. n1 + n2 = nhn. For any s, n1 → ∞ and

n2 →∞ as n→∞. Then, in a continuous region of the image, i.e. if (x, y) ∈ ΩJ̄ ,ε, (ξ1 −
ξ) = −σφ(t/σ)

Φ(t/σ)
+O(hn) a.s. and (ξ2−ξ) = σφ(t/σ)

1−Φ(t/σ)
+O(hn) a.s. where t = σΦ−1(n1/nhn).

Note that the above result is based on the assumption that f has continuous first-order

derivatives over (0, 1) × (0, 1) except the JLCs. In that case, f(xi, yj) = f(x, y) + O(hn)

for any (xi, yj) ∈ O(x, y;hn). Therefore,

1

n2h2
n

(
|O1(x, y;hn, s)|(ξ1 − ξ)2 + |O2(x, y;hn, s)|(ξ2 − ξ)2

)
→ σ2φ2(t/σ)

Φ(t/σ)(1− Φ(t/σ))
a.s.

Now,

1

n2h2
n

 ∑
(xi,yj)∈O1(x,y;hn,s)

(ξij − ξ1)2 +
∑

(xi,yj)∈O2(x,y;hn,s)

(ξij − ξ2)2


=

1

n2h2
n

∑
(xi,yj)∈O(x,y;hn)

(ξij − ξ)2 −

1

n2h2
n

(
|O1(x, y;hn, s)|(ξ1 − ξ)2 + |O2(x, y;hn, s)|(ξ2 − ξ)2

)
→ σ2

(
1− φ2(t/σ)

Φ(t/σ)(1− Φ(t/σ))

)
a.s.

The first equality is due to the fact that the total sum of squares is equal to the sum of

the sum of squares between the groups and the sum of squares within the groups. Since,
φ2(t/σ)

Φ(t/σ)(1−Φ(t/σ))
6= 0 for any finite value of t,

T (x, y;hn, s)→

(
φ2(t/σ)

Φ(t/σ)(1−Φ(t/σ))

)
1−

(
φ2(t/σ)

Φ(t/σ)(1−Φ(t/σ))

) a.s.

It is easy to check that T (x, y;hn, s) is maximized when t = 0, i.e. when n1 = n2 = nhn/2.

Therefore, T (x, y;hn, S0) ≤ un a.s.

Proceeding similarly, if (x, y) ∈ Jhn ,O(x, y;hn) intersects two Λls, then T (x, y;hn, s)→
J2/4σ2 a.s. If J > 4κσ2, and un is as defined in Section 3, then T (x, y;hn, S0) > un a.s.
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Proof of Theorem 2
If (x, y) is in a continuous region of an image, i.e., if (x, y) ∈ ΩJ̄ ,ε, then for any

(xi, yj) ∈ O(x, y;hn), f(xi, yj) = f(x, y) + O(hn) a.s. Therefore,
(
‖Õ(xi,yj)−Õ(x,y)‖22

|Õ(xi,yj)|

)
=

O(h2
n) a.s., assuming that h̃n → ∞ as n → ∞, and h̃n

hn
= o(1). In that case, if Bn =

O(h
1/2
n ), W̃ij = 1 + O(h

3/2
n ) a.s. Also, from Theorem 1, T (x, y;hn, S0) ≤ un a.s. There-

fore,

f̂(x, y) =

∑
(xi,yj)∈O(x,y;hn,S0)

W̃ijξij∑
(xi,yj)∈O(x,y;hn,S0)

W̃ij

= f(x, y) +O(h1/2
n ) a.s.

If (x, y) is a non-singular point close to a JLC of an image, i.e., when O(x, y;hn)

intersects with two Λls, for sufficiently small hn, and if the minimum jump size J of the

JLC withinO(x, y;hn) is larger than 4κσ2, then by Theorem 1, T (x, y;hn, S0) > un a.s. In

this case, for any (xi, yj) ∈ O1(x, y;hn), f(xi, yj) = f(x, y) +O(hn) a.s., and proceeding

as before, we see that W̃ij = 1 +O(h
3/2
n ) a.s. So,

f̂(x, y) =

∑
(xi,yj)∈O1(x,y;hn,S0)

W̃ijξij∑
(xi,yj)∈O1(x,y;hn,S0)

W̃ij

= f(x, y) +O(h1/2
n ) a.s.

If (x, y) is a non-singular point close to a JLC of an image, i.e., when O(x, y;hn)

intersects with two Λls, for sufficiently small hn, and if the minimum jump size J of the

JLC withinO(x, y;hn) is smaller than or equal to 4κσ2, then for any (xi, yj) which is inside

the same Λl (say, Λl1) that contains (x, y) , f(xi, yj) = f(x, y) + O(hn) a.s., and for any

(xi, yj) which is inside the other Λl (say, Λl2), there exists δ∗ > 0 such that f(xi, yj) =

f(x, y) + δ∗ + O(hn). The last results follows from the definition of the singular points

and the assumption that f has continuous first-order derivatives over (0, 1)× (0, 1) except

the JLCs. Then, proceeding similarly, for (xi, yj) ∈ Λl1 , W̃ij = 1 + O(h
3/2
n ) a.s. and for

(xi, yj) ∈ Λl2 , W̃ij = o(1) a.s. Therefore,

f̂(x, y) =

∑
(xi,yj)∈O1(x,y;hn,S0)

W̃ijξij∑
(xi,yj)∈O1(x,y;hn,S0)

W̃ij

= f(x, y) +O(h1/2
n ) a.s.

In this case, if we replace O1(x, y;hn) by O(x, y;hn), i.e., even if T (x, y;hn, S0) ≤ un,

f̂(x, y) = f(x, y) + O(h
1/2
n ) a.s. From this proof, we see that even if we do not consider

the clustering step, point-wise asymptotic convergence of f̂(x, y) at a non-singular point

(x, y) still holds.
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Comparisons of the denoising methods when the noise is
uniformly distributed

In practice, the noise distribution may not be normal. Here, we consider cases when the

noise distribution is Uniform[−NR, NR], whereNR is a constant. Let us still use the three

test images discussed in Section 4 of the paper, and choose NR = 0.15 in the example with

the artificial image and NR = 25 in the examples with the fingerprint and MRI images.

The image denoising methods are executed in the same way as in the Gaussian noise cases.

The corresponding results are presented in Table S.1 and Figure S.1. From Table S.1,

we see that NEW is better than its three competitors in most cases with the artificial and

fingerprint images. In cases with the MRI brain image, NEW outperforms TV, performs

similarly to ONLM, and performs better than ASSK in terms of MISE. Similar to cases

with the Gaussian noise, ASSK seems to preserve edges better with the price of a weaker

noise removal ability. This is confirmed by Figure 1, and is consistent with the results in

Table 3 and Figure 6 in the main article.

Table S.1: In each entry, the first line presents the estimated MISE value based on 100 sim-

ulations and the corresponding standard error (in parenthesis), the second line presents the

value of EP and its standard error (in parenthesis), and the third line presents the searched

procedure parameter values. This table is about the cases with uniformly distributed noise.

The best method in each case is indicated by italicized numbers.

Image TV ASSK ONLM NEW

0.0028 (0.0001) 0.0026 (0.0001) 0.0014 (0.0001) 0.0002 (0.0000)

Artificial 0.0401 (0.0067) 0.1191 (0.0086) 0.0366 (0.0060) 0.0040 (0.0031)

25.0 0.18, 5 10, 1, 0.10 0.0938, 2.0, 3.0

75.1 (0.4) 157.3 (0.5) 81.4 (0.6) 75.3 (0.4)

Fingerprint 0.0393 (0.0007) 0.1048 (0.0009) 0.0145 (0.0009) 0.0145 (0.0008)

0.12 0.0040, 4 10, 1, 20 0.0043, 2.0, 0.8

61.6 (0.4) 61.8 (0.4) 51.9 (0.3) 52.1 (0.3)

Brain 0.1538 (0.0012) 0.0175 (0.0014) 0.0968 (0.0013) 0.0938 (0.0014)

0.10 0.0050, 5 10, 1, 15 0.0117, 10.0, 2.5
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Figure S.1: The columns from the left to the right present the denoised images by TV,

ASSK, ONLM and NEW, respectively, in cases with uniformly distributed noise.
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