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Summary: In a period starting around 2007, the Hand, Foot and Mouth Disease (HFMD) became wide-spreading

in China, and the Chinese public health was seriously threatened. To prevent the outbreak of infectious diseases like

HFMD, effective disease surveillance systems would be especially helpful to give signals of disease outbreaks as early

as possible. Statistical process control (SPC) charts provide a major statistical tool in industrial quality control for

detecting product defectives in a timely manner. In recent years, SPC charts have been used for disease surveillance.

However, disease surveillance data often have much more complicated structures, compared to the data collected

from industrial production lines. Major challenges, including lack of in-control data, complex seasonal effects, and

spatio-temporal correlations, make the surveillance data difficult to handle. In this paper, we propose a three-step
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procedure for analyzing disease surveillance data, and our procedure is demonstrated using the HFMD data collected

during 2008-2009 in China. Our method uses nonparametric longitudinal data and time series analysis methods to

eliminate the possible impact of seasonality and temporal correlation before the disease incidence data are sequentially

monitored by a SPC chart. At both national and provincial levels, our proposed method can effectively detect the

increasing trend of disease incidence rate before the disease becomes wide-spreading.

Key words: ARIMA model; Bootstrap; Disease surveillance and prevention; Early detection; Nonparametric

longitudinal data analysis; Statistical process control; Time series.
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1. Introduction

The Hand, Foot and Mouth Disease (HFMD) is a common infectious disease caused by a

group of non-polio enteroviruses that belongs to the Human Enterovirus species A (HEV-

A). Its main clinical symptoms include a brief prodromal fever followed by pharyngitis,

mouth ulcers and rash on the hands and feet. In most cases, the disease is mild and

self-limiting. However, severe clinical complications with neurological symptoms, such as

meningitis, encephalitis and polio-like paralysis, may occur (cf., Wang et al., 2011). In

2009, the number of HFMD cases reported in mainland China amounted to 1,155,525,

including 13,810 (or 1.2%) severe cases and 353 (or 0.03%) deaths. The high case-fatality

rate was attributed to reasons such as the rapid disease progression, late clinical treatment,

and limited local medical capacity. It was also found that the case-fatality rate decreased

considerably once the early clinical treatment was provided to patients with severe symptoms.

Therefore, effective disease surveillance and timely implementation of disease prevention and

control measures are critically important for minimizing the damage of HFMD (cf., World

Health Organization, 2011). This paper presents a case study of the HFMD data collected

in China during 2008-2009. It will show that certain statistical methods are helpful in early

detection of the HFMD outbreaks.

In the statistical literature, statistical process control (SPC) charts provide a major sta-

tistical tool for monitoring industrial production lines and for controlling product quality

(cf., Qiu, 2014). In recent several years, SPC charts have been frequently used for disease

surveillance and prevention (cf., Woodall, 2006). In this regard, some authors model the

number of disease incidents by a Poisson distribution and construct likelihood-ratio-based

control charts for disease monitoring (Zhou and Lawson, 2008). Some people develop control

charts based on parametric time series modeling of the possible temporal correlation in the

observed data (Watier, Richardson and Hubert, 1991). Some others propose multivariate
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control charts to accommodate the spatial pattern exhibited by surveillance data (e.g., Jiang

et al., 2011, Rogerson and Yamada, 2004). However, disease surveillance data often have

much more complicated structures, compared to the data collected from industrial production

lines. Many issues about the observed disease incidence data need to be carefully addressed

before an SPC chart can be applied. For example, the Poisson distribution model and other

parametric distribution models are rarely valid in practice. The disease incidence often has

a complicated seasonal trend, and the conventional SPC chart cannot handle such a trend

properly. It is critically important to address all such issues properly in order to effectively

detect the HFMD outbreaks.

In this paper, we propose a three-step procedure for detecting HFMD outbreaks, and this

procedure is demonstrated using the HFMD data collected by the Chinese CDC during

2008–2009. Our proposed method consists of the following three steps:

(i) Detrend – Seasonality in the disease incidence data is first described by a nonparametric

longitudinal model, and is then eliminated from the observed data,

(ii) Decorrelation – Temporal autocorrelation in the detrended data is modeled by an ARIMA

model, and is then eliminated from the detrended data, and

(iii) Sequential Monitoring – The detrended and decorrelated data obtained in step (ii) are

then sequentially monitored by an SPC chart.

The remainder of this article is organized as follows. In Section 2, the HFMD data and the

proposed three-step procedure are described in more details, and the results of our analysis

of the HFMD data at the national level are also presented there. In Section 3, results of our

analysis for individual provinces are presented, and a data-driven procedure for searching for

the control limit of the SPC chart is discussed as well. Several remarks conclude the article

in Section 4.
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2. Nationwide Monitoring of HFMD

The data used in our analysis were collected by the HFMD reporting system in China from

December 2008 to November 2009. The system recorded the reporting times of diagnosed

HFMD cases and the locations of the reporting clinics nationwide in real time. Locations

of the reporting clinics were registered in the format of administrative code that consists

of 6 digits. Based on this code, we can identify administrative divisions of the country

at the village level and above. In this section, we combine the observed data of different

administrative divisions in the nation for monitoring HFMD at the national level. The

national HFMD incidences in China during December 2008 and November 2009 are shown in

Figure 1. To monitor this data properly, we need to take into account the seasonal trend and

the temporal correlation in the data before applying a control chart for sequential monitoring.

The reason is that conventional control charts are based on the assumptions that process

observations have a constant mean and a constant variance when the process is in-control

(IC) and that they are independent of each other across different obvervation times. In cases

when these assumptions are violated, it has been well demonstrated in the literature that

the control charts are not reliable (cf., Qiu, 2014, Chapters 4 and 5). For instance, if there

is a seasonal trend in the data and it is not removed beforehand, then the seasonal trend

can trigger a signal of the control chart, and consequently we cannot distinguish signals

due to HFMD outbreaks from those due to seasonality in the data. Similarly, it has been

well demonstrated that the temporal correlation can delay or hasten the signal of a control

chart and therefore they need to be addressed properly for a reliable process monitoring (cf.,

Maragah and Woodall, 1992, Montgomery et al., 1991). In the next three subsections, we

will address all these issues and describe the proposed three-step procedure in details.

[Figure 1 about here.]
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2.1 Baseline Seasonal Trend

Like other infectious diseases, incidence of HFMD fluctuates over time and exhibits obvious

seasonal variation (Wang et al., 2011). Usually, such seasonal variation is not the main

interest of disease surveillance. In this subsection, we try to describe the seasonal variation

using a statistical model, and then remove it from the observed data for subsequent data

analysis. Ideally, the seasonal variation should be estimated from the observed data collected

in years when no disease outbreaks are present. Such data are called baseline data in

this paper. Unfortunately, Chinese government did not have a formal reporting system

for collecting HFMD incidence data before the outbreak took place in 2008. The lack of

such baseline data makes it challenging to accurately estimate the seasonal effect. However,

with the collected data at the provincial level, the following fact can be noticed. While

densely populated metropolitan areas (e.g., Beijing, Shanghai, etc.) were affected by HFMD

seriously during 2008-2009, the HFMD incident rates (defined to be the ratios of the numbers

of reported HFMD cases to the populations of the individual provinces) remain relatively

stable in some remote provinces. Thus, it is reasonable to use the data recorded in those

remote provinces to fit the baseline model. It should be pointed out that the incident rate

instead of the disease count is used here because different provinces have quite different

populations and the incident rate can adjust for the population properly.

To determine which province can be included in the baseline data, we use the following

criterion. For each province, its daily incident rates are calculated by dividing the daily

HFMD counts by its population. Then, the highest daily incident rate is obtained. If the

highest daily incident rate is below a threshold value, then that province is assumed to have

no HFMD outbreaks in the entire period of observation and that province can be included in

the baseline data. In this procedure, the population data of various provinces are obtained

from the official website of Chinese Census Bureau. Bie et al. (2010) estimated the average
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incidence rate of HFMD in China to be 0.0037 per 1,000 people in regular years when

no HFMD outbreaks exist. Therefore, we choose 0.0037 as the threshold value mentioned

above, based on which the following five provinces are included in the baseline data: Guizhou,

Xinjiang, Sichuan, Yunnan, and Tibet. Then, the average daily HFMD incidence rates of the

five provinces are computed and they are denoted as rt with t being the time. Assume that

rt follows the nonparametric regression model

rt = f(t) + εt, for t = 1, 2, . . . , n, (1)

where f(t) is a real-valued continuous function of t denoting the mean of rt, εt is the mean-0

error term, and n = 365 is the number of observations in the baseline data. Then, f(t) can

be used for describing the seasonal effect. The local quadratic kernel smoothing method (cf.,

Chapter 2, Qiu, 2005) is used for estimating f(t), in which the conventional Epanechnikov

kernel function is used and the bandwidth is chosen by the 10-fold cross-validation (CV)

procedure. The estimated f(t), denoted as f̂(t), is shown in Figure 2 by the solid curve, with

the baseline data shown by the little circles. From the figure, we can see an obvious seasonal

pattern that the HFMD incidence is high in late spring and early summer, relatively low

in the autumn, and low in the winter. It should be pointed out that the autocorrelation is

not taken into account in this analysis for simplicity. The estimator f̂(t) can be regarded

as the local linear generalized estimating equations (GEE) estimator discussed in Lin and

Carroll (2000). The GEE estimator can accommodate autocorrelation without specifying

the autocorrelation structure by using the so-called independent working correlation matrix.

Under certain mild conditions, Lin and Carroll have shown that it is asymptotically the best

estimator. Therefore, f̂(t) should be an efficient estimator of f(t).

[Figure 2 about here.]
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2.2 Temporal Correlation

Let Zt be the national daily counts of HFMD. Define

Yt = Zt − f̂(t)Mt, for t = 1, 2, . . . , n, (2)

where f̂(t) is the estimated baseline incidence rate obtained from model (1), and Mt is the

national population at time t. Then, {Yt : t = 1, 2, . . . , n} can be interpreted as the daily

counts of HFMD after the seasonal trend is removed. The quantities Zt and f̂(t)Mt are shown

in Figure 3(a) by the solid and dashed curves, respectively. It can be seen from the plot that

the national seasonal trend has been captured reasonably well by the estimated baseline

model (1) discussed in the previous subsection. The detrended data {Yt : t = 1, 2, . . . , n}

are shown in Figure 3(b) where the vertical dashed line separates the first 80 observations

from the remaining ones. From the plot, it can be seen that Yt remains quite stable when

1 6 t 6 80 (i.e., Dec 1 - Feb 18, 2009).

[Figure 3 about here.]

Sequential monitoring of a process is often divided into two phases (cf., Chapter 1, Qiu,

2014). In phase I, the distribution of the process observations in the case when the process

is IC, i.e., no disease outbreaks are present in the current setup, can be estimated from

an IC dataset. Then, the online sequential monitoring of the process is executed in phase

II. For the data shown in Figure 3(b), the first 80 observations {Yt, t = 1, · · · , 80} can be

assumed to be an IC dataset, and we start to online monitor the sequence at the 81st time

point. For the detrended data, temporal correlation might exist. As mentioned earlier, in

the SPC literature, conventional control charts assume that observations are independent of

each other, and the temporal correlation needs to be properly addressed for a reliable process

monitoring.

Next, we try to use a time series model to describe the temporal correlation in the

IC data. In the time series literature, the popular and flexible time series model is the
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ARIMA (p,d,q) model (Box and Jenkins, 1976), where p, d, and q are three parameters, p

is the order of autoregression, q is the the order of moving average, and d is the order of

difference (see Shumway and Stoffer (2011) for their mathematical definitions). To estimate

the ARIMA model, we suggest selecting d using the successive KPSS unit-root test proposed

by Kwiatkowski et al. (1992) to determine the number of differences required for the time

series model to be stationary. The KPSS test is for testing the the null hypothesis that

the time series model is stationary. It proceeds as follows. First, a unit-root test (Dickey

and Fuller, 1979) is applied to {Yt : t = 1, 2, . . . , 80} to test whether the time series is

stationary using an autoregressive model. If the p-value of this test is smaller than a pre-

specified significance level α, then we proceed to run the unit-root test again on the first-order

differenced data {Yt+1−Yt, t = 1, 2, . . . , 80}. If the p-value is once again smaller than α, then

we continue to run the test on the second-order differenced data. This process continues

until obtaining the first insignificant p-value (i.e., p-value is bigger than or equal to α).

Throughout this paper, if no further specification, α is fixed at 0.05. Once d is determined,

p and q are chosen by minimizing some model selection criterion. Kwiatkowski et al. (1992)

suggested using the AICc criterion for selecting p and q, which is adopted in this paper.

After implementing the model estimation procedure described above, we choose the fol-

lowing ARIMA(1, 1, 0) model:

Yt+2 − Yt+1 = φ (Yt+1 − Yt) + wt, for t = 1, 2, . . . , 80, (3)

where wt’s are the i.i.d. random errors with mean 0 and unknown variance σ2
w > 0. The

estimated value of φ is φ̂ = 0.22. The standardized residuals of the fitted model (3) is shown

in Figure 4(a). If the model is appropriate, the residuals should look like the white noise

from a distribution with mean 0. One way to assess whether this is true is to perform the

Ljung-Box test (cf., Shumway and Stoffer, 2011). The p-value of the of Box-Ljung test in the

current case is 0.23, which indicates that the autocorrelation in {Yt : t = 1, 2, . . . , 80} has
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been described well by (3) and there is no significant autocorrelation among the residuals

of the estimated model (3). The density histogram of the residuals shown in Figure 4(a),

the corresponding estimated density curve (solid line), and the density curve of the normal

distribution with the same mean and variance (dashed line) are shown in Figure 4(b). From

the plot, the distribution of the residuals is close to normal. As a matter of fact, the Shapiro-

Wilk normality test gives a p-value of 0.4413, which confirms that the distribution of the

residuals is not significantly different from normal.

[Figure 4 about here.]

2.3 Sequential Monitoring

After model (3) is estimated, the estimated model can be applied to the phase II detrended

data {Yt : t = 81, 82, . . . , n} to obtain the detrended and decorrelated phase II data {ŵt =

(Yt+2− Yt+1)− φ̂(Yt+1− Yt), t = 81, 82, . . . , n− 2}. If no HFMD outbreaks exist, then these

data should roughly follow a normal distribution with mean 0. Otherwise, the outbreaks will

be reflected in the mean shifts of {ŵt, t = 81, 82, . . . , n − 2}, as demonstrated by several

papers, including Jiang et al. (2000), Lu and Reynolds (2001), and Williamson and Hudson

(1999). Therefore, to detect the HFMD outbreaks, we can simply monitor the detrended and

decorrelated phase II data {ŵt, t = 81, 82, . . . , n− 2}. To this end, it has been well justified

that SPC charts (e.g., the Shewhart, CUSUM and EWMA charts) are effective tools (cf.,

Qiu, 2014). Because it has been justified that the IC distribution of {ŵt, t = 81, 82, . . . , n−2}

is close to a normal distribution and we are mainly concerned about upward shifts in the

HFMD incidence rates, we can consider using the classical CUSUM chart with the charting

statistic

Ct = max (0, Ct−1 + ŵt − k) , (4)
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where C0 = 0, and k > 0 is an allowance constant. The chart gives a signal of an upward

mean shift when

Ct > h,

where h > 0 is a control limit. In the SPC literature, k is usually chosen beforehand. It has

been well demonstrated that a larger k is good for detecting a larger shift, and a smaller k

is good for detecting a smaller shift. The chart (4) with a given k value, say k0, is optimal

for detecting the shift of size 2k0 in the sense that its out-of-control (OC) average run length

(ARL) is the shortest among all control charts with a given IC ARL value (Moustakides,

2004). Here, the IC ARL value is defined to be the average number of time points from the

beginning of process monitoring to the signal time when the process is IC, and the OC ARL

value is defined to be the average number of time points from the occurrence of a shift to

the signal time after the process becomes OC (cf., Section 4.2, Qiu, 2014). Therefore, the

concepts of the IC and OC ARL values are similar to the type-I error probability and power

in the hypothesis testing context. In practice, the IC ARL value is often specified beforehand,

and then a chart performs better if its OC ARL value is smaller when detecting a shift of a

given size. Commonly used IC ARL values include 100, 200, 370, 500, and 1000.

Next, we consider two commonly used IC ARL (denoted as ARL0) values 200 and 500, and

three k values 0.25, 0.5, and 1. For each combination of ARL0 and k, the corresponding value

of h can be computed numerically using either the existing R-packages, such as the package

spc, or a Monto Carlo simulation. The corresponding control charts are shown in Figure

5(a)–(c). From the plots, we can see that we have a convincing evidence of HFMD outbreaks

around the 105th time point (i.e., March 16 2009) for all values of ARL0 and k considered,

and the evidence of HFMD outbreaks around the 91st time point (i.e., March 1 2009) is only

marginally significant in cases when k = 0.5 and 1 and when k = 0.25 and ARL0 = 200. For

convenience of our perception, the two signaling time points t = 91 and t = 105 are plotted
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in the scatter plots of Yt’s and ŵt’s by the vertical dashed lines in Figure 5(d)–(e). It can be

seen that the CUSUM chart (4) can detect the HFMD outbreak in its early stage which is

extremely helpful for us to take appropriate interventions early to prevent the widespread of

the disease.

[Figure 5 about here.]

For the proposed three-step procedure described above, we evaluate its performance in

terms of false positive rate (FPR) and false negative rate (FNR) in the next example.

Because we do not really know the true status of disease outbreaks in real data, the following

simulation study is performed instead. To mimic the HFMD data, in model (1), we consider

the baseline function

f(t) = 0.05 + 0.05e−(t−150)2/1000 + 0.001 cos

(
2πt

365

)
− 0.0005 sin

(
2πt

365

)
, for t = 1, 2, . . . , 365,

and the error terms εt generated from the AR(1) model

εt = 0.0025εt−1 + wt, t > 1,

where wt’s are independent and identically distributed (i.i.d.) with the normal distribution

N(0, 0.75/2002). To compute the FPR, we generate 365 observations from model (1) as

IC data, and compute the local quadratic kernel estimate f̂(t) and the estimated ARIMA

model, as discussed in Sections 2.1 and 2.2. Then, another 365 observations are generated

from model (1) as test data for sequential monitoring. After the first two steps of the proposed

procedure (i.e., detrend and decorrelation) are applied to the test data, the CUSUM chart

(4) with ARL0 = 500 and k = 0.25, 0.5 or 1,0 is applied and it is recorded whether a

signal is given when monitoring the test data. This process is then repeated 5,000 times,

and the proportion of times that the CUSUM gives signals is used for estimating the FPR.

For estimating the FNR, the simulation is performed in the same way, except that the test

data are generated from model (1) in which the function f(t) is replaced by f(t) + δ, where
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δ denotes a constant shift. In this study, we consider δ = 0.005, 0.01, and 0.02. The results

are presented in Table 1.

[Table 1 about here.]

From Table 1, it can be seen that the FNR’s are quite small when δ = 0.01 and 0.02, and

they are relatively large when the shift is really small (i.e., δ = 0.005). Regarding the FPR’s,

they are between 17-34%. Besides the parameter k, we find that the bandwidth parameter

λ used in the local quadratic kernel estimation of f(t) also has an impact on the FNR and

FPR. To investigate this issue, besides the CV selection of λ, we also consider the cases when

λ = 0.1, 0.2, 0.3, and 0.4. The results are shown in Figure 6. From plot (a), it can be seen

that the FPR can be reduced a lot if we use a relatively large λ (e.g., λ = 0.3). In such cases,

the FNR would also be quite small if the true shift is small (e.g., δ = 0.02). So, in practice,

if we prefer a relatively small FPR, then λ should be chosen a little larger than the value

determined by the CV procedure.

[Figure 6 about here.]

3. Monitoring HFMD in Individual Provinces

In the previous section, we have demonstrated our proposed three-step procedure and used

it for monitoring the HFMD data at the national level. This preliminary analysis shows

that our method can detect the HFMD outbreak at an early stage. In practice, however, a

warning of the HFMD outbreak at the national level has a limited influence on the decisions

of local governments and local medical institutions regarding whether they should take

some preventive measures (e.g., quarantine infected patients or reduce public gatherings)

immediately after the national warning, since it is possible that only a few provinces are

in the danger of an HFMD outbreak in such cases. If the number of reported HFMD cases

remains relatively stable in a province, then such preventive measures would waste much
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public resource. On the other hand, if a province is under imminent threat of an HFMD

outbreak, these preventive measures would be extremely important. Thus, it is necessary

to monitor HFMD outbreaks at a local level. In this section, we geographically divide the

HFMD data into thirty one groups, corresponding to the thirty one provinces in China,

and apply the proposed method at the provincial level. The method, however, can also be

used at a county or city level. The procedures for removing the seasonality and the temporal

autocorrelation remain the same as those described in Section 2, except that Mt in (2) should

be replaced by the population of each individual province. After using the ARIMA models

to decorrelate the detrended data at the provincial level, the estimated parameters of the

ARIMA models for individual provinces are listed Table 2. From the table, it can be seen that

there is some difference among different provinces in regard to the temporal autocorrelation

in the detrended data. But, the difference is quite small.

[Table 2 about here.]

However, our analysis shows that the distributions of the residuals of the fitted ARIMA

models (i.e., the detrended and decorrelated data) are significantly different from normal

distributions for most provinces. For instance, the histogram of the standardized residuals of

the estimated ARIMA(0,1,1) model for the Hebei province is shown in Figure 7, together with

the estimated density curve and the density curve of a standard normal distribution. From

the plot, it can be seen that the distribution of the residuals is skewed to the right, and the

Shapiro-Wilk normality test confirms that the distribution of the residuals is significantly

different from a normal distribution. In such cases, the control limits of the conventional

CUSUM chart (4) based on the normality assumption are invalid any more since the actual

IC ARL values of the chart would be quite different from the pre-specified nominal IC ARL

value in such cases (cf., Qiu and Hawkins, 2001; Qiu and Li 2011).

[Figure 7 about here.]
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To overcome the difficulty due to the non-normality of the detrended and decorrelated data

mentioned above, we suggest using the bootstrap procedure described below to search for

the control limit of the CUSUM chart (4). Let R denote the set of the phase I detrended and

decorrelated data of all 31 provinces. Then, R contains 80× 31 = 2480 numbers since each

province has 80 phase I detrended and decorrelated observations, as discussed in Section 2.2.

Next, we randomly choose a sequence of numbers from R with replacement and the chosen

numbers are denoted as {w̃∗
t , t = 1, 2, . . .}. For a given control limit h∗ > 0, the run length

(or signal time) is calculated by

RL∗
0(h

∗) = min
t
{t > 1, Ct > h∗},

where Ct is the same as that defined in (4) except that ŵt should be replaced by w̃∗
t . The above

step is repeated for B = 50, 000 times, and B values of RL∗
0(h

∗) are obtained. Their averaged

value is denoted as ARL∗
0(h

∗). Finally, we search for the h∗ value such that ARL∗
0(h

∗) equals

the pre-specified value of ARL0. This h∗ value is then used for monitoring the detrended

and decorrelated data for individual provinces. In the case when k = 0.25 and ARL0 = 200,

the signal times of different provinces are presented in the map of Figure 8. The darker the

color, the earlier the signal times. By this result, it seems that the HFMD outbreak starts

from Beijing, the southern provinces Guangdong and Guangxi, and the mid-east provinces

Henan and Shandong. It then spreaded to about a dozen provinces close to the east coast. A

big region in the western and northern parts of China was not affected much by the HFMD

outbreak. It can also be seen that the signal times of different province have some spatial

correlation. Provinces that are geographically close to each other tend to have similar signal

times of the HFMD outbreak. These results are quite consistent with some earlier studies

(cf., Bie et al., 2010; Wang et al., 2011). The signal times of all 31 provinces in cases when

ARL0 = 200, or 500 and k = 0.25, 0.5, or 1 are summarized in Table 3. These results show

that 1) the selection of ARL0 and k has some impact on the signal time, but the impact
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is relatively small, and 2) the geographical pattern shown in the table matches with the

geographical pattern in Figure 8 well. The only provinces in which the signal times are quite

different when k changes are Yunnan and Gansu. After checking the data carefully, we found

that the number of HFMD cases had a single-day jump in Yunnan on April 15, 2009, and

it had a single-day jump in Gansu on April 13, 2009. In the literature, it has been well

desmonstrated that CUSUM charts with a larger k will be more effective to detect transient

shifts because the CUSUM charting statistic Ct defined in (4) uses less history data in such

cases (i.e., it is reset to be 0 more often in the “max” operation in (4)). See Section 4.2

in Qiu (2014) for a detailed discussion. Therefore, the chart (4) can react to the single-day

jump better when k is chosen larger. This explains why the signal times are shorter when k

is chosen larger for Yunnan and Gansu in Table 3.

[Figure 8 about here.]

[Table 3 about here.]

For the above HFMD data, we also tried the sequential monitoring scheme by Marshall

et al. (2007) that was based on the local Knox statistic proposed by Rogerson (2001), and

the space-time scan method by Kulldorff (2001). Marshall et al. (2007) argued that their

prospective monitoring scheme would be more effective than the original retrospective space-

time method using the local Knox statistic. Their method assumed that the standardized

disease incidence followed a normal distribution. The scan method, on the other hand,

assumed that the disease incidence in a local region and within a time interval followed a

Poisson distribution. In the HFMD example, the density histogram of the disease incidence

in the Jilin province is shown in the left panel of Figure 9, where the solid and dashed

curves denote the density curve of the data and the Poisson density with the same mean

and standard deviation. It can be seen that the two curves are quite different. The Pearson’s

χ2 test shows that the distribution of the disease incidence is significantly different from the
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Poisson distribution with a p-value of 1.28× 10−11. The middle panel of Figure 9 shows the

histogram of the standardized disease incidence, its density curve (solid), and the Normal

density curve with the same mean and standard deviation (dashed). The Pearson’s χ2 test

for checking whether the data follow a Normal distribution gives a p-value of 3.57×10−5. We

also found that the Poisson and Normal distributions were both invalid in all 31 provinces.

Therefore, the existing methods based on these distribution assumptions are inappropriate

to use in this example. Even if these distributional assumptions are pretended to be valid,

performance of these methods is not good, as seen in the right panel of Figure 9 where the

signal times of the CUSUM (4), scan, and local Knox methods are presented.

[Figure 9 about here.]

4. Concluding Remarks

We have proposed a three-step procedure to analyze the HFMD data obtained during

December 2008 – November 2009 in China. The first two steps remove the seasonal trend

and the temporal autocorrelation from the observed incidence rates, and the third step

sequentially monitors the detrended and decorrelated data using a CUSUM chart. Our data

analysis is performed at both the national level and the provincial level. A data-driven

procedure is also suggested for obtaining the control limit of the CUSUM chart when it

is used for monitoring the detrended and decorrelated data at the provincial level since

the normality assumption required by the conventional CUSUM chart is found invalid in

such cases. The numerical results presented in the paper show that our proposed method is

capable to signal the HFMD outbreak at an early stage before the disease spreads to a large

population. However, our current method still has some limitations. For instance, the possible

spatial correlation in the observed HFMD data has not been fully accommodated in our

data analysis. It requires much future research to develop effective methods for sequentially
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monitoring the spatio-temporal patterns of the disease incidence and for early detection and

prevention of the disease outbreak.

5. Supplementary Materials

R codes implementing the proposed three-step procedure and the HFMD data analyzed in

the paper are available with this paper at the Biometrics website on Wiley Online Library.
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Figure 1: Observed daily incidences of the Hand, Foot and Mouth Disease in China during
December 2008 and November 2009.
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Figure 2: Solid line denotes f̂(t), and little circles denote the averaged daily incidence rates
of the five provinces included in the baseline data.
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Figure 3: (a): The solid and dashed lines denote the observed daily counts Zt of HFMD and

the estimated baseline daily counts f̂(t)Mt. (b): The solid line denotes the detrended data
Yt, and the dashed vertical line separates the first 80 observations from the remaining ones.
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Figure 4: (a): Residual plot of the model (3) for the first 80 observations. (b): Density
histogram of the residuals shown in (a), the corresponding estimated density curve (solid),
and the density curve of the normal distribution with the same mean and variance (dashed).
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Figure 5: (a)-(c): CUSUM charts when k = 0.25, 0.5 and 1, respectively. The horizontal
dot-dashed and solid lines denote the control limits when ARL0 = 200 and 500, respectively.
(d)-(e): Scatter plots of Yt’s and ŵt’s with the vertical dashed lines denoting the signaling
time points t = 91 and t = 105.
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Figure 6: Estimated FPR’s (plot (a)) and estimated FNR’s when δ = 0.005 (plot (b)), 0.01
(plot (c)), and 0.02 (plot (d)). In this example, k = 0.25, 0.5, 0.1 and λ = 0.1, 0.2, 0.3, 0.4.
The dark points in each plot show the FPR’s and FNR’s when λ is chosen by the 10-fold CV
procedure. Note that the y-axis scale in plot (d) is different from those of the other three
plots.
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Figure 7: Density histogram of the standardized residuals of the estimated ARIMA model
for the Hubei province, the estimated density curve (solid line), and the density curve of the
standard normal distribution (dashed line).
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Figure 8: Signal times of the 31 provinces in China about the HFMD outbreak in 2009.
The darker the colors, the earlier the signal times.
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Figure 9: Left panel: Density histogram and curve (solid) of the HFMD incidences in the
Jilin province, and a Poisson density (dashed) with the same mean and standard deviation.
Middle panel: Same as left panel, except that it is for the standardized HFMD incidences
and the dashed curve is a Normal density. Right panel: Signal times of the CUCUM (4),
scan, and Knox methods for monitoring the reported HFMD incidences in 31 provinces of
China.
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Table 1: Simulation results about the FPR (the first row with δ = 0) and the FNR (the
remaining rows) of the proposed three-step procedure based on 5,000 replications. Numbers
in parentheses are the standard errors in the unit of 10−3. The 10-fold CV procedure is used
for choosing the bandwidth parameter when estimating the baseline function f(t).

δ k = 0.25 0.5 1.0

0 0.335 (4.203) 0.262 (4.080) 0.175 (3.553)

0.005 0.185 (2.786) 0.372 (4.579) 0.545 (5.775)
0.01 0.026 (0.286) 0.027 (0.408) 0.180 (3.202)
0.02 0.008 (0.057) 0.005 (0.056) 0.003 (0.069)
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Table 2: Estimated parameters of the ARIMA models for individual provinces.

Province p d q Province p d q

1 Beijing 0 1 1 17 Hubei 1 1 1
2 Tianjing 2 1 1 18 Hunan 1 1 1
3 Hebei 0 1 1 19 Guangdong 1 0 1
4 Shanxi 0 1 1 20 Guangxi 1 1 1
5 Inner Mongolia 0 1 1 21 Hainan 0 1 1
6 Liaoning 2 1 2 22 Chongqing 0 1 1
7 Jilin 1 1 2 23 Sichuan 0 0 0
8 Heilongjiang 0 1 2 24 Guizhou 2 1 2
9 Shanghai 1 1 1 25 Yunan 1 0 1
10 Jiangsu 1 1 1 26 Tibet 0 1 1
11 Zhejiang 1 0 0 27 Shaanxi 1 1 1
12 Anhui 1 1 1 28 Gansu 0 1 1
13 Fujian 1 1 1 29 Qinghai 0 1 1
14 Jiangxi 0 1 1 30 Ningxia 1 1 2
15 Shandong 1 1 1 31 Xinjiang 2 1 1
16 Henan 0 1 1
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Table 3: Signal times of all 31 provinces obtained from the CUSUM chart (4) when ARL0

= 200, or 500, and k = 0.25, 0.5, or 1.

Province
ARL0 = 200 ARL0 = 500

k=0.25 k=0.5 k=1 k=0.25 k=0.5 k=1

Beijing 22 23 24 24 24 25
Tianjin 88 86 86 88 88 88
Hebei 36 37 37 37 37 37
Shanxi 41 41 61 43 42 61
Inner Mongolia 80 80 81 81 81 81
Liaoning 102 107 114 107 104 106
Jilin 107 112 114 114 113 114
Heilongjiang 106 106 106 106 106 106
Shanghai 39 39 39 41 40 41
Jiangsu 34 34 34 35 35 34
Zhejiang 37 40 43 40 41 43
Anhui 34 34 34 35 35 34
Fujian 208 208 208 208 208 208
Jiangxi 36 36 36 36 36 36
Shandong 23 22 23 24 23 23
Henan 23 22 22 23 23 23
Hubei 34 34 34 34 34 34
Hunan 37 37 37 38 38 38
Guangdong 28 28 28 29 28 28
Guangxi 23 20 26 26 26 26
Hainan 33 34 34 34 34 34
Chongqing 40 39 39 40 40 39
Sichuan 53 53 42 53 53 53
Guizhou 51 61 61 61 61 61
Yunnan 77 56 56 83 77 56
Tibet 211 211 211 212 211 211
Shaanxi 40 40 40 40 40 40
Gansu 91 54 54 91 90 54
Qinghai 88 88 88 89 88 88
Ningxia 91 91 95 95 95 95
Xinjiang 90 90 90 90 90 90


