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																																																																						Abstract	

Qiu	 and	 Sheng	 has	 proposed	 a	 powerful	 and	 robust	 two-stage	 procedure	 to	 compare	 two	

hazard	 rate	 functions.	 In	 this	 paper	 we	 improve	 their	 method	 by	 using	 the	 Fisher	 test	 to	

combine	 the	 asymptotically	 independent	 p-values	 obtained	 from	 the	 two	 stages	 of	 their	

procedure.	 In	 addition,	 we	 extend	 the	 procedure	 to	 situations	 with	 multiple	 hazard	 rate	

functions.	Our	 comprehensive	 simulation	 study	 shows	 that	 the	proposed	method	has	a	good	

performance	in	terms	of	controlling	the	type	I	error	rate	and	of	detecting	power.	Two	real	data	

applications	are	considered	for	illustrating	the	use	of	the	new	method.	
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1. Introduction	
In	survival	data	analysis,	one	common	task	 is	 to	compare	two	or	more	hazard	curves.	To	this	

end,	 several	nonparametric	methods,	 including	 the	 log-rank	 (LR),	Gehan–Wilcoxon	and	Peto–

Peto	tests,	among	several	others,	have	been	proposed	in	the	literature	(Lee	and	Wang,	2003).	

However,	 the	performance	of	 these	methods	depends	on	 the	 true	alternatives.	 For	 instance,	

the	LR	test	is	more	powerful	than	other	methods	if	the	hazard	functions	under	investigation	are	

parallel.	 But,	when	 such	 a	 proportional	 hazards	 assumption	 is	 violated,	 the	 LR	 test	may	 lose	

power	 dramatically.	 To	 circumvent	 this	 limitation,	 some	 methods	 that	 are	 robust	 to	 the	

violation	of	the	proportional	hazards	assumption	have	been	proposed	in	the	literature	(Cheng	

et	 al.,	 2009;	 Li	 et	 al.,	 2015;	 Lin	 and	Wang,	 2004;	 Liu	et	 al.,	 2007;	Mantel	 and	Stablein,	 1988;	

Moreau	et	al.,	1992;	Park	and	Qiu,	2014;	Qiu	and	Sheng,	2008).		

				The	 method	 proposed	 by	 Qiu	 and	 Sheng	 (called	 the	 QS	 test	 hereafter)	 is	 a	 two-stage	

procedure	designed	for	comparing	two	hazard	rate	functions	(Qiu	and	Sheng,	2008).	In	the	first	

stage,	the	LR	test	is	performed	with	the	hope	that	two	parallel	hazards	can	be	distinguished	in	

the	 case	when	 they	 are	not	 identical.	 In	 the	 second	 stage,	 a	 test	 statistic	 (denoted	 as	NP)	 is	

constructed	 which	 has	 the	 following	 properties:	 it	 is	 asymptotically	 independent	 of	 the	 one	

used	in	the	first	stage,	and	it	is	powerful	when	the	two	hazard	functions	cross	each	other.	Let	𝛼	

be	 the	 overall	 significance	 level;	 𝛼! and	 𝛼!	 the	 significance	 levels	 for	 stages	 one	 and	 two,	

respectively.	Denote	𝑝!	and	𝑝! the	p-values	from	the	first	and	the	second	stages,	respectively.	

The	QS	 test	performs	as	 follows.	 In	 stage	one,	 if	𝑝! ≤ 𝛼!,	 then	we	 reject	 the	null	hypothesis	

that	 the	two	hazard	 functions	are	the	same	and	stop	the	testing	procedure;	otherwise,	go	to	

stage	 two.	 In	 stage	 two,	 if	 𝑝! ≤ 𝛼!,	 then	 we	 reject	 the	 null	 hypothesis	 mentioned	 above;	
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otherwise,	the	QS	test	fails	to	reject	the	null	hypothesis.	Therefore,	asymptotically	we	have	the	

following	relationship	among	the	significance	levels:	

                                                                 𝛼! + 𝛼! 1− 𝛼! =  𝛼.																																																				(1)	

				There	are	infinitely	many	different	choices	for	𝛼!	and	𝛼!	for	a	given	overall	significance	level	

𝛼	in	(1).	In	the	original	QS	test,	for	convenience,		𝛼!	and	𝛼!	are	chosen	to	be	

                                                                 𝛼! = 𝛼! = 1− 1− 𝛼	.																																																(2)	

The	overall	p-value	for	the	QS	test	can	be	defined	by	

                                                 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
𝑝!, 𝑝! ≤ 𝛼!

𝛼! + 𝑝!(1− 𝛼!), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.																													(3)	

				There	 are	 some	 interesting	 characteristics	 associated	with	 the	QS	 test.	 First,	 the	overall	 p-

value	 and	 power	 depend	 on	 the	 choices	 of	𝛼!	 and	𝛼!,	 and	 they	 also	 depend	 on	 the	 preset	

significance	 level	𝛼.	Second,	 from	(3),	 it	 is	obvious	that	the	overall	𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≥ min (𝑝!,𝛼!).	

This	may	be	a	shortcoming	if	one	views	the	p-value	as	the	degree	of	evidence	against	the	null	

hypothesis	(e.g.,	a	smaller	p-value	implies	a	stronger	evidence).	Third,	the	p-value	and	power	of	

this	test	depend	on	the	order	of	the	two	stages.	Fourth,	the	QS	test	was	designed	for	situations	

with	 two	 hazard	 curves	 only.	 In	 practice,	 one	may	 have	multiple	 hazard	 curves	 to	 compare;	

therefore,	it	is	desirable	to	extend	the	QS	test	to	cases	with	multiple	hazard	curves.	

				To	 overcome	 the	 aforementioned	 shortcomings	 of	 the	 QS	 test,	 and	 more	 importantly,	 to	

increase	 its	 detecting	 power	 and	 make	 it	 suitable	 for	 handling	 multiple	 hazard	 curves,	 we	

propose	an	 improvement	of	 the	QS	 test.	 Through	a	 comprehensive	 simulation	 study,	we	will	

show	that	the	new	method	is	more	powerful	than	the	QS	test	under	many	different	situations.	

We	will	also	use	three	real	data	examples	to	illustrate	the	use	of	the	proposed	method.	
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2. Method	

2.1.	The	QS	test	

Suppose	 we	 have	 two	 treatment	 groups	 with	 nj	 (j=1,2)	 subjects	 and	 the	 total	 number	 of	

subjects	 is	 n=n1+n2.	We	 denote	 the	 D	 distinct	 ordered	 failure	 times	 as	 t1,	 t2,	 …,	 tD.	 At	 each	

failure	time	ti	 (i=1,2,…,	D),	dij	and	Yij	are	the	number	of	events	and	the	number	of	subjects	at	

risk	for	group	j.	Let	di=di1+di2,	and	Yi=Yi1+Yi2.	The	LR	test	statistic	used	in	the	first	stage	of	the	QS	

test	can	be	written	as	

                                          𝑈 = 𝑤!!(𝑑!! − 𝑌!!
!!
!!
)!

!!! / !!!
!!

!!!
!!

!
!!!

!!!!!
!!!!

𝑑! ,																																	(4)	

where	𝑤!! = 1	here.	

				To	construct	the	test	statistic	in	the	second	stage,	we	need	the	following	notations.	For	each	j	

(j=1,2),	 let	 Tkj	 (k=1,2,…,nj)	 denote	 the	 event	 time	of	 the	 kth	 subject	 in	 group	 j	which	has	 the	

cumulative	 distribution	 function	 Fj,	 and	 Ckj	 be	 the	 censoring	 time	 which	 has	 the	 cumulative	

distribution	function	Gj.	Denote	the	survival	functions	for	the	survival	time	and	censoring	time	

as	Sj(s)=	1-Fj(s)	and	Lj(s)=	1-Gj(s),	respectively.	Let		Xkj	=min(Tkj,	Ckj)	be	the	observed	survival	or	

censored	 time,	 𝛿!" = 𝐼(𝑇!" < 𝐶!")	 be	 the	 censoring	 indicator,	 and	 𝜋! 𝑠 = 𝑃 𝑋!" > 𝑠 =

𝑆!(𝑠)𝐿!(𝑠)	be	the	survival	function	of	the	observed	time.	Then,	under	the	null	hypothesis	that	

the	two	hazard	functions	are	the	same,	we	have	𝐹! = 𝐹!	(or	equivalently,	𝑆! = 𝑆!).		

				The	test	statistic	used	in	the	second	stage	of	the	QS	test	is	a	weighted	log-rank	test	defined	

by			                                                                𝑉 = 𝑠𝑢𝑝!!!!!!!!!(𝑉!),																																																	(5)	

where	𝑚 = 𝐷𝑟 	denotes	the	integer	part	of	𝐷𝑟,	for	any	𝑟 ∈ 𝜀, 1− 𝜀 ,	0 < 𝜀 < 0.5	is	a	given	

small	number,		𝑉! = 𝑤!!
(!)(𝑑!! − 𝑌!!

!!
!!
)!

!!! / 𝑤!!
(!) !!!

!!

!!!
!!

!
!!!

!!!!!
!!!!

𝑑! 	,		
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																																																	𝑤!!
(!) = −1, 𝑖𝑓 𝑖 = 1,2,… ,𝑚

𝑐!, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,	

𝑐! = !! !! !! !!
!!
! !! !! !

!!
! !! !!

∆𝑆(𝑡!)!
!!! / !! !! !! !!

!!
! !! !! !

!!
! !! !!

∆𝑆(𝑡!)!
!!!!! ,	and	𝐿!,	𝐿!,	and	𝑆	are	

the	Kaplan-Meier	estimates	(Kaplan	and	Meier,	1958)	of	L1,	L2	and	S,	respectively.		The	p-value	

for	V	can	be	approximated	by	a	bootstrap	procedure.		

				For	the	two	statistics	U	and	V	used	in	the	two	stages	of	the	QS	test,	we	have	the	following	

nice	property	(Qiu	and	Sheng,	2008).	

Theorem	1.	The	two	statistics	U	and	V	in	(4)	and	(5)	are	asymptotically	independent	under	the	

null	hypothesis	that	the	two	hazard	functions	in	question	are	the	same.	

2.2.	The	proposed	test	

Since	the	two	statistics	U	and	V	are	asymptotically	independent,	the	two	p-values	obtained	by	

the	two	statistics	are	also	asymptotically	independent	and	identically	distributed	from	0	and	1	

under	the	null	hypothesis	that	the	two	hazard	curves	are	equal.	Based	on	this	fact,	we	propose	

to	obtain	an	overall	p-value	using	the	Fisher-test	method	since	 it	 is	more	robust	 in	 the	sense	

that	 it	has	reasonable	power	when	either	one	of	the	two	p-values	 is	small	 (Chen,	2011;	Chen	

and	Nadarajah,	2014;	Fisher,	1932;	Owen,	2009).		By	this	method,	the	overall	p-value	is	defined	

by	

                                                               𝑝! = 𝐻!!(−2 ln[𝑝!𝑝!]),																																																				(6)	

where	𝐻	 is	 the	 survival	 function	of	a	 random	variable	 that	has	a	 chi-square	distribution	with	

degrees	of	freedom	4	based	on	the	Fisher’s	theorem	(Fisher,	1932).		

			Method	(6)	can	be	extended	to	cases	with	𝐾	 (𝐾 ≥ 2)	hazard	curves	easily,	 in	which	we	can	

make	 pairwise	 comparisons	 for	 a	 total	 of	 𝐾(𝐾 − 1)/2	 pairs	 of	 curves.	 For	 each	 of	 the	
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comparisons,	we	can	calculate	its	overall	p-value	using	(6).	Then,	the	Bonferroni	procedure	for	

multiple	comparisons	can	be	used	to	determine	whether	the	null	hypothesis	should	be	rejected	

or	not.	More	specifically,	if	the	smallest	p-value	from	the	𝐾(𝐾 − 1)/2	comparisons	is	less	than	

the	 given	 significance	 level	 divided	 by	 𝐾(𝐾 − 1)/2,	 then	 the	 null	 hypothesis	 is	 rejected;	

otherwise	it	is	not	rejected.	It	should	be	pointed	out	that	here	we	don’t	use	a	global	test	for	the	

overall	comparison	although	the	adoption	of	Bonferroni	correction	guarantees	the	controlling	

of	 family-wise	 error	 rate.	 It	 is	 possible	 that	 some	 global	 tests,	 if	 exist,	 may	 reject	 the	 null	

hypothesis	 at	 a	 given	 significance	 level	but	all	 of	 the	adjusted	p-values	 from	our	method	are	

greater	than	that	nominal	level.	

				There	 are	 some	 good	 properties	 for	 the	 proposed	 test.	 Figure	 1	 shows	 the	 acceptance	

regions	of	the	original	QS	test	and	the	proposed	method	based	on	the	Fisher	test,	both	with	a	

significance	level	of	0.05	in	cases	when	K=2.	It	clearly	shows	that	the	QS	test	would	reject	the	

null	 hypothesis	 when	 either	 p1	 or	 p2	 is	 less	 than	 0.0253.	 In	 contrast,	 the	 proposed	method	

based	on	the	Fisher	test	can	reject	the	null	hypothesis	in	certain	cases	when	both	p1	and	p2	are	

larger	 than	0.0253	 (i.e.,	 (p1,	p2)	 in	 the	 shaded	 region	 in	Figure	1).	 In	other	words,	 for	 certain	

alternative	hypotheses	 that	both	U	and	V	have	 considerable	powers	 to	detect,	 the	proposed	

method	based	on	the	Fisher	test	would	be	more	powerful	than	the	original	QS	test.	In	practice,	

such	alternative	hypotheses	correspond	to	cases	when	the	two	hazard	curves	across	at	an	early	

or	 late	 time,	 which	 are	 common	 in	 applications.	 On	 the	 other	 hand,	 for	 the	 alternative	

hypotheses	that	one	of	U	and	V	has	little	power	to	detect	but	the	other	one	has	a	good	power,	

the	QS	 test	may	 perform	 slightly	 better.	 These	 alternative	 hypotheses	 usually	 correspond	 to	

cases	when	the	two	hazard	curves	cross	at	a	quite	middle	time	point	or	they	are	quite	parallel	
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to	 each	 other,	 which	 are	 less	 common	 in	 practice.	 In	 cases	 when	 there	 are	multiple	 hazard	

curves,	it	will	be	shown	that	the	proposed	method	is	much	more	powerful	than	the	QS	test	in	

most	scenarios.	

Results	

3.1. Simulation	study	

To	assess	the	performance	of	the	proposed	test,	we	conduct	a	comprehensive	simulation	study	

to	 compare	 it	with	 the	QS	 tests.	 The	distributions	of	 the	 survival	 time	 (T)	are	assumed	 to	be	

uniform	 (𝑈:𝑈(𝜃 − 𝑎,𝜃 + 𝑎)),	 exponential	 (𝐸: exp 𝑎 + 𝜃),	or	 log-normal	 (LN)	 (𝐿𝑁: 𝐿𝑁(𝜃,𝑎));	

the	 corresponding	 censoring	 time	 (C)	 follows	 a	 uniform	 (𝑈(𝜃 − 𝑎,𝜃 + 𝑎 + 2(1− 2𝑝)/𝑝)),	

exponential	 (𝐸: exp(𝑎 !
!!!

)+ 𝜃),	 and	 log-uniform	 (LU)	 (𝐿𝑈: 𝐿𝑈(𝜃 + 𝑎𝑈(−2,−2+ 2/𝑝))),	

respectively.	 Here	 p	 is	 the	 expected	 censoring	 rate.	 In	 the	 simulation	 we	 consider	 different	

values	for	p:	0,	0.2,	0.4,	and	0.6.	When	estimating	the	empirical	type	I	error	rate,	we	assume	the	

distributions	 for	 the	 survival	 times	 are	 identical	 for	 all	 groups.	 When	 assess	 the	 power,	 in	

addition	to	cases	when	all	groups	have	the	same	types	of	distribution,	we	also	consider	cases	

when	 treatment	 groups	 have	 different	 types	 of	 distributions.	 More	 specifically,	 we	 also	

consider	 the	 following	 cases:	 some	 groups	 have	 uniform	 distributions	 and	 the	 others	 have	

exponential	 distributions	 (denoted	 as	 U+E),	 some	 groups	 have	 uniform	 distributions	 and	 the	

others	 have	 log-normal	 distributions	 (denoted	 as	 U+LN),	 and	 some	 groups	 have	 exponential	

distributions	 and	 the	others	have	 log-normal	 (denoted	as	 E+LN).	 	We	 compare	 the	proposed	

method	 (denoted	 as	 New)	 with	 the	 QS	 two-stage	 test	 using	 default	 values	 𝛼! = 𝛼! = 1−

1− 𝛼	(denoted	as	TS),	the	log-rank	test	(denoted	as	LR),	and	the	test	used	in	the	second	stage	
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of	the	QS	test	(denoted	as	NP).	To	see	how	the	significance	levels		𝛼!,𝛼!	in	the	two	stage	affect	

the	performance	of	 the	QS	approach,	we	also	consider	 two	QS	tests	with	different	values	 for	

𝛼!and 𝛼!.	 Specifically,	we	chose	𝛼! = 0.01,	𝛼! = 0.0404	 (denoted	as	TS1),	 and	𝛼! = 0.0404,	

𝛼! = 0.01	(denoted	as	TS2).	

We	choose	sample	sizes	to	be	50	for	both	groups.	We	use	the	R	package	TSHRC	with	default	

setting	(i.e,	𝜀 = 0.1,	and	the	number	of	bootstrap	samples	is	1000)	to	get	the	p-values	for	TS,	

LR,	and	NP.	To	compute	 the	empirical	 type	 I	error	 rate	and	 the	power,	we	use	a	 significance	

level	of	0.05	and	compute	the	proportion	of	rejections	out	of	1000	replicated	simulations.		

				First,	we	consider	 the	cases	when	there	are	only	 two	hazard	curves.	Table	1	below	reports	

the	empirical	 type	 I	error	rates	 for	each	method.	 	 It	can	be	seen	that	all	methods	considered	

can	control	the	type	I	error	rate	well	in	different	cases,	although	the	methods	TS,	NP,	and	New	

tend	 to	have	 slightly	 smaller	empirical	 type	 I	 error	 rates	 in	 certain	 cases	when	 the	 censoring	

rates	are	low.	

				Table	2	gives	the	empirical	power	values	for	each	method	under	different	settings.	It	shows	

that	(i)	in	cases	when	both	LR		and	NP	have	some	power	to	detect	the	difference,	the	proposed	

test	(i.e.,	New)	is	usually	more	powerful	than	the	original	QS	test	(i.e.,	TS),	and	(ii)	in	cases	when	

only	one	of	LR	and	NP	has	power,	the	QS	test	 is	slightly	better	than	the	proposed	test.	These	

results	are	consistent	with	our	expectations	demonstrated	in	Figure	1.	

				Next,	we	consider	situations	when	we	have	four	hazard	curves.	Similar	to	the	proposed	test,	

for	comparison	of	multiple	hazard	curves,	the	p-values	from	the	pairwise	QS	tests	can	be	used	

to	determine	whether	we	should	reject	the	overall	null	hypothesis	or	not.	In	other	words,	if	the	

smallest	 p-value	 of	 the	 QS	 test	 obtained	 from	 the	𝐾(𝐾 − 1)/2	 pairwise	 comparisons	 is	 less	
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than	the	given	significance	level	divided	by	𝐾(𝐾 − 1)/2,	then	the	over	null	hypothesis	that	all	

hazard	curves	are	the	same	is	rejected;	otherwise	the	null	is	not	rejected.	It	should	be	pointed	

that	the	LR	test	can	be	applied	directly	to	cases	when	K>2.	The	method	NP	is	not	included	here	

since	it	requires	an	enormous	number	of	bootstrap	samples	to	accurately	estimate	its	p-value,	

which	is	not	feasible	in	this	example	with	relatively	small	sample	sizes.		

				Table	3	reports	the	empirical	sizes	of	the	method	based	on	the	QS	tests	(TS,	TS1,	and	TS2),	

the	 LR	 test	 and	 the	proposed	method	New.	Again,	 all	 of	 the	methods	 can	 control	 the	 type	 I	

error	rate	reasonably	well.	

				Table	4	reports	the	empirical	power	values	for	each	method	under	different	settings.	It	can	

be	seen	that	in	many	situations,	the	proposed	test	has	larger	power	values	than	the	LR	test	and	

the	QS	tests.	Sometimes,	the	differences	of	the	power	values	between	the	proposed	test	and	

the	QS	tests	are	big.	For	example,	when	the	survival	times	are	all	from	the	uniform	distributions	

for	the	four	hazard	curves,	regardless	of	the	censoring	rates,	the	proposed	method	can	detect	

the	difference	almost	all	the	time.	In	contrast,	the	LR	and	QS	methods	have	much	lower	

powers,	especially	when	the	censoring	rates	are	high	(e.g.,	p=0.4	and	0.6).	

				Among	those	TS	tests	with	different	values	for	 𝛼! and 𝛼!,	in	general,	as	expected,	under	

situations	where	LR	test	is	more	powerful	than	the	NP	test,	TS2	is	more	powerful	than	TS1;	on	

the	other	hand,	when	LR	is	less	powerful	than	the	NP	test,	TS1	is	more	powerful	than	TS2.		If	

there	are	two	groups	to	be	compared	(Tables	2	and	S2),	we	observed	that	under	some	

conditions,	the	TS1	or	TS2	may	have	larger	empirical	power	values	than	the	proposed	test.	

However,	in	general,	the	new	test	has	reasonable	power	under	all	conditions	considered	in	the	

simulation:	it	has	similar	or	larger	power	values	compared	with	the	maximum	power	values	



11	
	

from	TS,	TS1	and	TS2.	When	there	are	four	hazard	rate	functions	to	be	compared	(Tables	4	and	

S4),	the	new	test	usually	has	larger	power	values	than	those	from	TS,	TS1,	and	TS2.	In	addition,	

with	different	values	of	 𝛼! and 𝛼!,	the	empirical	power	value	of	the	TS	tests	(e.g.,	TS1	vs.	TS2)	

may	change	dramatically.		

				To	see	how	sample	sizes	affect	the	performance	of	the	new	test	and	the	TS	tests,	we	also	

simulated	data	with	sample	size	100	per	group.	We	keep	all	of	the	other	parameters	the	same	

but	use	significance	level	𝛼 = 0.01.	The	simulation	results	were	reported	in	the	Supplementary	

Tables	S1-S4.	We	have	similar	observations	as	those	from	Tables	1-4:	in	general,	the	proposed	

test	is	preferred	as	it	has	reasonable	power	under	all	of	the	situations	considered.		

3.2. Real	data	applications	

To	illustrate	the	use	of	the	proposed	test,	we	applied	it	to	three	data	sets.	The	first	data	set	was	

obtained	from	a	study	about	the	tumorigenesis	of	a	drug	(Mantel	et	al.,	1977)	which	has	been	

analyzed	 by	 Qiu	 and	 Sheng	 (Qiu	 and	 Sheng,	 2008).	 In	 this	 study,	 rats	 were	 taken	 from	 50	

distinct	litters.	One	rat	from	each	litter	was	randomly	selected	and	given	the	drug,	and	another	

two	rats	were	selected	as	controls	and	were	given	a	placebo.	There	were	29	and	81	censored	

observations	 in	 the	 treatment	group	and	the	control	group,	 respectively.	The	 two	p-values	 in	

the	first	and	the	second	stages	of	the	QS	test	were	0.0034	and	0.051,	respectively.	If	we	use	the	

commonly	used	significance	level	0.05,	the	overall	p-value	from	the	QS	test	will	be	0.0034	and	

the	null	hypothesis	 is	then	rejected.	However,	 if	we	choose	the	significance	level	to	be	0.005,	

then	 the	 overall	 p-value	 will	 be	 0.053,	 which	 is	 larger	 than	 the	 preset	 significance	 level.	

Therefore,	we	will	not	reject	the	null	hypothesis	in	such	cases.		As	a	comparison,	the	proposed	
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test	 has	 the	 overall	 p-value	 0.0017,	which	 does	 not	 depend	 on	 the	 preset	 significance	 level.	

Therefore,	it	is	more	powerful	in	this	example.	

				The	second	data	set	is	taken	from	a	study	on	the	kidney	dialysis	patients	to	assess	the	time	to	

first	 exit	 site	 infection	 (in	 months)	 in	 119	 patients	 with	 renal	 impairment.	 Among	 those	

patients,	43	utilized	a	surgically	placed	catheter	(group	1),	76	utilized	a	percutaneous	placement	

of	 their	 catheter	 (group	 2).	 There	were	 27	 and	 65	 censored	 observations	 in	 groups	 1	 and	 2,	

respectively.	This	data	set	was	analyzed	in	the	papers	by	Lin	and	Wang	(Lin	and	Wang,	2004),	

and	Qiu	and	Sheng	 (Qiu	and	Sheng,	2008).	Using	 the	significance	 level	of	0.05,	we	got	 the	p-

values	of	0.11	and	0.00078	in	the	first	stage	and	the	second	stage	of	the	QS	test,	and	the	overall	

p-value	is	0.026.	If	we	change	the	significance	level	to	0.001,	the	overall	p-value	of	the	QS	test	

becomes	0.0013,	which	is	larger	than	0.001;	therefore,	we	will	not	reject	the	null	hypothesis.	In	

contrast,	the	p-value	from	the	proposed	test	is	0.00090,	which	is	much	smaller	than	the	overall	

p-values	of	the	QS	test	in	both	cases.		

				The	third	data	set	was	from	the	randomized,	double-blinded	Digoxin	Intervention	Trial	(The	

Digitalis	Investigation	Group,	1997).	In	the	trial,	patients	with	left	ventricular	ejection	fractions	

of	0.45	or	 less	were	 randomly	assigned	 to	digoxin	 (3397	patients)	or	placebo	 (3403	patients)	

groups.	A	primary	outcome	was	the	mortality	due	to	worsening	heart	failure.	The	subjects	were	

categorized	 based	 on	 their	 treatments	 and	 gender.	 It	 is	 of	 interest	 to	 compare	 the	 survival	

distributions	among	the	four	groups.	We	applied	various	methods	to	this	data	set.	Table	5	lists	

the	p-values	obtained	by	the	QS	test	and	the	proposed	test.	Here	we	have	six	comparisons	in	

total,	 using	 0.05	 as	 the	 significance	 level,	 a	 comparison	 with	 an	 adjusted	 p-value	 less	 than	

0.05/6,	i.e.,	0.0083,	would	be	claimed	significant.	None	of	the	p-values	from	QS	test	is	less	than	
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0.0083,	however,	the	p-value	for	comparing	the	first	and	second	groups	from	the	proposed	test	

is	0.0028.	In	addition,	the	p-values	from	the	LR	test	and	the	Wilcoxon	test	are	0.11	and	0.092,	

respectively.		

4. Discussion	and	Conclusion	

In	this	paper,	we	proposed	an	improvement	of	the	QS	test	by	using	the	Fisher	test	in	defining	

the	overall	p-value	of	the	test.	There	are	several	advantages	to	use	the	proposed	method.	First,	

it	is	more	powerful	than	the	original	QS	test	in	various	cases.	Second,	unlike	the	QS	test,	the	p-

value	of	our	proposed	method	is	independent	of	the	preset	significance	level	and	of	the	order	

of	 the	 two	 stages	 as	 well.	 Third,	 for	 comparing	 multiple	 hazard	 curves,	 the	 proposed	 test	

performs	much	better	than	the	QS	test	in	many	cases.		

				It	 should	be	pointed	out	 that	 in	 the	original	QS	 test,	 the	 authors	 set	 the	default	 values	 as	

𝛼! = 𝛼! = 1− 1− 𝛼.	We	 should	 choose	 appropriate	 values	 for	𝛼! and 𝛼!	 in	 the	 TS	 test	 if	

prior	information	about	the	hazard	curves	is	available,	so	that	the	TS	test	has	optimal	detecting	

power.	However,	 if	 the	 values	of	𝛼! and 𝛼!	 are	 set	 inappropriately,	 the	TS	method	may	also	

lose	power	dramatically.	

				Besides	the	Fisher	test	considered	here,	several	other	p-value	combining	methods	have	been	

proposed	in	the	literature.	For	example,	the	weighted	Z	tests	and	the	generalized	Fisher	tests	

are	commonly	used	in	the	literature	(Chen,	2011;	Chen	and	Nadarajah,	2014;	Chen	et	al.,	2014).	

The	 method	 proposed	 by	 Chen	 and	 Nadarajah	 (Chen	 and	 Nadarajah,	 2014)	 has	 similar	

performance	to	that	of	the	Fisher	test.	However,	the	methods	based	on	the	weighted	Z-test	are	

not	recommended	since	they	are	not	robust	to	the	p-values	obtained	in	the	individual	steps	of	

the	two-stage	scheme	and	can	potentially	lose	power	dramatically.	In	addition,	if	we	have	some	
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prior	 information	 about	 the	 hazard	 curves,	 powerful	methods	 of	 combining	 p-values	 can	 be	

designed	accordingly.	

				In	the	literature,	there	are	many	multiple	comparison	methods,	such	as	the	Sidak	procedure,	

Tukey’s	 procedure,	 and	 Dunnett’s	 method.	 However,	 all	 of	 them	 require	 some	 assumptions	

that	may	not	be	valid	here.	As	a	comparison,	the	Bonferroni	procedure	adopted	here	does	not	

require	any	assumptions,	 such	as	 the	 independence	among	 individual	p-values.	 Furthermore,	

our	 simulation	 study	 has	 shown	 that	 the	 proposed	 method	 using	 the	 Bonferroni	 procedure	

works	well	in	terms	of	controlling	the	type	I	error	rate.		

				It	 should	be	pointed	out	 that,	 although	 the	original	QS	 test	 and	 the	proposed	method	are	

designed	 for	 comparing	 hazard	 rate	 functions,	 they	 can	 also	 be	 used	 to	 compare	 survival	

curves.	 In	 practice,	 one	 may	 want	 to	 compare	 certain	 quantiles	 (e.g.,	 the	 survival	 median)	

(Brookmeyer	and	Crowley,	1982;	Chen,	2014a,	b;	Chen	and	Zhang,	2016)	instead	of	the	whole	

survival	 curves.	 In	 such	 cases,	 both	 the	 QS	 test	 and	 the	 proposed	 new	 method	 cannot	 be	

applied	directly,	and	much	future	research	is	needed.		
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Tables:	
	

Table	 1.	Empirical	 type	 I	 error	 rates	 of	 each	method	under	 different	 settings	with	 sample	 size	 50	 for	
each	group	(two	groups)	and	the	significance	level	0.05.	The	results	were	obtained	from	1000	replicates.	
distribution	 method	 censoring	rate	

0,	0	 0.2,0.2	 0.4,0.4	 0.6,0.6	 0.4,0.6	
U:	

𝜃 = (6,6)	
𝑎 = (2,2)	

TS	 0.046	 0.045	 0.043	 0.049	 0.046	
TS1	 0.044	 0.042	 0.043	 0.048	 0.045	
TS2	 0.049	 0.049	 0.050	 0.052	 0.050	
LR	 0.053	 0.055	 0.052	 0.052	 0.049	
NP	 0.039	 0.036	 0.041	 0.046	 0.043	
New	 0.042	 0.040	 0.043	 0.048	 0.046	

E:	
𝜃 = (12,12)	
𝑎 = (0.1,0.1)	

TS	 0.044	 0.045	 0.047	 0.049	 0.044	
TS1	 0.043	 0.042	 0.045	 0.048	 0.042	
TS2	 0.049	 0.049	 0.054	 0.052	 0.049	
LR	 0.051	 0.051	 0.055	 0.050	 0.050	
NP	 0.039	 0.039	 0.039	 0.045	 0.039	
New	 0.040	 0.043	 0.044	 0.046	 0.043	

LN:	
𝜃 = (5,5)	
𝑎 = (1,1)	

TS	 0.047	 0.046	 0.045	 0.050		 0.049	
TS1	 0.045	 0.046	 0.040	 0.050	 0.046	
TS2	 0.051	 0.049	 0.052	 0.052	 0.053	
LR	 0.054	 0.050	 0.053	 0.051	 0.053	
NP	 0.040	 0.042	 0.035	 0.046	 0.043	
New	 0.045	 0.040	 0.041	 0.051	 0.046	

	

Table	2.	Empirical	powers	of	each	method	under	different	settings	with	sample	size	50	for	each	group	
(two	groups)	and	the	significance	level	0.05.	The	results	were	obtained	from	1000	replicates.	
distribution	 method	 censoring	rate	

0,	0	 0.2,0.2	 0.4,0.4	 0.6,0.6	 0.4,0.6	
U:	

𝜃 = (6,6)	
𝑎 = (8,3)/3	

TS	 0.616		 0.547	 0.4750	 0.375		 0.388	
TS1	 0.606	 0.607	 0.550	 0.445	 0.465	
TS2	 0.549	 0.444	 0.355	 0.298	 0.287	
LR	 0.243	 0.105	 0.049	 0.067	 0.068	
NP	 0.569	 0.605	 0.570	 0.469	 0.488	
New	 0.769	 0.586	 0.463	 0.381	 0.367	

E:	
𝜃 = (12,10)	
𝑎 = (4,5)/40	

TS	 0.730	 0.743		 0.749	 0.774	 0.780		
TS1	 0.720	 0.734	 0.740	 0.757	 0.783	
TS2	 0.709	 0.721	 0.728	 0.751	 0.757	
LR	 0.593	 0.595	 0.600	 0.631	 0.639	
NP	 0.632	 0.652	 0.637	 0.614	 0.729	
New	 0.810	 0.825	 0.832	 0.846	 0.854	

LN:	
𝜃 = (5,5.6)	
𝑎 = (1,1)	

TS	 0.723		 0.676		 0.604	 0.543	 0.575	
TS1	 0.635	 0.585	 0.514	 0.447	 0.468	
TS2	 0.762	 0.721	 0.648	 0.598	 0.630	
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LR	 0.773	 0.733	 0.666	 0.619	 0.642	
NP	 0.265	 0.243	 0.204	 0.145	 0.120	
New	 0.748	 0.708	 0.625	 0.560	 0.581	

U+E:	
𝜃 = (10, 4)	
𝑎 = (5,0.1)	

TS	 0.908		 0.607		 0.544		 0.526		 0.659		
TS1	 0.832	 0.553	 0.577	 0.593	 0.700	
TS2	 0.927	 0.622	 0.456	 0.409	 0.547	
LR	 0.899	 0.485	 0.161	 0.069	 0.115	
NP	 0.156	 0.342	 0.557	 0.613	 0.715	
New	 0.991	 0.789	 0.592	 0.520	 0.658	

U+LN:	
𝜃 = (5, 1)	
𝑎 = (5,1)	

TS	 0.733		 0.449		 0.352		 0.404		 0.375		
TS1	 0.793	 0.462	 0.296	 0.303	 0.295	
TS2	 0.645	 0.419	 0.383	 0.471	 0.419	
LR	 0.163	 0.287	 0.393	 0.490	 0.440	
NP	 0.800	 0.422	 0.136	 0.049	 0.086	
New	 0.752	 0.505	 0.384	 0.388	 0.366	

E+LN:	
𝜃 = (0, 1)	
𝑎 = (0. 2, 2)	

TS	 0.667	 0.525		 0.401		 0.269		 0.301		
TS1	 0.667	 0.582	 0.467	 0.306	 0.351	
TS2	 0.602	 0.425	 0.296	 0.213	 0.228	
LR	 0.247	 0.097	 0.053	 0.096	 0.080	
NP	 0.616	 0.588	 0.491	 0.308	 0.369	
New	 0.864	 0.538	 0.369	 0.278	 0.297	

	

	

Table	 3.	 Empirical	 type	 I	 error	 rates	 of	 each	method	under	 different	 settings	with	 sample	 size	 50	 for	
each	group	(four	groups)	and	the	significance	level	0.05.	The	results	were	obtained	from	1000	replicates.	
distribution	 method	 censoring	rate	

0,	0,0,0	 (2,2,2,2)/10	 (4,4,4,4)/10	 (6,6,6,6)/10	 (4,6,4,6)/10	
U:	

𝜃 = (6,6,6,6)	
𝑎 = (2,2,2,2)	

TS	 0.046		 0.040		 0.040		 0.044		 0.048		
TS1	 0.046	 0.040	 0.040	 0.044	 0.048	
TS2	 0.046	 0.040	 0.040	 0.044	 0.048	
LR	 0.059	 0.057	 0.049	 0.055	 0.049	
New	 0.030	 0.031	 0.035	 0.044	 0.043	

E:	
𝜃 = (12,12,12,12)	
𝑎 = (0.1,0.1,0.1,0.1)	

TS	 0.044		 0.035		 0.048		 0.043		 0.044		
TS1	 0.044	 0.035	 0.048	 0.043	 0.044	
TS2	 0.044	 0.035	 0.048	 0.043	 0.044	
LR	 0.053	 0.046	 0.059	 0.063	 0.055	
New	 0.029	 0.028	 0.045	 0.050	 0.035	

LN:	
𝜃 = (5,5,5,5)	
𝑎 = (1,1,1,1)	

TS	 0.060		 0.052		 0.047		 0.058		 0.051		
TS1	 0.060	 0.052	 0.047	 0.058	 0.051	
TS2	 0.060	 0.052	 0.047	 0.058	 0.051	
LR	 0.060	 0.051	 0.076	 0.073	 0.054	
New	 0.032	 0.037	 0.040	 0.050	 0.052	

	

Table	4.	Empirical	powers	of	each	method	under	different	settings	with	sample	size	50	for	each	group		
(four	groups)	and	the	significance	level	0.05.	The	results	were	obtained	from	1000	replicates.	
distribution	 method	 censoring	rate	

0,	0,0,0	 (2,2,2,2)/10	 (4,4,4,4)/10	 (6,6,6,6)/1
0	

(4,6,4,6)/1
0	
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U:	
𝜃 = (6, 6,6,6)	
𝑎 = (8,8,3,3)/3	

TS	 0.676		 0.380		 0.069		 0.286		 0.217		
TS1	 0.676	 0.380	 0.069	 0.286	 0.217	
TS2	 0.676	 0.380	 0.069	 0.286	 0.217	
LR	 0.823	 0.507	 0.092	 0.329	 0.149	
New	 1.000	 1.000	 1.000	 0.994	 0.999	

E:	
𝜃 = (12,10,12,10)	
𝑎 = (4,4,5,5)/40	

TS	 0.412		 0.418		 0.424		 0.484		 0.502		
TS1	 0.412	 0.418	 0.424	 0.484	 0.502	
TS2	 0.412	 0.418	 0.424	 0.484	 0.502	
LR	 0.441	 0.449	 0.476	 0.554	 0.557	
New	 0.736	 0.789	 0.802	 0.842	 0.828	

LN:	
𝜃 = (5,5,5.6,5.6)	
𝑎 = (1, 1,1,1)	

TS	 0.850		 0.814		 0.773		 0.687		 0.725		
TS1	 0.850	 0.814	 0.773	 0.687	 0.725	
TS2	 0.850	 0.814	 0.773	 0.687	 0.725	
LR	 0.913	 0.876	 0.857	 0.765	 0.803	
New	 0.854	 0.814	 0.767	 0.654	 0.716	

U+E:	
𝜃 = (10,10,4,4)	
𝑎 = (5,5, 0.1,0.1)	

TS	 0.931		 0.483		 0.135		 0.063		 0.108		
TS1	 0.931	 0.483	 0.135	 0.063	 0.108	
TS2	 0.931	 0.483	 0.135	 0.063	 0.108	
LR	 0.976	 0.602	 0.192	 0.076	 0.142	
New	 0.933	 0.537	 0.509	 0.526	 0.537	

U+LN:	
𝜃 = (5,5,1, 1)	
𝑎 = (5, 5,1,1)	

TS	 0.166		 0.293		 0.445		 0.550		 0.511		
TS1	 0.166	 0.293	 0.445	 0.550	 0.511	
TS2	 0.166	 0.293	 0.445	 0.550	 0.511	
LR	 0.194	 0.342	 0.497	 0.628	 0.537	
New	 0.842	 0.602	 0.437	 0.470	 0.455	

E+LN:	
𝜃 = (0,0,1,1)	

𝑎 = ( 0.2,0.2,2,2)	

TS	 0.198		 0.079		 0.039		 0.113		 0.065		
TS1	 0.198	 0.079	 0.039	 0.113	 0.065	
TS2	 0.198	 0.079	 0.039	 0.113	 0.065	
LR	 0.310	 0.108	 0.049	 0.126	 0.075	
New	 0.610	 0.471	 0.369	 0.291	 0.352	

	

	

Table	5.	P-values	obtained	by	the	QS	test	and	the	proposed	method	from	each	pair	of	groups	of	the	DIT	
data.	

Group	pair	 LR	 NP	 TS	 New	
1	vs.	2	 0.019	 0.026	 0.019	 0.0028	
1	vs.	3	 0.17	 0.32	 0.36	 0.21	
1	vs.	4	 0.38	 0.16	 0.18	 0.23	
2	vs.	3	 0.86	 0.016	 0.041	 0.073	
2	vs.	4	 0.47	 0.012	 0.037	 0.035	
3	vs.	4	 0.66	 0.69	 0.70	 0.81	

	

	

	



19	
	

	

	

Figure	Legend:	

Figure	1.	The	acceptance	regions	for	the	original	QS	two-stage	test	and	the	proposed	method	
based	on	the	Fisher	test.	

	


