
Simultaneous Optimal Control of Directional
Missed Discovery Rates in Data Stream

Diagnosis

Yan He
School of Statistics, East China Normal University, Shanghai, China

Yicheng Kang
Department of Information Systems & Analytics,

Miami University, Ohio, USA

Dongdong Xiang ∗

School of Statistics, East China Normal University, Shanghai, China
Peihua Qiu

Department of Biostatistics, The University of Florida

March 10, 2024

Abstract
High-dimensional data streams are ubiquitous in modern manufacturing because

of their ability to provide valuable information about the industrial system’s perfor-
mance on a real-time basis. If a shift occurs in a production process, fault diagnosis
based on the data streams is of critical importance for identifying the root cause.
Existing methods have largely focused on controlling the total missed discovery rate
without distinguishing missed signals for positive versus negative components of the
shift vector. In practice, however, losses incurred from the two directional shifts can
differ substantially, so it is desirable to constrain the proportions of missed signals
for positive and negative components at two distinctive levels. In this article, we
propose a fault classification procedure that controls the two proportions separately.
By formulating the problem as Lagrangian multiplier optimization, we show that the
proposed procedure is optimal in the sense that it minimizes the expected number of
false discoveries. We also suggest an iterative adjustment algorithm that converges to
the optimal Lagrangian parameters. The asymptotic optimality for the data-driven
version of our procedure is established as well. Theoretical justification and numerical
comparison with state-of-the-art methods show that the proposed procedure works
well in applications.

Keywords: fault classification, high-dimensional data, large-scale testing, Markov models,
post-signal diagnostics, quality control,

∗Corresponding author: Dongdong Xiang, Email: terryxdd@163.com

1



1 Introduction

Modern manufacturing systems are often installed with large numbers of sensors that moni-

tor a variety of process variables such as temperature, humidity, opacity, pressure, vibration

and conductivity. These sensors continuously generate data in high volume at high velocity.

Such data are often referred to as high-dimensional data streams (HDDS) in the literature.

Because of their ability to offer real-time information about the industrial system’s per-

formance, HDDS are deemed to possess great potential for helping improve the practice

of industrial quality control. In particular, HDDS can be used to achieve two objectives:

quick delivery of out-of-control (OC) signals after the production process has had a shift

(i.e., process monitoring) and accurate identification of the root cause after an OC signal

has been given (i.e., fault diagnosis). Past research on HDDS analysis has mostly focused

on process monitoring. See, for instance, Wang and Jiang (2009), Zou and Qiu (2009),

Mei (2010), Capizzi and Masarotto (2011), Liu et al. (2015), Zou et al. (2015), Qiu (2018),

Xian et al. (2018), Yan et al. (2018), Zhang et al. (2020), Li et al. (2021) and Kang (2022).

Qiu (2020) and Woodall and Montgomery (2014) provided comprehensive overviews on this

topic. More recently, there have been growing interests in post-signal diagnostic problems

involving HDDS, in which the primary purpose is to identify the data streams affected by

the OC event. The task of efficient fault diagnosis is particularly important in situations

involving HDDS, as it would be practically impossible for quality engineers to examine

thousands of data streams one by one. A number of diagnostic approachs have been pro-

posed in the literature. Some have made use of variable selection techniques for multiple

linear regression by setting up the fault diagnosis problem such that the selected variables

are regarded as OC streams (e.g., Zou et al. 2011; Li et al. 2017; Ebrahimi et al. 2021).

Although this approach has been shown to outperform many traditional methods in terms

of isolating the OC streams, it is unable to determine the shift direction (positive or nega-
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tive) in each component of the shift vector. In many applications, however, it is beneficial

to have directional information, because it allows the quality engineer to shorten the diag-

nosis process and customize repairs. Others have analyzed the HDDS problem under the

framework of large-scale multiple testing (e.g., Li et al. 2020; Xiang et al. 2021a,b). This

approach enables inference about the shift directions and controls the proportion of OC

streams missed by diagnosis (i.e., missed discovery rate, which is formally defined in Section

2). A major limitation of these methods is that they do not distinguish the missed OC

streams (i.e. components) with positive shifts versus the missed OC streams with negative

shifts. In some applications, however, potential risks associated with two directional shifts

can differ substantially. For instance, the concentration of food preservatives, a carefully

monitored process variable in food production, can reduce the food product’s shelf life if

the level of concentration is too low, resulting in possible food waste. On the other hand,

too much preservatives have harmful side effects in form of headaches, allergies and can-

cer, jeopardizing public health (Sharma 2015). In other words, the implication of having

too much preservatives is far more severe than that of having too little. This asymmetric

decision-making situation makes it desirable to control the proportions of missed signals of

two directional shifts separately at two distinctive levels.

In this article, we propose a data stream fault diagnosis procedure that controls propor-

tions of missed OC components of two directional shifts at separate levels. Theoretically,

by formulating the problem as a Lagrange multiplier optimization, we derive that our pro-

cedure minimizes the expected number of false discoveries. This property is particularly

pertinent to manufacturing applications, as false discoveries would result in mistakenly dis-

carding good-quality products. Therefore, our procedure not only identifies nearly all the

OC streams but also excludes the irrelevant in-control (IC) streams. Numerically, it is chal-

lenging to find the optimal Lagrangian multipliers that correspond to the two pre-specified

levels of missed discovery rates, because it involves solving two equations and the simple

3



thresholding method used in the single-constraint case (e.g., He et al. 2023) does not work

in our multi-constraint scenario. To address this issue, we find that the missed discovery

rates are monotonic in one Lagrange multiplier while fixing the other. It reflects the trade-

off between the two constraints - aggressively controlling one directional missed discovery

rate will inevitably loosen the other. We make use of this monotonic property and suggest

an iterative adjustment algorithm that converges to the optimal Lagrange multipliers. The

asymptotic optimality of the data-driven version of the proposed procedure is established

as well. Simulation studies show that the data-driven version is almost as powerful as the

oracle version, with superior performance over existing methods in various settings.

The remainder of this article is organized as follows. In Section 2, the proposed proce-

dure and its theoretical properties are described in detail. In Section 3, the performance

of our procedure is compared with state-of-the-art methods using simulations. Section 4

demonstrates the proposed procedure with a real manufacturing dataset. Section 5 sum-

marizes the work and suggests future research directions. Computer code and technical

proofs are included in the supplementary file.

2 Proposed Methodology

We organize the discussion of our methodology into three subsections. In Subsection 2.1,

our fault classification problem is formulated as a three-way comparison and the optimal

procedure is defined to be the solution to a related constrained optimization problem.

In Subsection 2.2, the optimal procedure is derived under the assumption that all the

model parameters are known. In Subsection 2.3, we propose methods for estimating the

parameters and thus obtain the data-driven version of the optimal procedure.
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2.1 Problem Formulation

Let Xt = (X1t, X2t, . . . , Xmt)
T denote the m process variables that are being monitored at

time t. If the manufacturing process works stably, Xt follows an IC distribution, which

can be estimated with an IC sample collected beforehand. The problem of IC distribution

estimation is often considered in phase I statistical process control (SPC). We refer readers

to Qiu (2014) and Montgomery (2020) for commonly used phase I SPC methods. We

assume that the IC distribution is known throughout our discussion. After an OC event

occurs in the production process, a control chart would signal the shift and a small number

of OC observations, denoted by {XOC
j , j = 1, 2, . . . , n}, are available for post-signal fault

diagnosis. It is worth noting that not all the component of XOC
j have shifted necessarily

even though the process vector has been flagged OC. Knowing which components have

shifted and their shift directions is critical to root cause identification. To this end, let θi

be a hidden status variable associated with the i-th component (data stream) of XOC
j . The

component remains IC if θi = 0 and has shifted positively or negatively if θi = 1 or −1.

θi’s are unobservable and we would like to infer their values based on {XOC
j }.

Specifically, we assume that {XOC
j } are generated from the following mixture model:

XOC
j

∣∣µ ∼ F (xj | µ),

µi|θi ∼ (1− |θi|)δ0(µi) + I(θi = 1)h1(µi) + I(θ1 = −1)h2(µi), (1)

θi ∼ π0δ0(θi) + π1δ1(θi) + π−1δ−1(θi), i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

where F (· | µ) denotes the joint conditional distribution of XOC
j given µ, δx(·) denotes

the Dirac function with the unit mass concentrated at x, I(·) is an indicator function,

h1(·) and h2(·) are probability density functions with support in (0,+∞) and (−∞, 0)

respectively, and {πk ≥ 0, k = 0,±1} satisfy that
∑1

k=−1 πk = 1. µ is the OC mean

with some nonzero components because of the process shift. θi represents the status of

data stream i with the probability of being IC, having shifted in the positive direction
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and having shifted in the negative direction equal to π0, π1 and π−1, respectively. The

hierarchical structure of model (1) has been widely used in the literature for approximating

high-dimensional distributions (e.g., Efron 2004; Sun and Cai 2007; Cai and Sun 2009; Sun

and Cai 2009). We further assume that {XOC
j } are independent over time. In cases when

the observations are temporally correlated, we can remove the correlation in advance by

some decorrelation techniques (e.g., Apley and Tsung 2002; Qiu et al. 2020). Our oracle

procedure in Subsection 2.2 does not require F (· | µ) to be of any parametric form. The

data-driven procedure in Subsection 2.3 further assumes that F (· | µ) is multivariate

normal with mean µ and covariance matrix Σ. This normality assumption is to ensure

consistent estimation of the model parameters. In Subsection 3.2 and 3.3, we will consider

cases when Σ is non-diagonal or the distribution of XOC
j |µ is non-normal.

In many HDDS applications, OC streams tend to occur in clusters due to the fact that

the physical locations of the corresponding sensors are installed in close vicinity. Moreover,

the state of one variable would influence the state of the next variable. For instance, in

automotive fault analysis, overheating detected by a thermal sensor can cause abnormally

high vibration, which would be recorded by a vibration sensor (e.g., Bonnett and Soukup

1992; Randall 2021). Such correlations are informative for fault diagnosis. Notably, some

data streams may remain completely IC during fault analysis after an OC signal is given.

This is the case when some modules of an industrial system perform stably while some

other modules have malfunctions. Hence it is possible for the state variable to transition

from an abnormal state to the normal state as we examine the data streams. Based on

the above motivations, we suggest the following three-state hidden Markov model (HMM).

Specifically, assume that {θi, i = 1, 2, . . . ,m} form a stationary, irreducible and aperiodic

Markov chain. Denote the initial distribution of the Markov chain by π0 = (π0
0, π

0
1, π

0
−1)T ,

i.e., θ1 = πk with probability π0
k for k = 0,±1. Let the stationary distribution be π =

(π0, π1, π−1)T , i.e., limi→∞ P (θi = k) = πk for k = 0,±1. Let T = {akl, k, l = 0,±1} be the
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transition matrix. That is,

akl = P (θi = l|θi−1 = k) , k, l = 0,±1.

The transition probabilities do not depend on i and satisfy the standard constraints: 0 ≤

akl ≤ 1, k = 0,±1, and
∑1

l=−1 akl = 1 for k ∈ {0,±1}. The stationary distribution π =

(π0, π1, π−1)T can be determined by the transition matrix using the relationship πTT = πT .

In the special case of π0 = π, we have P (θi = k) = πk. In the literature, HMMs have

been used for change point detection in industrial diagnosis problems. See, for instance,

Alippi et al. (2012) and Fuh and Mei (2015). It also has been shown that HMM-based

change detection methods enjoy nice theoretical properties (Fuh and Tartakovsky, 2018).

It is worth noting that these methods use HMMs to capture the temporal dynamics, i.e.,

to estimate the time point when the process has shifted. In our HDDS diagnosis problem,

however, there is no temporal component as we focus on IC/OC classification at the data-

stream level.

Our objective of post-signal diagnosis is three-fold: identify nearly all the OC streams,

correctly specify the shift directions, and minimize the number of false discoveries. To

achieve this objective, consider the following three-class testing problem:

H0
i : θi = 0 versus H1

i : θi = 1 or H−1
i : θi = −1, i = 1, 2, . . . ,m. (2)

Based on the observed values of (XOC
1 ,X

OC
2 , . . . ,X

OC
n ), we are interested in inferring the

value of θ = (θ1, θ2, . . . , θm)T . A solution to problem (2) can be represented by a decision

rule d : Ω → {0,±1}m, where Ω is the sample space. Let d = (d1, d2, . . . , dm)T be the

decision vector of length m with elements 0, 1 or −1. If di = 0, then θi is regarded to have

taken the value of 0, i.e., the i-th data stream is classified as IC. If di = 1 or −1, then the

i-th data stream is flagged as OC with a positive shift or negative shift, respectively. For a

given decision rule d, the outcomes of problem (2) can be categorized as done in Table 1.

Based on this categorization, some authors (e.g., Xiang et al. 2021a; He et al. 2023) have
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Table 1: Classification of tested hypotheses

di = 0 di = 1 di = −1 Total

θi = 0 N00 N01 N02 m0

θi = 1 N10 N11 N12 m1

θi = −1 N20 N21 N22 m2

Total R0 R1 R2 m

defined the total missed discovery rate (tMDR) as follows.

tMDR(d) =
E (N10 +N12 +N20 +N21)

E (m1 +m2)
.

It can be seen that tMDR is relevant to our diagnosis problem as controlling tMDR at

a low level is equivalent to identifying almost all the OC streams. However, tMDR does

not distinguish missed signals of positive shifts versus missed signals of negative shifts.

For instance, it is possible to miss 10% signals of positive shifts and still achieve a 5%

tMDR. This can cause the actual risk of missing a signal much higher than expected in

some asymmetric decision-making situations (e.g., the food production example in Section

1). To address this limitation, define the two marginal missed discovery rates as follows.

mMDR1(d) =
E (N10 +N12)

E (m1)
, mMDR−1(d) =

E (N20 +N21)

E (m2)
.

Instead of solely controlling tMDR, controlling mMDR±1 at their desired (and possibly

different) levels leads to a more precise risk management for manufacturers.

In addition to identifying nearly all the OC streams, a reasonable fault diagnosis pro-

cedure should keep the expected number of false discoveries (EFD) to a minimum as it

is wasteful to dispose of good-quality products. Therefore, we consider the following con-

strained optimization problem:

min
d:Ω→{0,±1}m

EFD (d) subject to mMDR1(d) ≤ α1 and mMDR−1(d) ≤ α−1, (3)
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where EFD(d) = E(N01 + N02), and α±1 ∈ (0, 1) are specified beforehand and represent

possibly different levels of risk associated with missing the two directional signals. In the

next subsection, we derive the solution to problem (3).

2.2 The Oracle Procedure

2.2.1 The Optimal Control of mMDRs

Throughout this subsection, we assume that the parameters T , π0 and density functions

h1(·), h2(·) in model (1) are known. Since the sample mean X =
∑n

j=1X
OC
j /n is a sufficient

statistic for µ, we will use it to construct our solution to problem (3).

Define

Hk
i (X) = P (θi = k|X) , k = 0,±1, i = 1, 2, . . . ,m.

Recall that a false discovery occurs if θi = 0 and di = ±1. With iterative expectations, we

can write

EFD (d) = E

[
m∑
i=1

|di| (1− |θi|))

]
= E

{
E

[
m∑
i=1

|di| (1− |θi|)

∣∣∣∣∣X
]}

= E

[
m∑
i=1

∑
k=±1

I (di = k)P (θi = 0|X)

]
= E

[
m∑
i=1

∑
k=±1

I (di = k)H0
i (X)

]
.

Similarly, we have

E (N10 +N12) = E

{
m∑
i=1

[1− I(di = 1)]H1
i (X)

}
, (4)

E (N20 +N21) = E

{
m∑
i=1

[1− I(di = −1)]H−1
i (X)

}
, (5)

E (m1) = E

[
m∑
i=1

H1
i (X)

]
, E (m2) = E

[
m∑
i=1

H−1
i (X)

]
. (6)

Hence, the Lagrangian function for problem (3) is

L (λ,d) =
m∑
i=1

Li(λ, di)
def
=

m∑
i=1

∑
k=±1

{
I(di = k)H0

i (X) + λk [1− I(di = k)− αk]Hk
i (X)

}
,
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where λ = (λ1, λ−1)T denotes the Lagrange multipliers. Given λ, let us first consider the

decision rule dλi that minimizes Li(λ, di). We have

Li(λ, 1) ≤ Li(λ, 0) ⇐⇒ H0
i (X) ≤ λ1H

1
i (X),

Li(λ, 1) ≤ Li(λ,−1) ⇐⇒ λ−1H
−1
i (X) ≤ λ1H

1
i (X).

It follows that dλi = 1 if max{H0
i (X), λ−1H

−1
i (X)} ≤ λ1H

1
i (X). We can similarly derive

the conditions under which dλi = −1 and dλi = 0, respectively. Taken together, L(λ,d) is

minimized by dλ = (dλ1 , d
λ
2 , . . . , d

λ
m)T , defined as

dλi =


k, if Rk,i ≤ 0 and Rk,i = min {R1,i, R−1,i}

0, otherwise,

(7)

where Rk,i = H0
i (X)− λkHk

i (X) and k = ±1. This is intuitively expected as dλ is based

upon the comparison of the conditional probabilities {Hk
i (X), k = 0,±1}.

Next, we determine λ by solving

mMDRk

(
dλ
)

= αk, k = ±1. (8)

By (4) – (6), equation (8) is equivalent to

E

{
m∑
i=1

[
1− I(dλi = k)− αk

]
Hk
i (X)

}
= 0, k = ±1.

Let Nk(λ1, λ−1) = E
{[

1− I(dλi = k)− αk
]
Hk
i (X)

}
, k = ±1. The solution to (8) can be

obtained if we can find λ such that

Nk(λ1, λ−1) = 0, , k = ±1. (9)

It can be shown that Nk(λ1, λ−1) is decreasing in λk and increasing in λk′ , where k′ 6= k

(the proof is given in the supplementary file). Making use of this monotonic property, we

can solve (9) by iteratively adjusting λ1 and λ−1. The next proposition formalizes this

argument.
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Proposition 1. Let λ̌1,0 and λ̌−1,0 be initial values for λ1 and λ−1 respectively. Given

λ̌1,t−1 and λ̌−1,t−1, for t ≥ 1, obtain λ̌1,t and λ̌−1,t as follows.

λ̌1,t = sup
{
λ ≥ λ̌1,t−1 : N1(λ, λ̌−1,t−1) ≥ 0

}
, (10)

λ̌−1,t = sup
{
λ ≥ λ̌−1,t−1 : N−1(λ̌1,t−1, λ) ≥ 0

}
. (11)

Assume that there exists sufficiently large A±1 > 0 such that N±1(A1, A−1) < 0. If α1 +

α−1 ≤ 1 and λ̌±1,0 = 0, then sequences {λ̌1,t, t ≥ 0} and {λ̌−1,t, t ≥ 0} both converge.

Furthermore, Nk(λ
∗
1, λ
∗
−1) = 0 for k = ±1, where λ∗±1 = limt→∞ λ±1,t.

Proposition 1 shows that the updating algorithm (10) – (11) converges to the solution

to (8). The condition N±1(A1, A−1) < 0 is not restrictive. Suppose that the penalties for

missing a signal of either direction are extremely large. Then the decision rule would never

claim θi = 0. Instead, it will determine θi to be 1 or −1 based on the comparison of H1
i (X)

and H−1
i (X). The missed discovery rates should be very low in such an extreme case, thus

complying with the constraints mMDR±1 < α±1. In other words, the pre-specified values

of α±1 can not be too small in order for the constrained optimization problem (3) to have a

solution. The condition α1 +α−1 ≤ 1 is also mild. Commonly used values in practice (e.g.,

α±1 = 0.1) satisfy this condition. With λ∗ = (λ∗1, λ
∗
−1)T given in Proposition 1, the next

theorem establishes the optimality of the decision rule dλ
∗
. It shows that the optimality

is achieved by spending all the available MDRs. Similar trade-offs exist in the multiple

testing literature (e.g., Cai and Sun 2009).

Theorem 1. If the conditions in Proposition 1 hold, then we have

1. mMDRk

(
dλ
∗)

= αk, k = ±1.

2. for any decision rule d satisfying mMDRk ≤ αk for k = ±1, EFD
(
dλ
∗) ≤ EFD (d).

The updating algorithm (10) – (11) involves a series of expectations and suprema, whose

calculations can be nontrivial. We approximate the expectation involved in Nk(λ1, λ−1) by
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its moment estimator

N∗k (λ1, λ−1) =
1

m

m∑
i=1

[
1− I(dλi )− αk

]
Hk
i (X).

Next, we find the updates based on N∗k . Given λold1 and λold−1 , let us first consider updating

λ1. Let η
λold−1

i (X) = max{λold−1H
−1
i (X), H0

i (X)}/H1
i (X). Write

N∗1 (λ1, λ
old
−1 ) ≥ 0 ⇐⇒

m∑
i=1

I
(
λ1 ≥ η

λold−1

i (X)
)
H1
i (X) ≤ (1− α1)

m∑
i=1

H1
i (X)

⇐⇒

∑m
i=1 I

(
λ1 ≥ η

λold−1

i (X)
)
H1
i (X)∑m

i=1H
1
i (X)

≤ 1− α1.

Therefore, we update λ1 by

λnew1 = max

{
η
λold−1

l (X) ≥ λold1 :

∑m
i=1 I

(
η
λold−1

l (X) ≥ ηλ
old
−1

i (X)
)
H1
i (X)∑m

i=1H
1
i (X)

≤ 1− α1, l = 1, . . . ,m

}
.

Similarly, we update λ−1 by

λnew−1 = max

{
ξ
λold1
l (X) ≥ λold−1 :

∑m
i=1 I

(
ξ
λold1
l (X) ≥ ξλ

old
1
i (X)

)
H−1
i (X)∑m

i=1H
−1
i (X)

≤ 1− α−1, l = 1, . . . ,m

}
,

where ξλ1i = max{λ1H
1
i (X), H0

i (X)}/H−1
i (X).

2.2.2 Computational Considerations

The use of decision rule dλ
∗

requires the calculation of Hk
i (X), which can be greatly simpli-

fied by the forward-backward algorithm described below. Let f(·) and f(·|·) denote the joint

and conditional likelihood, respectively. Define αi+1(k) = f (X1, X2, . . . , Xi+1, θi+1 = k)

and βi(k) = f (Xi+1, Xi+2, . . . , Xm|θi = k). By using the Markov property repeatedly, we
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have the following recursive computation.

αi+1(k) = f(Xi+1|X1, X2, . . . , Xi, θi+1 = k)f(X1, X2, . . . , Xi, θi+1 = k)

= f(Xi+1|θi+1 = k)
1∑

l=−1

f(X1, X2, . . . , Xi, θi = l, θi+1 = k)

= f(Xi+1|θi+1 = k)
1∑

l=−1

f(X1, X2, . . . , Xi, θi = l)f(θi+1 = k|X1, X2, . . . , Xi, θi = l)

= f(Xi+1|θi+1 = k)
1∑

l=−1

αi(l)alk. (12)

Similarly,

βi(k) =
1∑

l=−1

aklβi+1(l)f(Xi+1|θi+1 = l). (13)

For initialization, we set α1(k) = π0
kf(X1|θ1 = k) and βm(k) = 1. Taken together, we have

f(X, θi = k) = f(X1, . . . , Xi, θi = k)f(Xi+1, . . . , Xm|X1, . . . , Xi, θi = k) = αi(k)βi(k),

Hk
i (X) =

f(X, θi = k)

f(X)
=

αi(k)βi(k)

αi(0)βi(0) + αi(1)βi(1) + αi(−1)βi(−1)
, (14)

We now have all the ingredients for our oracle procedure, which is summarized below.

The Oracle Procedure

1. Compute {αi(k), βi(k), i = 1, . . . ,m, k = 0,±1} by recursive formula (12) – (13).

2. Compute {H±1
i (X), H0

i (X)} by (14).

3. Run the algorithm (10) – (11) and denote the limit of the sequence {λ̌t} by λ∗.

4. Obtain the decision rule dλ
∗

according to (7).

It can be checked that the computational complexity in steps 1, 2 and 4 is O(m). As for

step 3, one iteration in the updating algorithm (10) – (11) is of computational complexity

of O(m). Since the algorithm is guaranteed to converge in a given precision, it takes a finite

number of iterations to converge. Therefore, step 3 is also of computational complexity

of O(m), and the amount of computation involved in the entire procedure is O(m). This

conclusion will be confirmed by the numerical analysis in Subsection 3.4.
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2.3 The Data-Driven Procedure

The model parameters {T ,π0} and density functions {h1(·), h2(·)} are rarely known in

practice. In this subsection, we suggest ways for estimating them and thus obtain a data-

driven version of our diagnostic procedure. To ensure that our estimates are consistent, we

further assume that the conditional distribution of XOC
j given µ is a multivariate normal

distribution, N(µ,Σ), and Σ is the m×m identity matrix.

We first consider the estimation of {h1(·), h2(·)}. By the data generating mechanism

given in model (1), we can write

X = µ+ ε,

where µi ∼ π0δ0(µi) + π1h1(µi) + π−1h2(µi), ε ∼ N(0,Σ/n), and µ and ε are independent.

Given the observed value of X, we are interested in estimating the density of µi. This

is a typical setup for density deconvolution problems (e.g., Diggle and Hall 1993; Hall

and Qiu 2005; Yi et al. 2021). It has been shown in the literature that deconvoluting

kernel estimators (e.g., Fan 1991; Meister 2009) enjoy nice theoretical properties. Its idea

is briefly described next. Let Ψ, Ψµ and Ψε denote the characteristic function of Xi, µi

and εi, respectively. We have Ψ = ΨµΨε. The kernel estimator for Ψ(t) is Ψ̂X(t)ΨK(τt),

where Ψ̂X(t) = 1/m
∑m

i=1 e
√
−1tXi is the empirical characteristic function, ΨK(·) is the

Fourier transform of the kernel function K(·), and τ is the bandwidth parameter. Then

the density of µi can be estimated by the inverse Fourier transform of Ψ̂X(·)ΨK(τ ·)/Ψε(·).

Specifically, define

h(µ) =
π1

1− π0

h1(µ) +
π−1

1− π0

h2(µ).

A natural estimator for h(µ) is given by

ĥ(µ) =
1

2π(1− π̂0)

∫ ∞
−∞

e−
√
−1tµ

[
Ψ̂(t)

Ψε(t)
− π̂0

]
ΨK(τt) dt, (15)
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where π̂ = (π̂0, π̂1, π̂−1)T denotes the estimated stationary probabilities. In the literature,

the estimator for π proposed in Jin and Cai (2007) has been shown to be consistent and

work well in large-scale hypothesis testing and thus we adopt their estimator here. Since

h1 and h2 have support in (0,∞) and (−∞, 0) respectively, we can estimate them by

ĥ1(µ) = I(µ > 0)ĥ(µ)(1 − π̂0)/π̂1 and ĥ2(µ) = I(µ < 0)ĥ(µ)(1 − π̂0)/π̂−1. The choice of

the kernel function K and bandwidth τ is crucial for the success of deconvoluting kernel

estimators. In our implementation in Section 3 and Section 4, we adopt the sinc kernel

K(x) = sin(x)/(πx) suggested by Delaigle and Hall (2006). As for τ , we select its value

using the approach proposed in Delaigle and Gijbels (2004). The idea of using density

deconvolution techniques for estimating h was initially proposed in Sun and McLain (2012),

where they considered the i.i.d. two-class case. Notably, the correlation among {µi} has

no influence on the optimal bandwidth choice and optimal rate of mean squared error for

the kernel estimator in cases where the distribution of εi is normal (i.e., supersmooth). See

Kulik (2008) for a detailed discussion about deconvolution and dependence. Therefore, we

can use the deconvoluting estimator as if {µi} were independent.

Next, we estimate {f(xi|θi = k), k = 0,±1}. It is clear that f(xi|θi = 0) is the density

of N(0, 1/n). As for {f(xi|θi = k), k = ±1}, write

f(xi|θi = 1) =

∫ ∞
0

f(xi, µi|θi = 1) dµi =

∫ ∞
0

f(xi|µi, θi = 1)h1(µi) dµi,

where f(xi|µi, θi = 1) is the density of N(µi, 1/n). So we estimate f(xi|θi = 1) by

f̂(xi|θi = 1) =

∫ ∞
0

f(xi|µi, θi = 1)ĥ1(µi) dµi.

Similarly,

f̂(xi|θi = −1) =

∫ 0

−∞
f(xi|µi, θi = −1)ĥ2(µi) dµi.

Next, we describe our procedure for estimating the transition matrix T and initial

distribution π0. Since {θi} are unobservable, the maximum likelihood estimators for T
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and π0 are not readily available. The expectation-maximization (EM) algorithm is useful

in such a situation. The key step is that, given the values of T (t−1) and π0(t−1) at the t-th

iteration of the EM loop, we can update them by

π
0(t)
k = P

(
θ1 = k|X,π0(t−1), T (t−1)

)
,

a
(t)
kl =

∑m−1
i=1 P (θi = k, θi+1 = l|X, T (t−1))∑m−1
i=1 P (θi = k|X,π0(t−1), T (t−1))

, k, l = 0,±1.

The full description of the EM algorithm is given below.

The EM Algorithm

1. Let {T (0),π0(0)} be the randomly initialized values.

2. At the t-th iteration, t = 1, 2, . . .,

(a) (E-step) compute

• {α(t−1)
i (k), β

(t−1)
i (k), i = 1, 2, . . . ,m, k = 0,±1} given f̂(xi|θi), T (t−1) and

π0(t−1) using the recursive formula (12) - (13);

• P (θi = k|X,π0(t−1), T (t−1)) =
α
(t−1)
i (k)β

(t−1)
i (k)∑1

ξ=−1 α
(t−1)
i (ξ)β

(t−1)
i (ξ)

;

• P (θi = k, θi+1 = l|X,π0(t−1), T (t−1)) =
α
(t−1)
i (k)a

(t−1)
kl f̂(xi+1|θi+1=l)β

(t−1)
i+1 (l)∑1

ξ=−1 α
(t−1)
i (ξ)β

(t−1)
i (ξ)

.

(b) (M-step) update the parameters by

• π0(t)
k = P (θ1 = k|X,π0(t−1), T (t−1)) =

α
(t−1)
1 (k)β

(t−1)
1 (k)∑1

ξ=−1 α
(t−1)
1 (ξ)β

(t−1)
1 (ξ)

.

• a(t)
kl =

∑m−1
i=1 P (θi=k,θi+1=l|X,π0(t−1),T (t−1))∑m−1

i=1 P (θi=k|X,π0(t−1),T (t−1))
.

Denote the converging limit of the EM algorithm by T̂ and π̂0. Based on these estimated

values, Ĥk
i (X) can be obtained according to (14). We can also estimate Nk(λ1, λ−1) by

N̂k (λ1, λ−1) =
1

m

m∑
i=1

{[
1− I

(
d̂λi = k

)
− αk

]
Ĥk
i (X)

}
,

where d̂λ is given by (7) with Hk
i (X) replaced by Ĥk

i (X). Finally, we estimate λ∗ by the

updating algorithm (10) – (11) based on N̂k(λ1, λ−1). We refer to d̂λ̂
∗

as the data-driven

procedure. The next theorem shows that d̂λ̂
∗

is asymptotically optimal.
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Theorem 2. Assume that the conditions in Theorem 1 and the regularity conditions in the

supplementary file hold. We have

1. mMDRk

(
d̂λ̂
∗
)

= αk + o(1), k = ±1;

2. EFD
(
d̂λ̂
∗
)
/EFD

(
dλ
∗)

= 1 + o(1).

3 Numerical Studies

We assess the numerical performance of our procedure in this section. Denote the oracle and

data-driven versions of the proposed procedure by Oracle and Data-driven, respectively.

In the recent fault analysis literature, Li et al. (2020) have proposed an MDR-based fault

classification method. It determines the shift directions using the signs of observations.

Xiang et al. (2021a) have also developed an MDR-based fault classification method and

the authors have shown that their method is optimal in controlling the tMDR provided

that the data streams are independent. We use these two methods as benchmarks in our

comparison. Only the oracle versions of the two methods are considered. Denote the

method in Li et al. (2020) as LO and the method in Xiang et al. (2021a) as XO.

Throughout this section, m is set equal to 3000, π0 is chosen to be (1, 0, 0)T , and the

following repeated simulations are done for each procedure. After µ and θ are given, the

actual MDR and EFD values of each procedure are calculated based on 100 replicated

simulations of X. This whole process is then repeated 100 times, rendering 100 sets of µ

and θ values along with 100 pairs of MDR and EFD values. The averages of these 100

MDR and EFD values are reported as the final metrics. We consider three scenarios: (i)

X|µ,θ is normal with diagonal Σ, (ii) X|µ,θ is normal with non-diagonal Σ, and (iii)

X|µ,θ is non-normal. In all settings, we consider α±1 = 0.1 and α1 = 0.1, α−1 = 0.05.

Since neither LO nor XO controls the directional MDRs, we have their the nominal tMDR

level, α, induced by α±1 for fair comparison. It follows from the definition that α = α±1 if
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α1 = α−1. In cases where α1 6= α−1, the induced value is α = E(α1m1+α−1m2)/E(m1+m2)

with m1 and m2 as defined in Table 1. Regarding the choice of {h1(·), h2(·)}, we consider

hs(·) = Gamma(As, Bs, Cs) where s = 1, 2 and Gamma(a, b, c) denotes the density of the

gamma distribution with shape parameter a, location parameter b and scale parameter c.

The use of a location parameter here is to ensure that the magnitude of OC signals is

bounded from below by a positive number.

3.1 Normal Cases with Diagonal Σ

We first evaluate the impact of shift size on the performance of our procedure. Let h1(µ) =

h2(−µ) = Gamma(A, 0.05, 0.5) where A ∈ (2, 5). Hence, the average shift size ranges from

1.05 to 2.55. Let n = 2 and

T =


1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

 .

This transition matrix implies that {θi, i = 1, . . . ,m} are independent. The numerical

results for this scenario are summarized in Figure 1. It can be seen from the figure that

(i) all procedures perform better as the shift size increases, (ii) LO and XO could not

control the mMDR±1 at their nominal levels in the case of α1 6= α−1, (iii) the proposed

procedures (Oracle and Data-driven) are able to constrain the mMDR±1 at the desired

levels in both settings, and (iv) the proposed procedures are comparable with XO in the

case of α1 = α−1. It is worth noting that the nominal tMDR is the same as the nominal

mMDR±1 if α1 = α−1 and XO is optimal in such a case. The simulation results show that,

in addition to outperforming the other methods in the case of α1 6= α−1, our procedures

achieve the optimal performance if we are only concerned with controlling tMDR in the

case of independent data streams.
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(a) α1 = α−1 = 0.1
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(b) α1 = 0.1, α−1 = 0.05

Figure 1: Numerical comparison with LO and XO in the case where θi’s are independent

and the shift size varies from 1.05 to 2.55.
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In the same setup as above, consider

T =


0.6 0.2 0.2

0.25 0.5 0.25

0.25 0.25 0.5

 .

This transition matrix introduces moderate correlation among θi’s. The comparison results

are shown in Figure 2. We see that Oracle and Data-driven are able to control mMDR±1

at the given levels in both settings and outperform XO in terms of EFD. The mMDR−1

values of LO and XO exceed the pre-specified level in the case of α1 = 0.1 and α−1 = 0.05.
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(b) α1 = 0.1, α−1 = 0.05

Figure 2: Numerical comparison with LO and XO in the case where θi’s are moderately

dependent and the shift size varies from 1.05 to 2.55.
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Next, consider the following transition matrix in the same setup.

T =


0.8 0.1 0.1

0.15 0.7 0.15

0.15 0.15 0.7

 .

With the above transition probabilities, the OC streams occur in clusters and clumps as

θi’s are highly correlated. The results are presented in Figure 3. It can be seen that the

proposed procedures outperform the other methods in terms of both controlling mMDR±1

at the given levels and achieving smaller EFD.
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(b) α1 = 0.1, α−1 = 0.05

Figure 3: Numerical comparison with LO and XO in the case where θi’s are strongly

dependent and the shift size varies from 1.05 to 2.55.

Additional numerical studies are provided in the supplementary materials, which include

the impact of the number of OC observations n and the null proportion on the performance

of our procedures and asymmetric transition matrix and distribution scenarios.
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3.2 Normal Cases with Non-Diagonal Σ

In this subsection, we assess the performance of our procedures in cases where Σ is non-

diagonal, i.e., Xi’s are conditionally correlated given µ and θ. Consider the following

autoregressive covariance structure

Σ = (σi1,i2)m×m = ρ|i1−i2|,

where ρ = 0.5. Let n = 5, T be defined as in Figure 2, and h1(µi) = h2(−µi) =

Gamma(A, 0.05, 0.5) where A varies from 2 to 5. The comparison with LO and XO is

shown in Figure 4, where both α±1 = 0.1 and α1 = 2α−1 = 0.1 are considered. It can

be seen from the figure that (i) XO controls mMDR±1 very well when α1 = α−1 but fails

to do so when α±1 are different, (ii) our procedures are able to achieve the desired levels

of mMDR±1 in both settings provided that the shift size is not too small, and (iii) the

proposed procedures have similar or smaller EFD in comparison with XO and LO.

3.3 Non-Normal Cases

Our assumption that X = XOC/n follows a normal distribution is mainly justified by the

central limit theorem as X is an average of the OC observations. In practice, however,

this normality assumption might be violated. In this subsection, we examine our proce-

dure in cases where the observations are non-normal. Specifically, we generate XOC
j by

(i) XOC
j = X ′j/

√
5/3 + µ where X ′j ∼ tm(5), and (ii) XOC

j = (X ′j − 3)/
√

3 + µ where

X ′j ∼ Gammam(3, 0, 1). Here tm(5) and Gammam denote the m-dimensional t distribution

with 5 degrees of freedom and m-dimensional gamma distribution respectively. α1 and α−1

are chosen to be 0.1 and 0.05, respectively. Our results are shown in Figure 5 where n,

T and {h1(·), h2(·)} are the same as those in Figure 4. It can be seen that both XO and

LO fail to achieve the pre-specified mMDR±1 whereas the oracle procedure has controlled

them reasonably well. The data-driven procedure performs similarly to the oracle version
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(a) α1 = α−1 = 0.1
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(b) α1 = 0.1, α−1 = 0.05

Figure 4: Numerical comparison with LO and XO in the case where n = 5, θi’s are

moderately correlated, h1(µi) = h2(−µi) = Gamma(A, 0.05, 0.5), and Xi’s are conditionally

correlated.
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in the case of t distribution but does not control mMDR±1 well in the case of gamma dis-

tribution, because {f(·|µi, θi)} are more severely misspecified (and thus poorly estimated)

in the latter scenario.
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(a) XOC
j follows a t distribution.
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(b) XOC
j follows a gamma distribution.

Figure 5: Numerical comparison with LO and XO in the case where n = 5, θi’s are

moderately correlated, h1(µi) = h2(−µi) = Gamma(A, 0.05, 0.5), and Xi’s are not normally

distributed.

3.4 Computational Cost

In this subsection, we consider the computational cost of our oracle procedure in comparison

with that of XO. In the same simulation setup as in Figure 2, we examine the average

computing time taken by each procedure based on 100 replications. We also record the

average number of iterations for the updating algorithm to converge. The results are
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summarized in Table 2. It can be seen that the oracle procedure is slightly slower than

XO due to the extra time needed for calculating Hk
i (X) by backward-forward formula (12)

– (13) and iteratively finding λ∗ by (10) – (11). Table 2 shows that the time difference

is rather moderate even as m reaches ten thousand, suggesting that our algorithms are

quite efficient. It also shows that it usually takes only a few iterations for the updating

algorithm to converge. Figure 6 visualizes the results in Table 2. It can be seen that the

both method’s computational time grows linearly in m, indicating that they are both of

computational complexity O(m).

Table 2: The average computing time (in seconds) taken by the oracle procedure and XO as

m varies. The unit for m is 103. The row iterations shows the average number of iterations

taken for the updating algorithm (10) – (11) to converge.

m 1 2 3 4 5 6 7 8 8 10

oracle 27.16 52.35 79.64 107.27 136.09 165.27 192.52 222.50 251.79 283.06

XO 26.85 51.34 77.26 102.12 129.08 155.62 181.89 208.39 236.28 268.45

iterations 6.16 6.98 7.50 7.90 8.22 8.47 8.62 8.66 8.92 9.07

4 Real Data Example

In this section, we apply our proposed procedure to a real dataset recorded at the assem-

bly lines of the Bosch Group (www.bosch.com), a global supplier in the area of special

purpose machinery. The dataset was initially used in a big data competition sponsored

by the company in 2016, and since then it has been made publicly available at the repos-

itory hosted by the Fraunhofer Institute (https://www.bigdata-ai.fraunhofer.de/s/

datasets/index.html). The dataset contains 1,183,747 observations with 968 anonymized

features (i.e., m = 968). Each observation is labeled as pass or fail based on the manu-
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Figure 6: The graph showing the results in Table 2

facturer’s internal quality and safety standards. The features are measured at a number

of stations on several production lines. They are named according to the corresponding

production line, the station on the line and the feature number. For example, L3 S36 F12

is the 12th feature measured on production line 3 and station 36. Therefore, the order of

these features is pre-specified.

There are 1,176,868 pass observations, which we regard as IC data, and 6,879 fail obser-

vations, which we regard as OC data (i.e., n = 6879). To handle the missing values in the

OC observations, we adopt the following imputation method. Each missing value in the ith

feature is imputed by F̂−1
1,i (U), where U is a random number from the uniform distribution

on [0, 1] and F̂1,i the empirical cumulative distribution of the ith feature computed from

the OC data. Here we do not need to impute the IC data as the goal of our diagnosis is to

identify the shifted features and their shift directions using the OC data only.

To ensure that the normality assumption is not severely violated, we transform the OC
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data by

XOC
ij = Φ−1

(
F̂0,i

(
X ′ij
))
, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

where {X ′ij} are the original OC observations, F̂0,i is the empirical cumulative distribution

function of the ith feature computed from the IC data, and Φ−1 denotes the inverse CDF

of the standard normal distribution. Figure 7 shows the between-stream correlations after

the transformation. It can be seen that there are non-zero between-stream correlations,

particularly among those data streams in close vicinity.

−0.5

0

0.5

1

Figure 7: The between-stream sample correlation matrix of the Bosch data.

Next, we estimate our model parameters. The estimated density functions ĥ1(·) and

ĥ2(·) are shown in Figure 8. It can be seen from the figure that both positive and negative

shifts occurred in the process. The transition probabilities estimated by our EM algorithm

are given below.

T̂ =


0.790 0.186 0.024

0.426 0.530 0.044

0.573 0.422 0.005

 .

Next, we apply the data-driven procedure with the following two sets of mMDR levels: (i)

α1 = α−1 = 0.1 and (ii) 2α1 = α−1 = 0.1. The diagnostic results are shown in Figure 9 and
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Figure 8: ĥ1(·) and ĥ2(·) for the Bosch data.

Figure 10, respectively. For comparison, the diagnostic results using XD with α = 0.1 are

shown in Figure 11 (recall that XD can not control two directional missed discovery rates

separately). It is worth noting that some streams with their observed Xi values close to 0

are still determined to be OC. This is because a stream could likely be classified as OC if

its neighboring streams are OC.
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Figure 9: The Bosch data result given by the data-driven procedure with α1 = α−1 = 0.1.

Due to the randomness involved in our missing value imputation, the above diagnostic

results also have randomness involved. To quantify such randomness, we repeat the above
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Figure 10: The Bosch data result given by the data-driven procedure with 2α1 = α−1 = 0.1.
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Figure 11: The Bosch data result given by XD with α = 0.1.
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analysis with 50 replicated imputations. Table 3 shows the average number of IC streams,

OC streams with positive shifts and OC streams with negative shifts. The numbers in

parenthesis are the corresponding standard deviations. It can be seen that the impact of

the imputation randomness is relatively small. Also, more data streams are classified as

having shifted in the positive direction when a smaller α1 is used.

Table 3: Diagnostic results for the Bosch data based on 50 replicated imputations. It shows

the average number of IC streams, OC streams with positive shifts and OC streams with

negative shifts. The numbers in the parenthesis are the corresponding standard deviations.

Method MDRs d̂i = 0 d̂i = 1 d̂i = −1

Data-driven
α1 = α−1 = 0.1 676.45(6.81) 263.65(1.96) 27.90(5.10)

2α1 = α−1 = 0.1 631.252(7.95) 308.69(3.59) 28.06(4.67)

XD α = 0.1 634.82(9.83) 304.49(5.74) 28.69(4.53)

5 Concluding Remarks

We have proposed a fault classification procedure for high-dimensional data streams. A

major feature of the proposed procedure is that it is able to simultaneously control the

directional missed discovery rates at two different levels. By setting up the classification

problem as a Lagrangian multiplier optimization, we have shown that our procedure is

optimal in the sense that it achieves the minimum expected number of false discoveries

while controlling the directional missed discovery rates at desired levels. We also suggest

an iterative adjustment algorithm that converges to the optimal Lagrangian parameters.

The asymptotic optimality for the data-driven version of our procedure is established as

well. There are ways to further generalize our procedure. For instance, our procedure is
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concerned with mean shifts only. Designing a diagnostic procedure for variance-covariance

shifts is certainly an interesting direction to pursue. Additionally, in many HDDS applica-

tions, not all the data streams can be easily collected and stored due to limited computer

memory. It requires future research to develop effective diagnostic procedures in such situ-

ations. Finally, the theoretical analysis of our procedure’s optimality in non-normal cases

is still lacking and needs to be further studied.
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