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Abstract

The accuracy of a medical diagnostic tool depends on its specificity, the proba-
bility that it classifies a normal person as normal, and its sensitivity, the probability
that it classifies a diseased person as diseased. The receiver operating characteris-
tic (ROC) curve of such a tool is its sensitivity plotted against (1 � specificity) as
the threshold defining “normal” versus “diseased” ranges over all possible values.
A common, global measure of the accuracy of a diagnostic tool is the area under
the curve (AUC), the curve being the ROC curve. Thus, one way to compare the
accuracies of medical diagnostic tools is to compare their AUCs. By comparing
each diagnostic tool with the truly most accurate diagnostic tool, one can elimi-
nate diagnostic tools that are not the most accurate, and discover diagnostic tools
which are either the most accurate or practically the most accurate. This article
shows how the method of multiple comparison with the best (MCB) for normal
error general linear models can be adapted to compare diagnostic tools in terms
of AUCs of their ROC curves. MCB of AUCs of ROC curves is illustrated by
comparing diagnostic variables for predicting the need for emergency Cesarean
section, and for predicting the onset of juvenile myopia.
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1 Receiver Operating Characteristic (ROC) Curves

For two well-defined groups, diseased patients and non-diseased (“normal”) subjects,
let T denote a diagnostic tool measurement. Define a decision rule by t0 � a threshold
value of T � such that if T � t0 the person is classified as positive (diseased) and if T � t0 �
the person is classified as negative (“normal”). For a given threshold, define specificity
as the probability that a normal person is classified as normal (true negative) and sen-
sitivity as the probability that a diseased person is classified as diseased (true positive),
with some choice of t0 � The theoretical receiver operating characteristic (ROC) curve
is the function of sensitivity versus (1 � specificity) as the threshold t0 ranges over all
possible values. On the y-axis is sensitivity, or the true-positive fraction. On the x-axis
is (1 � specificity), or the false positive fraction.

One convenient global measure of the diagnostic accuracy of a laboratory tool is
the area under its ROC curve. The area under the ROC curve measures the probability,
denoted by θ � that in a randomly selected pair of normal and diseased individuals the
diagnostic tool allows them to be correctly identified. Let X denote the diagnostic tool
measurement T for the “normal” subject and Y the measurement for a diseased patient.
Then θ � P � X � Y � � An area of θ � 0 � 8 � for example, means that a randomly selected
individual from the diseased group has a diagnostic tool measurement Y larger than
the measurement X for a randomly selected individual from the non-diseased group
80% of the time. Suppose measurements from a diagnostic tool applied to m diseased
patients and n non-diseased patients are available. An unbiased estimate of P � X � Y �
is the area under the curve (AUC) of the empirical ROC plot, which is also the Mann-
Whitney version of the two-sample rank-sum statistic of Wilcoxon (cf. Bamber 1975).

2 Multiple Comparisons of ROC Curves

If k 	�
 2 � diagnostic tools are to be compared, then a global approach is to compare
their θ ’s, denoted by θ1 � �
��� � θk � considering diagnostic tool i as better than diagnostic
tool j if θi

� θ j �
Suppose measurements from k diagnostic tools applied to the same m diseased and

n non-diseased patients are available. For i � 1 � �
��� � k � let θ̂i be the Mann-Whitney
statistic of the m � n measurements provided by the ith diagnostic tool. Then θ̂ �
	 θ̂1 � ���
� � θ̂k ��� is an unbiased estimate of θ ��	 θ1 � ���
� � θk ��� and is asymptotically normally
distributed. Its asymptotic variance-covariance matrix can be consistently estimated,
by V ��� vi j � say. (Exact expressions for θ̂i and V are given in DeLong, DeLong,
and Clarke-Pearson, 1988.) One reasonable strategy to compare the θ1 � �
��� � θk is to
derive analogues of multiple comparison methods for comparing normal populations
by basing them on θ̂i and V � These methods will then be asymptotically valid. Toward
this end, let vi

j denote the estimated variance of θ̂i � θ̂ j, i.e., vi
j � vii � v j j � 2vi j �

DeLong, DeLong, and Clarke-Pearson (1988) derived an analogue of Scheffé’s
method. Their method provides asymptotically correct simultaneous confidence inter-
vals

k

∑
i � 1

ciθi �
k

∑
i � 1

ciθ̂i �
�
	 k � 1 � χ2

α � k � 1 	 c � Vc � 1 � 2
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for all contrast vectors c � 	 c1 � �
��� � ck � � such that c1 � ����� � ck � 0 � where χ2
α � k � 1 is the

upper α quantile of the χ2 distribution with k � 1 degrees of freedom. We will compare
Scheffé’s confidence intervals for pairwise differences θi � θ j with those given by the
multiple comparison with the best (MCB) method we propose using two examples.

Tukey’s method of pairwise comparisons of normal means is derived by pivoting
the Studentized range statistic. McClish (1998) considered an analogue of the Studen-
tized range statistic in the setting of comparing AUC under ROC curves, but only used
it to test H0 : θ1 � ����� � θk �

In many situations, not all pairwise comparisons are of interest. If one diagnostic
tool is a standard or control diagnostic tool, the kth diagnostic tool say, and of primary
interest is which new diagnostic tools are better than this control, then an analogue
of one-sided Dunnett’s normal means method for multiple comparison with a control
(MCC) is

θi � θk
� θ̂i � θ̂k � d

�
vi

k for i � 1 � ���
� � k � 1 �
where d is the upper α quantile of the maximum of k � 1 random variables from a
multivariate normal distribution with means zero and correlation matrix

R � k �
�
diag 	 V � k ��� � 1V � k

�
diag 	 V � k ��� � 1 � � rk

i j � �
Here C � k is the matrix such that

θ � k � 	 θ j � θk � j �� k � � � C � kθ

so V � k � C � kVC � � k � and vi
k denotes the estimated variance of θ̂i � θ̂k. The criti-

cal value d can be computed exactly when R � k has a one-factor structure, that is,
there exist constants λ1 � �
��� � λk with all � λi � � 1 such that rk

i j � λiλ j for all i �� j (us-
ing function PROBMC in SAS, for example). Having a one-factor structure means
θ̂i � θ̂k � i � 1 � ���
� � k � 1 � are conditionally independent, and this conditional indepen-
dence facilitates critical value computation. The factor-analytic approximation of Hsu
(1992) can be used to deterministically approximate d when R � k does not have a
one-factor structure. The idea of the factor-analytic approximation is to use factor
analysis algorithms in multivariate analysis to find the correlation matrix Rf a� k with
a one-factor structure that most closely approximate the correlation matrix R � k of
θ̂i � θ̂k � i � 1 � �
��� � k � 1 � and use the approximate correlation matrix R f a� k to compute
the critical value d � The variance reduction technique of Hsu and Nelson (1998) can
be used to efficiently approximate d by simulation. This technique is a control variate
technique. Random vectors of θ̂i � θ̂k � i � 1 � ���
� � k � 1 � are generated with correla-
tion matrix R � k and correlation matrix R f a� k using the same random variates (i.e., same

seeds). Instead of estimating the quantile of maxi � 1 � 	 	 	 � k � 1
� 	 θ̂i � θ̂k ��


�
vi

k � generated
under R � k directly, one estimates the difference between this unknown quantile and the

known quantile of maxi � 1 � 	 	 	 � k � 1
� 	 θ̂i � θ̂k ��


�
vi

k � generated under R f a� k
� with the statistic

maxi � 1 � 	 	 	 � k � 1
� 	 θ̂i � θ̂k ��


�
vi

k � generated under R f a� k serving as the control variate.

Another situation in which not all pairwise comparisons are of interest is when
the comparisons of primary interest are comparisons with the unknown best diagnostic
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tool. For example, suppose among five diagnostic tools two are much inferior than the
other three. Then it is not of primary interest which of those two diagnostic tools is
worse; the inference that neither is best suffices. Suppose the second best diagnostic
tool is almost as good as the true best diagnostic tool. Then identifying both as practi-
cally the best is useful, for there may be other considerations (e.g. cost and efficiency)
impacting on the choice of the diagnostic tool. Multiple comparisons with the best
(MCB) of ROC curves compares each diagnostic tool with the best of the other diag-
nostic tools. MCB has been developed for and applied in linear model settings (e.g.,
Hsu 1984, Edwards and Hsu 1983, Horrace and Schmidt 1999). In this article, we
describe the ideas behind the development and use them to derive an asymptotically
valid MCB method for comparing ROC curves. (Thus, it should be understood that the
probabilistic statements given in this section are valid only asymptotically, as m and n
approach infinity.) For ease of presentation, in describing the ideas behind MCB, it is
assumed that there is only one best medical diagnostic tool. But the MCB result stated
in Theorem 1 is valid without this assumption.

The idea behind MCB is to ask, with i � 1 � �
�
� � k in turn, the question

“Is there sufficient evidence that the ith diagnostic tool is not the best?” (1)

If the probability of incorrectly answering “yes” to the ith question is controlled at the
level α for each i, then the collection of diagnostic tools for which the answer is “no”
constitutes a 100 	 1 � α � % confidence set for the best diagnostic tool (because exactly
one diagnostic tool is best). Let 	 k � denote the unknown index of the best diagnostic
tool. Each question can be answered by a 100 	 1 � α � % confidence MCC analysis with
the ith diagnostic tool as the “control,” and this analysis can be 1-sided because it is
impossible for a diagnostic tool to be better than the best. Adjusting for the multiplicity
of executing k MCC analyses simultaneously is not necessary, because it is impossible
to make more than one mistake in answering the k questions (1). Collating the k MCC
analyses, MCB provides simultaneous confidence intervals for

θi � max
j �� i

θ j � min
j �� i

	 θi � θ j � � i � 1 � �
��� � k �

If
θi � max

j �� i
θ j
� 0 �

then diagnostic tool i is the best diagnostic tool. On the other hand, if

θi � max
j �� i

θ j � 0 �

then diagnostic tool i is not the best diagnostic tool. Further, even if the ith diagnostic
tool is not the best, but nevertheless

θi � max
j �� i

θ j
� � δ

where δ is a small positive number, then the ith diagnostic tool is at least close to the
best.
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For each fixed i, let C� i be the matrix such that

θ � i � 	 θ j � θi � j �� i � � � C � iθ �
If θ̂i is, for the ith diagnostic tool, the proportion of pairs of measurement 	 X � Y � so
that the measurement X from a normal patient is less than the measurement Y from a
diseased patient (among all possible pairs of measurements), then

θ̂ � i � 	 θ̂ j � θ̂i � j �� i � � � C � iθ̂

is asymptotically normal with mean C � iθ and a variance-covariance matrix which is
consistently estimated by V � i � C � iVC � � i � Let vi

j denote the estimated variance of

θ̂i � θ̂ j, i.e., vi
j � vii � v j j � 2vi j �

For each i � i � 1 � �
�
� � k, suppose the constant d i is such that

P � θ̂i � θ̂ j � 	 θi � θ j � � � di
�

vi
j for all j � j �� i � � 1 � α � (2)

i.e., it is the one-sided MCC asymptotic critical value with the ith diagnostic tool as the
control. Then for that i �

θ̂i � θ̂ j � di
�

vi
j for all j � j �� i

form 100 	 1 � α � % simultaneous upper confidence bounds for θi � θ j for all j � j ��
i � As they are simultaneous upper confidence bounds on minj �� i � θi � θ j � as well,

min j �� i � θ̂i � θ̂ j � di
�

vi
j � is a 100 	 1 � α � % upper confidence bound for minj �� i � θi �

θ j � � In particular,

min
j ���� k � � θ̂ � k � � θ̂ j � d � k �

�
v � k �j �

is a 100 	 1 � α � % upper confidence bound for minj ���� k � � θ � k � � θ j � �
The parameter min j �� i � θi � θ j � � i � 1 � �
��� � k � is positive when i � 	 k � � negative

otherwise. If we use the notation D �i � 	 min j �� i � θ̂i � θ̂ j � di
�

vi
j � � � � where x � �

max � x � 0 � � then D � � k � is a 100 	 1 � α � % upper confidence bound for minj �� i � θi � θ j �
with i � 	 k � � while for each i �� 	 k � � D �i is trivially a 100% upper confidence bound
for min j �� i � θi � θ j � � Therefore, D �i � i � 1 � ���
� � k � are simultaneous 100 	 1 � α � % upper
confidence bounds for minj �� i � θi � θ j � � i � 1 � ���
� � k �

Further, for each i � a size-α test for

H0i : min
j �� i

� θi � θ j � � 0

which answers the question (1) is to accept (answer “no”) when

min
j �� i

� θ̂i � θ̂ j � di
�

vi
j � � 0 �

or, equivalently, to accept when D �i
� 0 � Therefore, G � � i : D �i

� 0 � is a 100 	 1 � α � %
confidence set for the unknown index 	 k � of the best medical diagnostic tool.
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Finally, θ̂i � θ̂ � k � � d � k �
�

v � k �i for all i � i ���	 k � � form 100 	 1 � α � % simultaneous
lower confidence bounds for θi � θ � k � � θi � max j �� i θ j for i �� 	 k � � On the other hand,
for i � 	 k � � trivially θi � max j �� i θ j

� 0 � Therefore, since G is a confidence set for the
unknown index 	 k � of the best diagnostic tool, if we define

D �i �
�

0 if G � � i �
min j � G � j �� i � θ̂i � θ̂ j � d j

�
v j

i � otherwise;

then D �i � i � 1 � �
��� � k � are simultaneous 100 	 1 � α � % lower confidence bounds for
min j �� i � θi � θ j � � i � 1 � ���
� � k �

Note that it is the same 100 	 1 � α � % probability event in (2) from which the con-
fidence limits D�i � D �i � i � 1 � �
��� � k � are derived. We thus have the following result,
which can be proven rigorously along the lines of Theorem 7.3.1 of Hsu (1996).

Theorem 1 For all θ � as m � n � ∞ �

Pθ � θi � max
j �� i

θ j � �
D �i � D �i � for i � 1 � �
��� � k � 
 1 � α �

Note that the techniques for computing MCC critical values discussed previously
apply to the computation of d i �

In the examples which follow, we use the factor-analytic approximation of Hsu
(1992) to deterministically approximate d i � In these examples, the diagnostic tools are
candidate variables for predicting whether an outcome will occur. Cost of measurement
and simplicity considerations make it desirable to use a single diagnostic variable, so
the problems are cast as finding the best or almost the best single-variable predictor. In
situations where measurement on all variables are readily available, Su and Liu (1993)
and Reiser and Faraggi (1997) discuss how to take combinations of the variables to
increase accuracy. But how to provide a probabilistic guarantee similar to Theorem
1 that a particular combination is the best or almost the best combination predictor
remains a future research problem.

3 Prediction of emergency Cesarean section example

To compare the ability of ultrasound and clinical assessment to predict the need for
Cesarean section, 105 Hong Kong Chinese with singleton pregnancies in cephalic pre-
sentation were recruited at random from women admitted to the labor ward of the
Prince of Wales Hospital during January 1993 (Stock et al, 1994). Assessment of all
the individuals was performed by the same obstetrician who was not involved in their
clinical management. In addition, the attending obstetricians were blinded from the
results of the study obstetricians.

The fundal height (FH), was measured, and the clinical estimation of the fetal
weight (CLINICAL) was made during clinical examination. The biparietal diameter
(BPD), abdominal circumference (AC), and femur length (FL) were measured on fetal
ultrasonography. These five variables are the candidate diagnostic variables for pre-
dicting the need for emergency Cesarean section.
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The point estimates of areas under the ROC curves are

θ̂BPD � 0 � 637

θ̂FL � 0 � 854

θ̂AC � 0 � 748

θ̂FH � 0 � 638

θ̂CLINICAL � 0 � 680

with estimated variance-covariance matrix

V � 10 � 3 ������
8 � 71 2 � 49 4 � 07 6 � 01 5 � 78
2 � 49 2 � 79 1 � 67 2 � 75 3 � 84
4 � 07 1 � 67 5 � 31 4 � 16 3 � 50
6 � 01 2 � 75 4 � 16 7 � 72 6 � 36
5 � 78 3 � 84 3 � 50 6 � 36 8 � 57

�������
To execute MCB, one first calculates the upper confidence bounds D�1 � �
��� � D �5 using the
critical values 	 d1 � ���
� � d5 � � which at the 95% level are 	 2 � 133 � 2 � 160 � 2 � 134 � 2 � 189 � 2 � 164 �
based on the factor-analytic approximation to the correlation matrices derived from
V � 1 � �
��� � V � 5 � The upper confidence bounds turn out to be 0 � 0 � 255 � 0 � 041 � 0 � 0 � There-
fore, the confidence set G for the index of the unknown best diagnostic variable is
� 2 � 3 � � In fact, if one tests for i � 1 � ���
� � 5 the null hypotheses

H0i : θi
� θ j for all j �� i �

then the p-values are 0 � 012 � 0 � 997 � 0 � 163 � 0 � 004 � 0 � 007 � One then calculates the lower
confidence bounds D�i � i � 1 � �
�
� � 5 � which for each i is

D �i � min
j ��� 2 � 3 	
� j �� i

� θ̂i � θ̂ j � d j
�

vi
j �

in this case. They turn out to be � 0 � 391 � � 0 � 041 � � 0 � 255 � � 0 � 369 � � 0 � 305 � Therefore,
at the 95% confidence level, the MCB confidence intervals for each of FH, CLINICAL,
BPD, AC, FL minus the best of the other diagnostic variables are:

θBPD � max � θFH � θCLINICAL � θAC � θFL � � � � 0 � 391 � 0 �
θFL � max � θFH � θCLINICAL � θBPD � θAC � � � � 0 � 041 � 0 � 255 �
θAC � max � θFH � θCLINICAL � θBPD � θFL � � � � 0 � 255 � 0 � 041 �

θFH � max � θCLINICAL � θBPD �
� θAC � θFL � � � � 0 � 369 � 0 �
θCLINICAL � max � θFH � θBPD � θAC � θFL � � � � 0 � 305 � 0 �

So, at the 95% confidence level, one can say BPD, FH, and CLINICAL are not the
best diagnostic variables. AC is within 0.255 of the best, while FL is within 0.041 of
the best. Note that for AC and FL, their confidence intervals for θi � max j �� i θ j are
reflections of each other with respect to zero. That is because AC and FL are the only
two diagnostic variables that can be best, so that the difference between each and the
best of the others is the difference between each other.
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For this emergency Cesarean section data, Scheffé’s method is not able to declare
any two diagnostic variables to be different at the 95% confidence level, in contrast to
the MCB analysis. Simultaneous 95% confidence intervals for each of FH, CLINICAL,
BPD, AC, FL minus the best of the other diagnostic variables that can be deduced from
Scheffé’s method are:

θBPD � max � θFH � θCLINICAL � θAC � θFL � � 	
� 0 � 465 � 0 � 033 �
θFL � max � θFH � θCLINICAL � θBPD � θAC � � 	
� 0 � 107 � 0 � 319 �
θAC � max � θFH � θCLINICAL � θBPD � θFL � � 	
� 0 � 319 � 0 � 107 �

θFH � max � θCLINICAL � θBPD ��� θAC � θFL � � 	
� 0 � 435 � 0 � 003 �
θCLINICAL � max � θFH � θBPD � θAC � θFL � � 	
� 0 � 361 � 0 � 013 �

Further, if a diagnostic variable with an AUC within 0.05 (say) of the best can be
considered practically the best, then MCB infers FL is practically the best diagnostic
variable but Scheffé’s method fails to do so.

4 Prediction of myopia example

In optometry, accurate prediction of myopia onset and identification of children at high
risk for myopia onset is important in eventually preventing and controlling abnormal
myopic eye growth. During the period from 1989 to 1993, measurements on four
candidate predictor variables were taken from 554 children in the Orinda Longitudi-
nal Study of Myopia (Zadnik et al, 1993) who were not myopic by the occasion of
their third grade visit. Through 1994, 45 of them had developed myopia. The can-
didate predictor variables are: mean cycloplegic sphere power of the refractive error
(WSMEAN), corneal power in the vertical meridian from the third ring of the pho-
tokeratoscope photograph (CS3V), Gullstrand crystalline lens power (GLP), and axial
length (AL.MN).

The point estimates for θ are:

θ̂W SMEAN � 0 � 875

θ̂GLP � 0 � 605

θ̂AL 	 MN � 0 � 614

θ̂CS3V � 0 � 608

with estimated variance-covariance matrix

V � 10 � 3 ���� 0 � 785 � 0 � 167 0 � 320 � 0 � 084
� 0 � 167 1 � 780 0 � 836 � 0 � 384
0 � 320 0 � 836 2 � 043 � 1 � 324
� 0 � 084 � 0 � 384 � 1 � 324 1 � 818

� ���
The question is whether the superiority of WSMEAN reflected in it having the largest
θ̂ and the dominant ROC curve in Figure 1 can be ruled out as being due to chance.

To execute MCB, one first calculates the upper confidence bounds D�1 � �
��� � D �4 us-
ing the critical values 	 d1 � ���
� � d4 � � which at the 99% level are 	 2 � 699 � 2 � 572 � 2 � 566 � 2 � 542 �
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Figure 1: ROC curves of predictors of myopia
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based on the factor-analytic approximation to the correlation matrices derived from
V � 1 � �
��� � V � 4 � The upper confidence bounds turn out to be 0 � 387 � 0 � 0 � 0 � Therefore, at
the 99% confidence level, we can infer WSMEAN is the best diagnostic variable. In
fact, if one tests for i � 1 � ���
� � 4 the null hypotheses

H0i : θi
� θ j for all j �� i �

then the p-values are 1 � 0 � 0 � 0 to at least the fourth decimal place. One then calculates
the lower confidence bounds D�i � i � 1 � �
�
� � 4 � which for each i is

D �i �
�

0 for i � 1

θ̂i � θ̂1 � d1
�

vi
1 for i � 2 � 3 � 4

in this case. They turn out to be 0 � � 0 � 415 � � 0 � 387 � � 0 � 409 � Therefore, at the 99%
confidence level, the MCB confidence intervals for each of WSMEAN, GLP, AL.MN,
CS3V minus the best of the other diagnostic variables are:

θW SMEAN � max � θGLP � θAL 	 MN � θCS3V � � �
0 � 0 � 387 �

θGLP � θWSMEAN � � � 0 � 415 � 0 �
θAL 	 MN � θWSMEAN � � � 0 � 387 � 0 �

θCS3V � θWSMEAN � � � 0 � 409 � 0 �
For this optometry data set, Scheffé’s 99% confidence intervals for pairwise differ-

ences are as follow:

θW SMEAN � max � θGLP � θAL 	 MN � θCS3V � � 	 0 � 118 � 0 � 391 �
θGLP � θWSMEAN � 	�� 0 � 420 � � 0 � 118 �

θAL 	 MN � θWSMEAN � 	�� 0 � 391 � � 0 � 129 �
θCS3V � θWSMEAN � 	�� 0 � 414 � � 0 � 119 �

Comparing the inferences given by MCB and Scheffé’s method, both infer WSMEAN
to be the best diagnostic variable. But for this data set Scheffé’s method has the advan-
tage that it gives, in addition, lower bounds on how much WSMEAN is better than the
other diagnostic variables.

5 Adequacy of the Normal Approximation

A small simulation study was conducted to assess the adequacy of the normal approx-
imation. Applying the MCB method of comparing ROC curves to simulated data with
known θ ’s repeatedly, we observe the true simultaneous coverage probability of MCB
confidence intervals based on normal approximation to be slightly lower than the nom-
inal confidence level 1 � α � as described below.

For i � 1 � �
��� � k � let Xi denote the test score for a “normal” patient and Y i the test
score for a diseased patient. Independent random samples of X � 	 X1 � �
��� � Xk � and
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Y � 	 Y1 � �
��� � Yk � with k � 4 of sizes m � n � 50 were generated from the multivari-
ate normal distribution with E 	 X � ��	 0 � 0 � 0 � 0 � � E 	 Y � � µ and all variance equal to
one and all covariance equal 0.5 for various µ � With µ ��	 0 � 5 � 1 � 0 � 1 � 5 � 2 � 0 � so that
θ ��	 0 � 638 � 0 � 760 � 0 � 856 � 0 � 921 � for example, the estimated true simultaneous coverage
probabilities of 95% and 90% MCB confidence intervals based on normal approxima-
tion are 92 � 6% and 86 � 9% respectively (each based on 10,000 simulations runs). The
reason for the under-coverage appears to be as follows.

To compare the ith and jth diagnostic techniques based on the asymptotic normality
of θ̂i � θ̂ j � one refers

Z � θ̂i � θ̂ j � 	 θi � θ j �
σ̂θ̂i � θ̂ j

to the standard normal distribution or a t distribution for all θ � Figure 2 shows the
densities of two such Z’s (estimated using kernel smoothing), one for θ � 	 0 � 76 � 0 � 92 �
(labeled MCC parameter � 0 in the figure) and the other for θ � 	 0 � 92 � 0 � 76 � (labeled
MCC parameter � 0 in the figure). Note the longer tail of the latter density. The reason
for this is there is a correlation between θ̂i � θ̂ j and σ̂θ̂i � θ̂ j

� which depends on θ � So Z
is not as pivotal as one would hope for. How to improve the coverage probability of the
MCB method remains a research problem.
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