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Abstract

In manufacturing industries, images are commonly used for quality control pur-

poses. In such applications, if the quality of the products is good, then their images

should be all similar to the image of a good-quality product. Therefore, comparison of

images is a fundamental task in image-based quality control. This problem, however,

is complicated in the sense that 1) observed images often contain noise, and 2) the

related images need to be geometrically matched up first because images of different

products could be geometrically mismatched due to the fact that the relative positions

between a camera and different products are often not exactly the same. The first

issue requires a statistical method that can remove noise, and the second issue is re-

lated the so-called image registration problem in the image processing literature. In

this paper, we propose effective methods for detecting difference between two images

of products, and our proposed methods can accommodate both noise and geometric

mismatch mentioned above. Theoretical results and numerical examples show that

they can work effectively in applications.

Keywords: Consistency; Continuity region; Edge detection; Hypothesis tests; Image

registration; Rigid-body transformation.
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1 Introduction

Quality control is a fundamental task for manufacturing industries to guarantee the quality

of manufactured products (Qiu 2014). In modern manufacturing industries, images become

a more and more popular tool for quality inspection because of the low cost and convenience

in data aquisition (Kumar 2008, Yan et al. 2016). This paper aims to address a key problem

about difference detection between two images for image-based quality control.

In manufacturing industries, images have been widely used for quality control purposes,

including stress and strain analysis of products (Patterson and Wang 1991), anomaly detec-

tion of rolling processes (Jin et al. 2004), inspection of composite material fabrication (Sohn

et al. 2004), quality control in liquid crystal display manufacturing (Jiang et al. 2005),

structural health monitoring (Balageas et al. 2010), and so forth. In all these applications,

one fundamental problem is to compare images of different products. This problem is chal-

lenging because of the following major reasons. First, images often have edges and other

complicated structures, and the related image intensity surfaces would have jumps and other

singularities (Gonzalez and Woods 1992, Qiu 2005). So, conventional methods for estimat-

ing smooth functions are usually inapplicable (Qiu 2007). Second, observed images would

contain noise and other contaminations. When removing the noise and recovering the signal,

edges and other important image structures need to be preserved, which makes the related

image-denoising task especially challenging (e.g., Geman and Geman 1984, Gijbels et al.

2006, Mukherjee and Qiu 2011, Qiu 1998, Saint-Marc et al. 1991, Tomasi and Manduchi

1998). Third, images of different products are most likely geometrically mismatched because

the relative positions between the camera and different products are hardly the same. To

make the comparison between two images meaningful and reliable, the images should be

geometrically matched up first, which is the so-called image registration problem in the im-

age processing literature (Modersitzki 2009, Qiu and Xing 2013a, Zitova and Flusser 2003).

Otherwise, the difference between two same but mismatched images could be large. For

instance, consider a black-white image with black in the left half and white in the right half

and another image obtained by moving the black-white image to the right by certain pixels.

The difference between these two images could be relatively large, although the two images
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are actually the same, except a geometric dismatch.

In the literature, there is a limited discussion about image comparison, mainly by re-

searchers in computer vision and graphics (e.g., Davis et al. 1997). A major existing tool for

comparing two images is to use a quantitative similarity or dissimilarity measure (Freire et al.

2002). Commonly used measures include the mean squared difference between two images,

Pearson’s correlation coefficient of the observed image intensities of the two images, entropy

of the difference between the two images, and so forth (Qiu and Nguyen 2008). However,

these measures alone cannot tell whether two related images are significantly different or

not, especially in cases when image misalignment is relevant. They do not take into account

the complicated image structure, such as edges, either. Because observed images almost

always contain noise and other contamination (e.g., spatial blur) in the image acquisition

process (Gonzalez and Woods 1992, Qiu 2005), image comparison is a statistical problem.

This problem has not been well discussed in the statistical literature yet. This paper tries

to fill this gap.

In this paper, we propose several testing procedures for comparing two images. The

novelty of our proposed methods is reflected in the fact that they can simultaneously ac-

commodate all the issues mentioned above related to the edge structure of the images, the

noise in the observed images, and the image registration. Theoretical results and numerical

examples show that they work well in practice. The image registration issue is discussed in

Section 2. Our proposed testing procedures based on proper image registration are described

in Section 3. Some practical guidelines on parameter selection are given in Section 4. Some

simulation results are presented in Section 5. A real-data example is discussed in Section

6. Several remarks conclude the article in Section 7. Some theoretical results about the

consistency of the related parameter estimators are given in the appendix.

2 Rigid-Body Image Registration

As discussed in Section 1, images of two products obtained from a production line are

often geometrically mismatched because the relative positions between the camera and the
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products can hardly be exactly the same. So, to compare a pair of two images automatically

by a computer, the two images need to be geometrically matched up first. This is the image

registration (IR) problem in the literature (Qiu and Xing 2013a). As a convention, one image

in the pair is called reference image, and the other one is called moved image. Then the IR

problem can be described as follows. Assume that the two observed images follow the models

ZR(xi, yj) = R(xi, yj) + εR(xi, yj), (1)

ZM(xi, yj) = M(xi, yj) + εM(xi, yj), i, j = 1, · · · , n,

where {(xi, yj)} are equally-spaced pixels, M(xi, yj) and R(xi, yj) are the true moved and

reference image intensity functions, ZR(xi, yj) and ZM(xi, yj) are their observed versions, and

{εM(xi, yj)} and {εR(xi, yj)} are i.i.d. random errors with mean 0 and unknown variances

σ2
R and σ2

M . In (1), we assume that σ2
R = σ2

M = σ2 and the numbers of rows and columns

of pixels are the same for convenience of presentation. All methods proposed in the paper

can actually work well in cases when they are different. For the two true image intensity

functions, it is assumed that they have the following relationship when the related products

come from an “in-control” process:

M(T1(x, y), T2(x, y)) = R(x, y), (x, y) ∈ Ω, (2)

where Ω = [0, 1] × [0, 1] is the design space of the reference image R, and T(x, y) =

(T1(x, y), T2(x, y)) is an unknown geometric transformation. In manufacturing applications

where the geometric difference between M(x, y) and R(x, y) is mainly due to the position

move between the products and the camera, it is reasonable to assume that T(x, y) is a

rigid-body transformation defined by

T1(x, y) = x cos(φ) + y sin(φ) + ∆x, (3)

T2(x, y) = −x sin(φ) + y cos(φ) + ∆y,

where φ is a rotation parameter, and ∆x and ∆y are the translation parameters in the x− and

y−axes, respectively. By a rigid-body transformation, the Euclidean distance between any

two points in an image will not change after the transformation. Then, the major goal of the

IR problem is to estimate the parameters θ = (φ,∆x,∆y)T from the two observed images.
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To this end, there could be two possible approaches. One is to estimate the parameters based

on the continuity parts of the two image intensity functions (i.e., the parts of the images

where the image intensity functions are continuous), and the other is based on the detected

edges of the two images. These two approaches are discussed in the two subsections below.

In most industrial applications, images of different products are taken in a same or

similar lighting environment or at similar positions relative to the camera. So, equation

(2) is (roughly) appropriate for describing the geometric difference between the reference

and moved images. However, in certain applications, it is possible that the lighting condi-

tion of different products is different. In such cases, the overall intensity levels of different

images could be different. To accommodate such difference, we can standardize the over-

all intensity levels of different images before image registration or testing. More specifi-

cally, for any observed image {Z(xi, yj)}, its standardized image is defined as {Z∗(xi, yj) =

[Z(xi, yj)− Z]/(Zmax− Zmin)}, where Z,Zmax and Zmin are the mean, maximum and

minimum of {Z(xi, yj)}, respectively. Also, in most manufacturing applications, the geomet-

ric difference among different product images would be small because the relative position be-

tween a product and the camera is often pre-determined and the geometric difference among

different images is mainly due to small position moves of the products in the production pro-

cess. However, if a big geometric difference among images is possible, then a pre-processing to

roughly align the images might be helpful, before using our proposed methods discussed be-

low. One possible pre-processing approach is to minimize
∑n

i,j=1[ZM(T(xi, yj))−ZR(xi, yj)]
2

with respect to θ, where T(x, y) has the expression (3).

2.1 Intensity-based image registration

For a given point (x, y) ∈ Ω, assume that M has the first-order partial derivatives at (x, y)

and T(x, y)− (x, y) is small, then by the Taylor’s expansion, we have

M(T1(x, y), T2(x, y)) =M(x, y) +M
′

x(x, y)(T1(x, y)− x) +M
′

y(x, y)(T2(x, y)− y)

+ o(‖T(x, y)− (x, y)‖),
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where M
′

x(x, y), M
′

y(x, y) are the partial derivatives of M at (x, y), and ‖ · ‖ is the Euclidean

norm. Combining the above equation with (2), we have

R(x, y) ≈ M(x, y) +M
′

x(x, y)(T1(x, y)− x) +M
′

y(x, y)(T2(x, y)− y)

= M(x, y)−M
′

x(x, y)x−M
′

y(x, y)y +
(
M

′

x(x, y)x+M
′

y(x, y)y
)
cos(φ)

+
(
M

′

x(x, y)y −M
′

y(x, y)x
)
sin(φ) +M

′

x(x, y)∆x+M
′

y(x, y)∆y

≈ M(x, y) +
(
M

′

x(x, y)y −M
′

y(x, y)x
)
φ+M

′

x(x, y)∆x+M
′

y(x, y)∆y.

In the last “≈”, we have used the results that cos(φ) ≈ 1 and sin(φ) ≈ φ when φ is small.

To estimate parameters θ = (φ,∆x,∆y)T , it is then natural to consider the following sum of

squares of the approximation errors, after R(x, y) andM(x, y) are replaced by their observed

versions:

Q(φ,∆x,∆y) =
∑

(xi,yj)∈DM

[
ZM(xi, yj)− ZR(xi, yj) +

(
M

′

x(xi, yj)yj −M
′

y(xi, yj)xi

)
φ

+M
′

x(xi, yj)∆x+M
′

y(xi, yj)∆y
]2
, (4)

where DM denotes the set of all pixels at which M(x, y) is continuous. Let Y be a long

vector, consisting of {ZM(xi, yj)− ZR(xi, yj), (xi, yj) ∈ DM}, and X be a matrix, consisting

of rows {(M
′

x(xi, yj)yj −M
′

y(xi, yj)xi,M
′

x(xi, yj),M
′

y(xi, yj)), (xi, yj) ∈ DM}, arranged in the

same order as that for Y. Then, by minimizing Q(φ,∆x,∆y) in (4), we get

θ̂C =




φ̂

∆̂x

∆̂y


 = (XTX)−1XTY. (5)

To use the estimators in (5), we need to (i) estimate M
′

x(x, y) and M
′

y(x, y) for a given

continuity point (x, y), and (ii) obtain an estimator of DM . To estimate M
′

x(x, y) and

M
′

y(x, y), we suggest using the local linear kernel estimators defined by

M̂
′

x(x, y) =

∑
(xi,yj)∈DM

(xi − x)ZM(xi, yj)Kh(xi − x, yj − y)
∑

(xi,yj)∈DM
(xi − x)2Kh(xi − x, yj − y)

, (6)

M̂
′

y(x, y) =

∑
(xi,yj)∈DM

(yj − y)ZM(xi, yj)Kh(xi − x, yj − y)
∑

(xi,yj)∈DM
(yj − y)2Kh(xi − x, yj − y)

,

where Kh(x, y) = K(x/h, y/h), K is a bivariate density kernel function with unit circular

support, and h > 0 is a bandwidth parameter. To estimate DM , we adopt the edge detection
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method proposed recently by Kang and Qiu (2014) for detecting all pixels at which M(x, y)

has jumps (i.e., edge pixels). By that method, at a given pixel we consider a circular neigh-

borhood. Then, the neighborhood is divided into two halfs along a direction perpendicular

to the estimated gradient direction of the image intensity surface at the given pixel. The

difference between two weighted averages of the image intensities in the two halfs of the

neighborhood is then used as the edge detection criterion. The given pixel is detected as an

edge pixel if this criterion is larger than a predefined threshold value. Then, the estimator

of DM is defined to be the set of all pixels after the detected edge pixels are excluded.

From (5), it can be seen that the estimator θ̂C is not well defined if the matrix XTX is

singular (i.e., |XTX| = 0). For simplicity of notation, let M
′

x(xi, yj) = aij and M
′

y(xi, yj) =

bij. Then

XTX =




∑
(xi,yj)∈DM

(aijyj − bijxi)
2,

∑
(xi,yj)∈DM

(aijyj − bijxi)aij ,
∑

(xi,yj)∈DM
(aijyj − bijxi)bij∑

(xi,yj)∈DM
(aijyj − bijxi)aij ,

∑
(xi,yj)∈DM

a2ij ,
∑

(xi,yj)∈DM
aijbij∑

(xi,yj)∈DM
(aijyj − bijxi)bij ,

∑
(xi,yj)∈DM

aijbij ,
∑

(xi,yj)∈DM
b2ij


 .

If |XTX| = 0, then one of the following equations must hold:

∑

(xi,yj)∈DM

(aijyj − bijxi)
2

∑

(xi,yj)∈DM

a2ij =


 ∑

(xi,yj)∈DM

(aijyj − bijxi)aij




2

,

∑

(xi,yj)∈DM

(aijyj − bijxi)
2

∑

(xi,yj)∈DM

b2ij =


 ∑

(xi,yj)∈DM

(aijyj − bijxi)bij




2

,

∑

(xi,yj)∈DM

a2ij
∑

(xi,yj)∈DM

b2ij =


 ∑

(xi,yj)∈DM

aijbij




2

.

By the Cauchy inequality, the above three equations are equivalent to: for any (xi, yj) ∈ DM ,

aijyj − bijxi =κ1aij,

aijyj − bijxi =κ2bij,

aij =κ3bij,

where κ’s are constants. By this result and the fact that the area of the edge curves is 0,
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M(x, y) must have one of the following forms in the entire design space:

M(x, y) = ψ
(
x2 + (y − κ1)

2
)
, (7)

M(x, y) = ψ
(
(x− κ2)

2 + y2
)
,

M(x, y) = ψ (κ3x+ y) ,

where ψ is a univariate function. In such cases, M(x, y) is actually a degenerate function

in the design space. If one of the first two equations is valid (i.e., M(x, y) is circularly

symmetric), then φ in θ cannot be estimated. If the last equation is valid (i.e., M(x, y) is

a univariate function of κ3x + y), then one or both ∆x and ∆y cannot be estimated. In

such cases, we can just calculate the estimable parameters, set the unestimable parameters

to be zero, and make the image registration accordingly. In the appendix, we show that θ̂C

is statistically consistent under some regularity conditions.

2.2 Edge-based image registration

To estimate the parameters θ = (φ,∆x,∆y)T in the rigid-body transformation (3), we can

also use the detected edge points of the two observed images ZR(x, y) and ZM(x, y). The

sets of these detected edge points are denoted as DR and DM , respectively. To this end,

we first need to build a 1-1 correspondence, called feature matching in the image processing

literature (cf., Qiu and Xing 2013b), between the detected edge points in DR and DM . In

this paper, we use the mean squared difference (MSD) metric for this purpose. Without

loss of generality, assume that |DR| ≤ |DM |, where |DR| denotes the number of pixels in

DR. Otherwise, we can switch the positions of DR and DM . For any detected edge point

(x, y) ∈ DR, its matched edge point in DM , denoted as (x∗, y∗), is defined by

(x∗, y∗) = argmin
(x

′
,y

′
)∈DM ,‖(x

′
,y

′
)−(x,y)‖≤rn

1

Ñ

∑

s2+t2≤d2n

(
ZR(x+ s, y + t)− ZM(x

′

+ s, y
′

+ t)
)2

,

where dn and rn are two radius parameters and Ñ is the total number of pixels in the circular

neighborhood O(x, y; dn).
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From (3), when φ is small, we have

T1(x, y) ≈x+ yφ+∆x,

T2(x, y) ≈− xφ+ y +∆y.

Thus, to estimate θ = (φ,∆x,∆y)T , it is natural to consider the minimizer of the following

objective function

QE(φ,∆x,∆y) =
∑

(xi,yj)∈DR

(x∗i − xi − yjφ−∆x)2 +
(
y∗j − yj + xiφ−∆y

)2
. (8)

The resulting estimators are then

θ̂E =




φ̂

∆̂x

∆̂y


 = A−1B, (9)

where

A =




∑
(xi,yj)∈DR

(x2i + y2j ),
∑

(xi,yj)∈DR
yj, −

∑
(xi,yj)∈DR

xi∑
(xi,yj)∈DR

yj, |DR|, 0

−
∑

(xi,yj)∈DR
xi, 0, |DR|


 ,

B =




∑
(xi,yj)∈DR

(x∗i − xi)yj −
∑

(xi,yj)∈DR
(y∗j − yj)xi∑

(xi,yj)∈DR
(x∗i − xi)∑

(xi,yj)∈DR
(y∗j − yj)


 .

It is not difficult to check that A−1 always exists when |DR| > 0. For the estimator θ̂E, we

show in the appendix that it is statistically consistent under some regularity conditions.

3 Hypothesis Tests for Detecting Difference Between

Two Images

After the observed reference image ZR(x, y) and the observed moved image ZM(x, y) are

properly registered, we can test whether the two geometrically matched images are the same

or not. More specifically, we are interested in testing the hypotheses
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H0 : There is a rigid-body transformation T(x, y) such that M(T(x, y)) ≡ R(x, y)

versus

H1 : No rigid-body transformation exists such that H0 is true.

However, images have complicated structures. Roughly speaking, a general image consists of

edges and continuity regions that the image intensity function has jumps and is continuous,

respectively. Because the edge pixels and the pixels in the continuity regions are very different

in nature, they can be considered separately in the above hypothesis testing problem. In

the three subsections below, we will discuss three hypothesis testing procedures constructed

based on the continuity regions of the images, their detected edges, and the combination of

the continuity regions and detected edges, respectively.

3.1 Test based on the continuity regions of the images

To test whether M(T(x, y)) and R(x, y) are the same, we can first investigate whether

their continuity regions are the same. Remember that the sets of detected edges in the two

observed reference and moved images are DR and DM , respectively. Also, the edges are

detected by the local smoothing method in Kang and Qiu (2014), and the detected edges

would be distributed mainly in a local band of the true edges. So, instead of deducting

DR

⋃
DM from the design space Ω, we consider

G = Ω\
(
DR(hG)

⋃
DM(hG)

)
,

where DR(hG) denotes the set of pixels whose Euclidean distance to DR is less than or equal

to hG, and hG > 0 is a bandwidth. Then, it is natural to consider the statistic

U ′ =
∑

(xi,yj)∈G

(
ZR(xi, yj)− ZM(T̂(xi, yj))

)2

,

If H0 is true and T̂(x, y) is a perfect estimator of T(x, y), then the value of this statistic

would be small. Otherwise, its value would be large. Therefore, U ′ can be used for testing H0

and H1. Because U
′ has a quadratic form, its asymptotic distribution would be close to a χ2

distribution, which is often skewed. Thus, it is natural to consider its following standardized
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version:

U =
1√
2|G|

∑

(xi,yj)∈G

((
ZR(xi, yj)− ZM(T̂(xi, yj))

)2 /
(2σ̂2)− 1.0

)
,

where |G| denotes the number of pixels in G and σ̂2 is the variance estimator in Kang and Qiu

(2014). Because its true null distrobution is unknown, its critical value will be determined by

a numerical approach described in Section 3.3 below. In the previous section, we proposed

two different estimators of T(x, y), using θ̂C and θ̂E, respectively. The corresponding test

statistics are denoted as UCC and UEC , where the first subscript identifies the way for image

registration and the second subscript denotes the fact that this testing procedure is based

on the continuity regions of the images.

3.2 Test based on the detected edges of the images

We can also use the detected edge pixels of the observed reference and moved images for

testing whether the two geometrically matched images are the same. To this purpose, for

any pixel (xi, yj) ∈ DR, let the matched pixel in DM be (x̂i, ŷj) = T̂(xi, yj), as discussed in

Section 2.2. Then, we suggest the following test statistic:

UE =
1√
2|DR|

∑

(xi,yj)∈DR

{
(ZR(xi, yj)− ZM(x̂i, ŷj))

2/(2σ̂2)− 1
}
×

I
(
(ZR(xi, yj)− ZM(x̂i, ŷj))

2 < γ2σ̂2
)
,

where γ > 0 is a constant. In the above expression, the indicator I((ZR(xi, yj)−ZM(x̂i, ŷj))
2 <

γ2σ̂2) is used to exclude cases when (xi, yj) is on one side of an edge curve in ZR(x, y) but

(x̂i, ŷj) is on another side of the same edge curve in ZM(x, y), which can happen because the

detected edge pixels are usually scattered around the true edge curves.

3.3 Determination of the critical values of the tests

In the test statistics UCC , UEC and UE discussed above, besides the random errors in the

observed images, the estimated transformation T̂(x, y), the estimated variance σ̂2, and the

detected edges are all involved. So, their actual distributions would be quite complicated,
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although their asymptotic distributions might all be standard normal. In this part, we

propose the following bootstrap procedure to calculate their critical values.

1. We apply the local piecewisely liner kernel smoothing procedure by Qiu (2004) to the

two observed images, and obtain edge-preserved estimators of R(x, y) and M(x, y),

denoted as R̂(x, y) and M̂(x, y), respectively. The corresponding residuals are denoted

as ε̂R(x, y) and ε̂M(x, y).

2. Generated new reference and moved images by

Z∗
R(xi, yj) =R̂(xi, yj) + ε̂∗R(xi, yj), for i, j = 1, 2, . . . , n,

Z∗
M(xi, yj) =M̂(xi, yj) + ε̂∗M(xi, yj),

where {ε̂∗R(xi, yj)} and {ε̂∗M(xi, yj)} are bootstrap samples obtained from {ε̂R(xi, yj), i, j =

1, 2, . . . , n} and {ε̂M(xi, yj), i, j = 1, 2, . . . , n}, respectively. Because the residuals

around the true edges could be large, in the above resampling procedure, we suggest

replacing ε̂R(xi, yj) by

ε̃R(xi, yj) =

{
ε̂R(xi, yj), if |ε̂R(xi, yj)| < γ̃σ̂,

a random number from N(0, σ̂2), otherwise,

where γ̃ is a constant chosen in the interval [3, 5]. The same modification is also made

for ε̂M(xi, yj).

3. Calculate the values of the three test statistics using the two generated images Z∗
R(x, y)

and Z∗
M(x, y).

4. Repeat Steps 2 and 3 by B times, and the bootstrap critical values are the empirical

(1− α)−th quantiles of the B sets of values of the three test statistics.

3.4 Combination tests

In the above three parts, we have proposed three testing procedures: the ones using UCC and

UEC are based on the continuity regions of the two images R(x, y) and M(x, y), and the one

using UE is based on the detected edges. If H0 is true, then both the continuity regions and
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the edges of the two images should be the same. So, it is natural to consider the following

two combination tests:

UE,CC : reject H0 if (UE > zEα/2) or (UCC > zCC
α/2),

UE,EC : reject H0 if (UE > zEα/2) or (UEC > zEC
α/2),

where zEα/2, z
EC
α/2 and z

CC
α/2 are the (1−α/2)−th quantiles of UE, UEC , UCC , respectively, under

H0.

4 Practical Guidelines on Parameter Selection

In our proposed methods described above, there are a number of parameters involved. They

should be chosen properly in advance to have a good performance of the proposed methods.

All these parameters are the so-called smoothing parameters (Qiu 2005, Chapter 2). Gener-

ally speaking, their values should be chosen relatively large when the noise level is high, and

relatively small when the noise level is low. However, it is difficult (or even impossible) to

provide formulas for determining their values in all different cases, because besides the noise

level their values also depend on the complexity of the related image structures, including the

edge structure, shape and magnitude of the image intensity surfaces, and so forth. With the

proposed methods, we have performed many simulation studies, including those presented

in the next section. Based on our numerical experience, we provide the following practical

guidelines for proper selection of the parameters. These guidelines provide ranges for the

related parameters, and we find that our proposed methods perform reasonably well in all

cases that we have considered when their parameters are chosen in the recommended ranges.

On choosing h in (6): The bandwidth value h in (6) can be determined properly by a

bootstrap procedure. However, because it is only used for estimating M ′
x(x, y) and

M ′
y(x, y) that are used in the middle of estimating θ̂, selection of its value is less

important and we found that any number in [0.1, 0.3] would produce similarly good

results.

On parameter selection in edge detection: The parameters used in the edge detection
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procedure by Kang and Qiu (2014) that is mentioned in Sections 2 and 3 are chosen

in the same way as suggested in Kang and Qiu (2014).

On choosing rn and dn in the MSD procedure: In the MSD procedure described in

Section 2.2, there are two parameters rn and dn. The size of rn is related directly

to δn: a large rn should be used if δn is large. In many different cases, we find that it

is good enough to choose rn ∈ [0.05, 0.25]. For dn, we can choose it to be min{rn, sn},

where sn ∈ [0.01, 0.1]. In the simulation studies presented in the next section, we

choose rn = 0.25h and dn = 0.25h.

On choosing h∗ used in DR(h
∗): Overall, h∗ should be chosen small. Based on our nu-

merical experience, we suggest choosing h∗ ∈ [0.01, 0.05]. In the simulation studies in

the next section, we choose h∗ = 0.25h.

On choosing γ used in UE: The constant γ is used for avoiding pixels located on different

sides of an edge curve being included simultaneously in the definition of UE. We find

that results are reasonably good when γ ∈ [3, 5].

On choosing γ̃ in the bootstrap procedure in Section 3.3: Similar to γ, γ̃ is used mainly

for excluding some unusually large residuals caused by edges. We find that results are

reasonably good when γ̃ ∈ [3, 5].

5 Simulation

In this section, we present some numerical examples about the proposed methods for testing

difference between two images. Four reference images with the following image intensity
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functions are considered:

f1(x, y) =

{
−4(x− 0.5)2 − 4y2 + 1, if x2 + y > 0.5,

−4(x− 0.5)2 − 4y2, otherwise;

f2(x, y) =

{
−4(x− 0.5)2 − 4(y − 0.5)2 + 0.8, if x < 0.5, 0.5x+ y < 0.75

−4(x− 0.5)2 − 4(y − 0.5)2, otherwise;

f3(x, y) =

{
−4(x− 0.5)2 − 4(y − 0.5)2 + 1, if x < 0.5, 0.5x+ y < 0.75

−4(x− 0.5)2 − 4(y − 0.5)2, otherwise.

f4(x, y) =

{
f3(x, y) + 1, if 0.6 < x < 0.8, 0.6 < y < 0.8

f3(x, y), otherwise.

The four true reference images are shown in Figure 1. From the above expressions and the

images in Figure 1, we can see that f1(x, y) is degenerate in the sense of (7). So, it is expected

that θ̂C does not perform well. f2(x, y) and f3(x, y) are both non-degenerate, and f3(x, y) has

larger jumps at the edge curve than f2(x, y). f4(x, y) has three separate continuity regions

while the other three reference images have two continuity regions each. The moved images

are generated from the reference images, using θ = (α,∆x,∆y)T = (0.01, 0.015, 0.015)T . The

image registration procedures described in Section 2 are then applied, using the Epanechnikov

kernel function K(x, y) = 144
121

(1−x2)(1− y2)I((x, y) ∈ [−0.5, 0.5]× [−0.5, 0.5]) and h = 0.16

in (6). In the local kernel smoothing literature, the Epanechnikov kernel function is often

used because of its good theoretical properties. The noise levels σ2
R and σ2

M are both fixed

at 0.02. Two sample sizes n = 150 and 200 are considered. Based on 1,000 replicated

simulations, the results are shown in Table 1.

From Table 1, we can see that (i) θ̂C indeed does not perform well in cases with f1(x, y),

(ii) results in cases with f3(x, y) are better than those with f2(x, y), especially for θ̂E, (iii)

results in cases with f4(x, y) are better than those with f3(x, y), and (iv) results when n = 200

are overall better than those when n = 150. All these results are intuitively reasonable. For

f3(x, y), an observed reference image and an observed moved image when n = 200 are shown

in Figure 2(a)-(b). The recovered reference image ZM(T̂(x, y)) using θ̂E and the one using θ̂C

are shown in Figure 2(c)-(d), respectively. The difference image between the ones in Figure

2(a) and Figure 2(c) is shown in Figure 2(e), and the difference image between the ones in

Figure 2(a) and Figure 2(d) is shown in Figure 2(f). We can see that the two difference

images contain mainly noise, except the places around the edges due to the fact that the
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Figure 1: (a)-(c) Four true reference images f1(x, y), f2(x, y), f3(x, y) and f4(x, y).

estimated geometric transformations are not exactly the true transformation. The results

for f4(x, y) are similar to those of f3(x, y). Both θ̂C and θ̂E performs well in this case.

Next, we investigate the numerical performance of the testing procedures discussed in

Section 3. In addition, we also consider the following two alternative methods: i) hypothesis

tests using two entire images without image registration (denoted as NAIVE), and ii) hy-

pothesis tests using two entire images after the images are registered by the popular method

FAST original suggested in Rosten and Drummond (2005) (denoted as FAST). The FAST

algorithm tries to register the two images using properly detected features (e.g., corners and

edges). The critical values of these two tests are both chosen to be 1.96, corresponding to

the type-I error probability of 0.05. Next, let us focus on f3(x, y) and consider the following
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Figure 2: Image registration results in the example with f3(x, y) when n = 200 and σ2 = 0.02.

(a) Observed referenced image; (b) observed moved image; (c) recovered reference image

ZM(T̂(x, y)) using θ̂E; (d) recovered reference image ZM(T̂(x, y)) using θ̂C ; (e) difference

between (a) and (c); (f) difference between (a) and (d).
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Table 1: Estimated parameters in the geometric transformation and their standard errors

(in parentheses).

φ ∆x ∆y

n = 150 f1(x, y) θ̂E 0.015(0.005) 0.013(0.001) 0.016(0.002)

θ̂C -0.009(0.002) 0.013(0.001) 0.008(0.001)

f2(x, y) θ̂E 0.015(0.006) 0.013(0.001) 0.015(0.001)

θ̂C 0.011(0.003) 0.012(0.001) 0.019(0.001)

f3(x, y) θ̂E 0.015(0.006) 0.014(0.002) 0.015(0.001)

θ̂C 0.010(0.002) 0.012(0.001) 0.018(0.001)

f4(x, y) θ̂E 0.011(0.005) 0.014(0.002) 0.015(0.001)

θ̂C 0.010(0.002) 0.013(0.001) 0.015(0.001)

n = 200 f1(x, y) θ̂E 0.011(0.004) 0.015(0.002) 0.014(0.002)

θ̂C -0.011(0.002) 0.011(0.001) 0.005(0.001)

f2(x, y) θ̂E 0.010(0.005) 0.014(0.002) 0.015(0.002)

θ̂C 0.015(0.002) 0.012(0.001) 0.015(0.002)

f3(x, y) θ̂E 0.010(0.004) 0.015(0.002) 0.015(0.001)

θ̂C 0.011(0.002) 0.014(0.001) 0.014(0.001)

f4(x, y) θ̂E 0.009(0.005) 0.015(0.002) 0.015(0.001)

θ̂C 0.011(0.002) 0.014(0.001) 0.015(0.001)

three alternative images:

g1(x, y) =

{
f3(x, y) + 0.5, if |x− 0.8|+ |y − 0.2| < 0.05,

f3(x, y), otherwise;

g2(x, y) =

{
f3(x, y) + 0.3, if |x− 0.5| < 0.006, 0.1 < y < 0.4,

f3(x, y), otherwise;

g3(x, y) =

{
g1(x, y) + 0.3, if |x− 0.5| < 0.006, 0.1 < y < 0.4,

g1(x, y), otherwise.

The four images f3(x, y), g1(x, y), g2(x, y), and g3(x, y) are shown in Figure 3. From the

images in the figure, it can be seen that g1(x, y) is different from f3(x, y) only in a small

diamond, g2(x, y) is different from f3(x, y) around the edge, and g3(x, y) is different from

f3(x, y) at both places. We consider the following four scenarios: the first scenario is that

the reference image is f3(x, y) and the moved image is also f3(x, y), and the remaining three

scenarios are that the reference image is f3(x, y) and the moved image is one of g1(x, y),

g2(x, y), and g1(x, y). So, in scenario (i), H0 is true, and H0 is false in the other three

18



scenarios. For the tests UE, UEC , UCC , UE,EC , and UE,CC , their 0.95 critical values are

determined by the bootstrap procedure discussed in Section 3.3 with B = 400 and γ̃ = 3.5.

In UE, γ is chosen 3.5 as well. In all scenarios, the true rigid-body transformation has the

parameters θ = (α,∆x,∆y)T = (0.01, 0.015, 0.015)T . The results based on 1000 replicated

simulations are shown in Table 2. From the table, we can have the following conclusions

about the five tests UE, UEC , UCC , UE,EC , and UE,CC . (i) The empirical sizes of all these

tests are quite close to the nominal size of 0.05. (ii) The edge-based test UE is not powerful

when the alternative image is g1(x, y), because the difference between g1(x, y) and f3(x, y) is

in a continuity region (i.e., a small diamond). On the other hand, the two continuity-region-

based tests UEC and UCC are quite powerful in this case. (iii) UEC and UCC are not powerful

when the alternative image is g2(x, y), because the difference between g2(x, y) and f3(x, y)

is on an edge line only. On the other hand, UE is quite powerful in this case. (iv) When

the alternative image is g3(x, y) which is different from f3(x, y) in a continuity region and

around an edge line, the two combination tests UE,EC and UE,CC are more powerful than the

other tests. (iv) Powers of the tests are generally improved when n increases from 150 to

200. By the way, to obtain each number in Table 2 for the five tests UE, UEC , UCC , UE,EC ,

and UE,CC , it spends about 400 seconds CPU time when n = 150 and about 1600 seconds

CPU time when n = 200, on a personal computer of Intel i7=4700 with 2.40 GHz.

Regarding the two alternative methods NAIVE and FAST, we can see that NAIVE

always rejects the null hypothesis even when it is true. That is because it did not register

the two images properly beforehand, and thus the geometric difference between the two

images is detected by NAIVE all the time. Therefore, this method should be avoided in

practice if image registration is substantial to a specific application problem. The method

FAST performs a little bit better, but its actual size is still much larger than the nominal

size 0.05.
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1‘

Figure 3: Four images f3(x, y), g1(x, y), g2(x, y), and g3(x, y) used in evaluating the numerical

performance of the testing procedures.
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Table 2: Empirical sizes and powers of the five testing procedures discussed in Section 3 in

cases when the reference image is f3(x, y) and the alternative image is g1(x, y), g2(x, y), or

g3(x, y).

UE UEC UCC UE,EC UE,CC NAIVE FAST

n = 150 H0 0.058 0.057 0.043 0.052 0.051 1.00 0.83

g1 0.061 0.780 0.560 0.740 0.440 1.00 1.00

g2 0.600 0.061 0.024 0.540 0.540 1.00 1.00

g3 0.580 0.690 0.350 0.820 0.670 1.00 1.00

n = 200 H0 0.042 0.054 0.063 0.040 0.041 1.00 0.85

g1 0.034 0.980 0.920 0.920 0.870 1.00 1.00

g2 1.000 0.083 0.071 1.000 1.000 1.00 1.00

g3 1.000 0.890 0.770 1.000 1.000 1.00 1.00

Next, we consider the 3-region image f4(x, y) and the following three alternative images:

h1(x, y) =

{
f4(x, y) + 0.5, if |x− 0.8|+ |y − 0.2| < 0.05,

f4(x, y), otherwise;

h2(x, y) =

{
f4(x, y) + 0.3, if |x− 0.5| < 0.006, 0.1 < y < 0.4,

f4(x, y), otherwise;

h3(x, y) =

{
h1(x, y) + 0.3, if |x− 0.5| < 0.006, 0.1 < y < 0.4,

h1(x, y), otherwise.

The other settings are the same as those in the previous example. The images of f4(x, y),

h1(x, y), h2(x, y) and h3(x, y) are shown in Figure 4. The simulation results about the 7

testing procedures are presented in Table 3. It can be seen that similar conclusions to those

from Table 2 can be made from this table.

Our proposed testing procedures are for cases when image observations are independent.

In some applications, image observations could be spatially correlated. In such cases, our

proposed testing procedures described in Section 3 could still be used, except that a block

bootstrap procedure (Hall et al. 1995, Lahiri 1999) should replace the regular bootstrap

procedure in the algorithm discussed in Section 3.3 to accommodate the spatial correlation.

By a block bootstrap procedure, all pixels in an image are divided into M × M blocks,

and then we randomly select blocks of the estimated errors {ε̂R(xi, yj), i, j = 1, 2, . . . , n} and

{ε̂M(xi, yj), i, j = 1, 2, . . . , n} with replacement when defining bootstrap samples in Step 2 of
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Figure 4: Four images f4(x, y), h1(x, y), h2(x, y), and h3(x, y) used in evaluating the numer-

ical performance of the testing procedures.
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Table 3: Empirical sizes and powers of the five testing procedures discussed in Section 3 in

cases when the reference image is f4(x, y) and the alternative image is h1(x, y), h2(x, y), or

h3(x, y).

UE UEC UCC UE,EC UE,CC NAIVE FAST

n = 150 H0 0.063 0.067 0.047 0.062 0.049 1.00 1.00

h1 0.071 0.810 0.430 0.730 0.410 1.00 1.00

h2 0.510 0.110 0.041 0.520 0.440 1.00 1.00

h3 0.490 0.740 0.500 0.750 0.600 1.00 1.00

n = 200 H0 0.052 0.044 0.043 0.045 0.041 1.00 1.00

h1 0.064 0.950 0.990 0.900 0.870 1.00 1.00

h2 0.930 0.103 0.051 0.950 1.000 1.00 1.00

h3 0.930 0.960 0.890 1.000 1.000 1.00 1.00

the algorithm in Section 3.3 for calculating critical values of the tests. Also, for the tests UCC

and UEC that compare the two images in continuity regions, the modification of the estimated

errors (i.e., ε̃R(xi, yj)) should be avoided to maintain spatial correlation in the estimated

errors. In the next example, we consider the cases in Table 2, except that image observations

are correlated here. More specifically, we assume that εR(xi, yj) = ε1(xi) + ε2(yj), where

{ε1(xi)} and {ε2(yj)} are independent, and both follow the AR(1) time series model with

mean 0, correlation parameter ρ, and the white noise variance σ2. When n = 150, M = 15,

σ2 = 0.02, and ρ = 0.05, 0.1 or 0.2, the calculated sizes and powers of the five suggested

tests are presented in Table 4. From the table, we can see that when the spatial correlation

is relatively weak (i.e., ρ = 0.05), the sizes of the five tests are all below or close to the

nominal level 0.05, and the edge-based tests tests UE, UE,EC and UE,CC are quite powerful

in cases when the alternative images are g2(x, y) and g3(x, y) which are quite different from

the reference imafe f3(x, y) at a major edge line. The tests based on continuity regions (i.e.,

UEC and UCC) do not have much power in detecting the difference between the reference

image and the alternative images because such a difference is really small in this example.

When the spatial correlation gets larger, it can be seen that the sizes of the tests also get

larger, and some of them are larger than the nominal level 0.05. Therefore, it requires much

future research to properly address cases when the spatial correlation is strong.
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Table 4: Empirical sizes and powers of the five testing procedures in cases of Table 2 when

n = 150 and the image observations are correlated.

UE UEC UCC UE,EC UE,CC

ρ = 0.05 H0 0.066 0.007 0.004 0.052 0.049

g1 0.032 0.044 0.071 0.032 0.052

g2 0.682 0.034 0.010 0.602 0.602

g3 0.530 0.040 0.047 0.410 0.409

ρ = 0.1 H0 0.110 0.012 0.013 0.065 0.058

g1 0.034 0.110 0.092 0.073 0.057

g2 0.739 0.023 0.011 0.614 0.613

g3 0.490 0.072 0.053 0.367 0.356

ρ = 0.2 H0 0.110 0.012 0.073 0.112 0.063

g1 0.036 0.350 0.257 0.212 0.164

g2 0.716 0.091 0.031 0.591 0.568

g3 0.440 0.302 0.191 0.502 0.442

6 Real Data Application

In a rolling process, a metal bar passes through one or more pairs of rolls to achieve certain

thickness. The surface images of a rolling bar can be used for monitoring its quality, and

they are often recorded by a high-speed camera. Each image has 128 × 512 pixels, and a

sequence of images can be recorded at consecutive times during the rolling process. In this

section, we first consider two images taken at two consecutive times in a rolling process, that

are shown in Figure 5(a)-(b). The first one is used as a reference image and the second one

is used as a moved image. Then, we apply the image registration and hypothesis testing

procedures described in the previous sections to this dataset, using the same parameter values

as those in the simulation examples in Section 5. The estimated parameters in the rigid-

body transformation are θ̂E = (0.003,−0.001, 0.005)T and θ̂C = (0.008,−0.014, 0.000)T . So,

although the estimated parameters in the rigid-body transformation are different by the

edge-based and intensity-cased methods, the overall trend (e.g., the signs of the estimated

parameters) is the same. The three test statistics are calculated to be UE = 6.95, UEC =

12.31, and UCC = 19.36, and their corresponding p−values are 0.335, 0.116, and 0.059.
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Therefore, we can not reject the null hypothesis at the 0.05 significant level in this case.

Consequently, we can not reject the null hypothesis by the two combination tests UE,EC

and UE,CC either. The recovered reference images ZM(T̂(x, y)) by θ̂E and θ̂C are shown

in Figure 5(c)-(d), and the difference image between the ones in Figure 5(a) and Figure

5(c) and the difference image between the ones in Figure 5(a) and Figure 5(d) are shown in

Figure 5(e)-(f). It can be seen that the difference images do not contain much non-random

patterns, indicating that the observed data do not contain convincing evidence against H0.

Next, we keep the reference image shown in Figure 5(a) and use the image taken at

the 18th subsequent time point as the moved image. The estimated parameters are θ̂E =

(−0.008,−0.001, 0.001)T and θ̂C = (−0.003,−0.007,−0.004)T . The three test statistics are

calculated to be UE = 4.78, UEC = 175.34, and UCC = 114.95, and the corresponding

p−values are 0.522, 0.000, and 0.000. So, we can not reject the null hypothesis by the edge-

based test UE. However, the difference between the two images in the continuity regions are

large. So, the null hypothesis is rejected by the tests UEC and UCC , and it is rejected by the

combination tests UE,EC and UE,CC too. In this case, we can conclude that the two images

are significantly different even after they are geometrically matched up, and the difference

is mainly in the continuity parts. The results corresponding to those in Figure 5 are shown

in Figure 6. From the two difference images, it can be seen that they do contain some

non-random patterns.

7 Concluding Remarks

In the previous sections, we have described some testing procedures for detecting difference

between two images, after the images are geometrically matched up properly. Numerical

results show that they perform reasonably well in practice. This research is mainly for the

ultimate goal of sequential monitoring of images. To achieve that goal, we need to generalize

the methods proposed in this paper to cases when multiple images are present in Phase-I

image monitoring and to cases when images are sequentially obtained in Phase-II online

monitoring. These research topics are left for our future research.
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Figure 5: (a)-(b) Reference and moved images in a rolling process obtained at two consec-

utive times; (c)-(d) recovered reference images ZM(T̂(x, y)) by θ̂E and θ̂C , respectively; (e)

difference (a) and (c); (f) difference (a) and (d).
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Figure 6: (a)-(b) Reference and moved images in a rolling process obtained at two times

that are quite far away; (c)-(d) recovered reference images ZM(T̂(x, y)) by θ̂E and θ̂C ,

respectively; (e) difference (a) and (c); (f) difference (a) and (d).
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Appendices

In the appendices, we provide some theoretical results about the parameter estimators

θ̂C and θ̂E discussed in Section 2.

A Conditions used in Theorems 1 and 2

(C1) E(|εR(x, y)|
6) <∞ and E(|εM(x, y)|6) <∞;

(C2) K is a Lipschitz-1 continuous circularly symmetric two-dimensional density kernel func-

tion with support {(x, y) : x2 + y2 ≤ 1};

(C3) The true regression function R(x, y) has piecewise continuous third-order derivatives in

each closed subset of [0, 1]× [0, 1], the first-order derivatives of R(x, y) are continuous

on each boundary curve of the pieces, and the first-order derivatives of R(x, y) have

uniformly bounded one-sided limits in the individual pieces;

(C4) δn → 0 as n→ ∞;

(C5) h→ 0 and nh3 → ∞;

(C6) The number of non-edge pixels |D̄R| satisfies the condition that |D̄R|δn → ∞ and the

image intensity function M(x, y) is not degenerate in the sense of (7) in the design

space;

(C7) The bandwidth h∗ used in edge detection satisfies the conditions that h∗ → 0, log n/(nh∗4) →

0 and h∗/δn → 0; the significant level α∗ used in the edge detection procedure satisfies

the conditions that α∗ → 0, Z1−α∗/(nh∗) → 0 and nh∗3/Z1−α∗ → 0 where Z1−α∗ is the

(1− α∗)-th quantile of the standard normal distribution;

(C8) The image intensity function R(x, y) has uniformly bounded one-sided slopes on all

edge curves;

(C9) Let Λn(x0, y0) be a subregion of {(s, t) : s2 + t2 ≤ d2n} in which |R(x0 + s, y0 + t) −

M(T1(x0, y0) + s, T2(x0, y0) + t)| is at least τn where (x0, y0) is an edge pixel in the
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reference image. Let qn = inf(x0,y0)∈D̃R

|Λn(x0,y0)|
πn2d2n

, where |Λn(x0, y0)| is the area of

Λn(x0, y0) and D̃R is the set of true edge points in the reference image. We assume

that qnτ
2
n/d

4
n → ∞, qnτ

2
n/h

∗2 → ∞, qnτ
2
n/rn → ∞ and ndnqnτ

2
n/ log n→ ∞.

The conditions (C1)-(C3) are common in image registration. To use the Taylor’s expan-

sion, we need the condition (C4) for the consistency of θ. Intuitively, the condition (C4)

says that when the image resolution is higher (i.e., n is larger), the geometric difference

between the reference and moved images is smaller. This assumption might be reasonable

because higher image resolution often implies better imaging technique and consequently

the geometric misalignment would be smaller among different images. This assumption is

commonly used in the image registration literature (cf., Qiu and Xing 2013a). Condition

(C5) is for the consistency of the partial derivative estimators, such as M̂
′

x(xi, yj). Condition

(C6) is for excluding cases when image registration by (5) is not well defined. Condition

(C7) is for the consistency of the detected edge points, which is the same as that in Theorem

3.1 in Kang and Qiu (2014). Conditions (C8) and (C9) are for the consistency of the feature

matching procedure, and (C9) is similar to those in Theorem 3 in Qiu and Xing (2013a).

B Consistency of θ̂C

Theorem 1 Under the conditions (C1)-(C7) given in Appendix A, we have θ̂C = θ+op(δn),

where δn =
√
φ2 +∆x2 +∆y2.

Theorem 1 shows that θ̂C is a consistent estimator of θ under some regularity conditions.

Although δn is assumed to be smaller and smaller when n gets larger, Theorem 1 says that

the distance between θ̂C and θ is much smaller than δn (i.e., (θ̂C − θ)/δn = op(1)).

Proof. From Fan and Gijbels (1996), we have

M̂
′

x(xi, yj) =M
′

x(xi, yj) +Op(h
2 + (nh3)−1/2),

M̂
′

y(xi, yj) =M
′

y(xi, yj) +Op(h
2 + (nh3)−1/2). (10)
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By the Taylor expansion,

M(xi, yj)−R(xi, yj)

=
(
M

′

x(xi, yj)yj −M
′

y(xi, yj)xi

)
φ+M

′

x(xi, yj)∆x+M
′

y(xi, yj)∆y

+
(
M

′

x(xi, yj)xi +M
′

y(xi, yj)yj

)
(1− cos(φ))

+
(
M

′

x(xi, yj)yj −M
′

y(xi, yj)xi

)
(sin(φ)− φ) +O(δ2n)

=
(
M

′

x(xi, yj)yj −M
′

y(xi, yj)xi

)
φ+M

′

x(xi, yj)∆x+M
′

y(xi, yj)∆y +O(φ2) +O(δ2n)

=
(
M̂

′

x(xi, yj)yj − M̂
′

y(xi, yj)xi

)
φ+ M̂

′

x(xi, yj)∆x+ M̂
′

y(xi, yj)∆y

−
(
(M̂

′

x(xi, yj)−M
′

x(xi, yj))yj − (M̂
′

y(xi, yj)−M
′

y(xi, yj))xi

)
φ

− (M̂
′

x(xi, yj)−M
′

x(xi, yj))∆x− (M̂
′

y(xi, yj)−M
′

y(xi, yj))∆y +O(φ2) +O(δ2n)

=
(
M̂

′

x(xi, yj)yj − M̂
′

y(xi, yj)xi

)
φ+ M̂

′

x(xi, yj)∆x+ M̂
′

y(xi, yj)∆y

+Op(δn(h
2 + (nh3)−1/2)) +O(δ2n).

Define ε be a long vector, consisting of {εM(xi, yj)− εR(xi, yj)}. Then,

θ̂C = (X̂T X̂)−1X̂Y = θ + (X̂T X̂)−1X̂ε+Op(δn(h
2 + (nh3)−1/2)) +Op(δ

2
n).

Next, we will show that (X̂T X̂)−1X̂ε = Op(|D̄M |−1/2). By (10), we have

|D̄M |−1X̂T X̂ = |D̄M |−1XTX+Op(h
2 + (nh3)−1/2) = Σ+O(|D̄M |−1) +Op(h

2 + (nh3)−1/2).

And |D̄M |−1X̂ε = |D̄M |−1Xε + |D̄M |−1(X̂ − X)ε. Obviously, |D̄M |−1Xε = Op(|D̄M |−1/2)

and |D̄M |−1(X̂ − X)ε = op(|D̄M |−1/2). So (X̂T X̂)−1X̂ε = Op(|D̄M |−1/2), and θ̂C = θC +

Op(δn(h
2 + (nh3)−1/2)) +Op(δ

2
n) +Op(|D̄M |−1/2) = θ + op(δn).

C Consistency of θ̂E

Theorem 2 Under the conditions (C1)-(C4) and (C6)-(C9) given in Appendix A, we have

θ̂E = θ + op(δn).

Proof. Let (x, y) be a detected edge point in the reference image, and D̃R be the set of the
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true edge points in the reference image. Define

(x0, y0) = argmin
(a,b)∈D̃R

dH((x, y), (a, b)),

where dH((x, y), (a, b)) is the Euclidean distance between two points (x, y) and (a, b). Define

R
′

x+(x0, y0), R
′

y+(x0, y0), R
′

x−(x0, y0), R
′

y−(x0, y0) to be the first-order one-sided partial deriva-

tives at (x0, y0). According to Theorem 3.1 in Kang and Qiu (2014), we have dH((x, y), (x0, y0)) =

O(h∗), a.s., where h∗ is the bandwidth used in edge detection.

Define (x
′

0, y
′

0) to the detected edge point in DM who is located on the same side of the

true edge curve as (x, y) and whose Euclidean distance to T(x0, y0) is the smallest among

all points in DM . Then, we also have dH((x
′

0, y
′

0), (T1(x0, y0), T2(x0, y0)) = O(h∗), a.s.. It is

obvious that

1

Ñ

∑

s2+t2≤d2n

(
ZR(x+ s, y + t)− ZM(x

′

+ s, y
′

+ t)
)2

=
1

Ñ

∑

s2+t2≤d2n

(
R(x+ s, y + t)−M(x

′

+ s, y
′

+ t) + εR(x+ s, y + t)− εM(x
′

+ s, y
′

+ t)
)2

=
1

Ñ

∑

s2+t2≤d2n

(
R(x+ s, y + t)−M(x

′

+ s, y
′

+ t)
)2

+
2

Ñ

∑

s2+t2≤d2n

(
R(x+ s, y + t)−M(x

′

+ s, y
′

+ t)
)(

εR(x+ s, y + t)− εM(x
′

+ s, y
′

+ t)
)

+
1

Ñ

∑

s2+t2≤d2n

(
εR(x+ s, y + t)− εM(x

′

+ s, y
′

+ t)
)2

.

According to Proposition 2 in Qiu (2009), we have

2

Ñ

∑

s2+t2≤d2n

(
R(x+ s, y + t)−M(x

′

+ s, y
′

+ t)
)(

εR(x+ s, y + t)− εM(x
′

+ s, y
′

+ t)
)

= O(log(Ñ)Ñ−1/2), a.s.,

1

Ñ

∑

s2+t2≤d2n

(
εR(x+ s, y + t)− εM(x

′

+ s, y
′

+ t)
)2

= 2σ2 +O(log(Ñ)Ñ−1/2), a.s.

Because Ñ = O(n2d2n), we have

1

Ñ

∑

s2+t2≤d2n

(
ZR(x+ s, y + t)− ZM(x

′

+ s, y
′

+ t)
)2

=
1

Ñ

∑

s2+t2≤d2n

(
R(x+ s, y + t)−M(x

′

+ s, y
′

+ t)
)2

+ 2σ2 +O(n−1d−1
n log(n)), a.s.
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If R
′

x+(x0, y0)s+R
′

y+(x0, y0)t ≥ 0, by the Taylor’s expansion, we have

R(x+ s, y + t) =R(x0, y0) +R
′

x+(x0, y0)(x− x0 + s) +R
′

y+(x0, y0)(y − y0 + t) +O(d2n + h∗2)

=R(x0, y0) +R
′

x+(x0, y0)s+R
′

y+(x0, y0)t+O(d2n + h∗).

M(x
′

0 + s, y
′

0 + t) =M(T1, T2) +M
′

x+(T1, T2)(x
′

0 − T1 + s) +M
′

y+(T1, T2)(y
′

0 − T2 + t) +O(d2n + h∗2)

=M(T1, T2) +M
′

x+(T1, T2)s+M
′

y+(T1, T2)t+O(d2n + h∗).

Thus, R(x + s, y + t) − M(x
′

0 + s, y
′

0 + t) = O(d2n + h∗) on the left subregion Ω+ =

{(s, t) | R
′

x+(x0, y0)s + R
′

y+(x0, y0)t ≥ 0}. Similarly, we also have R(x + s, y + t) −M(x
′

0 +

s, y
′

0+ t) = O(d2n+h
∗) on the right subregion Ω− = {(s, t) | R

′

x+(x0, y0)s+R
′

y+(x0, y0)t < 0}.

So,

1

Ñ

∑

s2+t2≤d2n

(
ZR(x+ s, y + t)− ZM(x

′

0 + s, y
′

0 + t)
)2

=2σ2 +O(d4n + h∗2) +O

(
log n

ndn

)
, a.s.

On the other hand, when (x
′

, y
′

) ∈ O(x, y, rn)\O(x
′

0, y
′

0, h
∗),

1

Ñ

∑

s2+t2≤d2n

(
R(x+ s, y + t)−M(x

′

+ s, y
′

+ t)
)2

=
1

Ñ

∑

s2+t2≤d2n

(R(x0 + s, y0 + t)−M(T1(x0, y0) + s, T2(x0, y0) + t) +O(rn))
2

≥
1

Ñ

∑

(s,t)∈Λn

(R(x0 + s, y0 + t)−M(T1(x0, y0) + s, T2(x0, y0) + t))2 +O(rn)

≥qnτ
2
n +O(rn),

where Λn is a subregion of {(s, t) : s2 + t2 ≤ d2n} in which |R(x0 + s, y0 + t)−M(T1(x0, y0) +

s, T2(x0, y0) + t)| is at least τn, and qn = |Λn|
πn2d2n

where |Λn| is the area of Λ. Thus,

1

Ñ

∑

s2+t2≤d2n

(
ZR(x+ s, y + t)− ZM(x

′

+ s, y
′

+ t)
)2

=2σ2 + qnτ
2
n +O(r2n) +O

(
log n

ndn

)
, a.s.

Therefore, by the conditions qnτ
2
n/d

4
n → ∞, qnτ

2
n/h

∗2 → ∞, qnτ
2
n/r

2
n → ∞, and ndnqnτ

2
n/ log n→

∞, we have

inf
(x

′
,y

′
)∈O(x,y,rn)\O(x

′

0
,y

′

0
,h∗)

MSD((x, y), (x
′

, y
′

)) > MSD((x, y), (x
′

0, y
′

0)), a.s..
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So, dE((x
∗, y∗),T(x0, y0)) = O(h∗), a.s., which implies that

x∗ =x0 cos(φ) + y0 sin(φ) + ∆x+O(h∗) = x0 + y0φ+∆x+O(δ2n) +O(h∗)

=x+ yφ+∆x+O(δ2n) +O(h∗), a.s.

y∗ =− x0 sin(φ) + y0 cos(φ) + ∆y +O(h∗) = −x0φ+ y0 +∆y +O(δ2n) +O(h∗)

=− xφ+ y +∆y +O(δ2n) +O(h∗), a.s..

Thus,

∑

(xi,yj)∈DR

(x∗i − xi)yj −
∑

(xi,yj)∈DR

(y∗j − yj)xi

=
∑

(xi,yj)∈DR

(x2i + y2j )φ+
∑

(xi,yj)∈DR

yj∆x−
∑

(xi,yj)∈DR

xi∆y +O(|DR|(δ
2
n + h∗)), a.s.,

∑

(xi,yj)∈DR

(x∗i − xi) =
∑

(xi,yj)∈DR

yjφ+ |DR|∆x+O(|DR|(δ
2
n + h∗)), a.s.,

∑

(xi,yj)∈DR

(y∗j − yj) = −
∑

(xi,yj)∈DR

xiφ+ |DR|∆y +O(|DR|(δ
2
n + h∗)), a.s..

By the above results, the vector B in (9) can be written as

B = Aθ +O(|DR|(δ
2
n + h∗)), a.s..

So, θ̂E = θ + O(h∗) + O(δ2n), a.s.. By the conditions that h∗/δn → 0 and δn → 0, we have

θ̂E = θ+ = θ + o(δn), a.s.. The proof is then finished.
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