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Abstract

Error-in-Variables (EIV) regression is widely used in econometric
models. The statistical analysis becomes challenging when the regres-
sion function is discontinuous and the distribution of measurement
error is unknown. In this paper, we propose a novel jump-preserving
curve estimation method. A major feature of our method is that it can
remove the noise effectively while preserving the jumps well, without
requiring much prior knowledge about the measurement error distri-
bution. The jump-preserving property is achieved mainly by local
clustering. We show that the proposed curve estimator is statistical
consistent, and it performs favorably, in comparison with an existing
jump-preserving estimator. Finally, we demonstrate our method by
an application to a health tax policy study in Australia.

Keywords : Clustering; Demand for private health insurance; Kernel smooth-
ing; Local regression; Measurement errors; Price elasticity.

1 Introduction

This research is motivated by our attempt to study the impact of the Medical
Levy Surcharge (MLS) tax policy on the take-up rate of the private health
insurance (PHI) in Australia. People in Australia are liable of MLS (which
is about 1 percent of their annual taxable incomes) if they do not buy PHI
and their annual taxable incomes are above a certain level. For example, the
thresholding level for single individuals was $50,000 per annum in the 2003-04
financial year, where the dollar sign “$” used here and throughout the paper
represents the Australian Dollar (AUD). The major purpose of MLS was to
give people more choices of health insurance and take a certain pressure off
the public medical system. Both policy makers and economists are interested
in studying the impact of this policy on the relationship between the PHI
take-up rate and the annual taxable income. It was expected that this policy
would generate a jump in the PHI take-up rate around the thresholding
taxable income. This discontinuous relationship could be used to evaluate
the impact of the policy. However, such relationship becomes challenging to
analyze after the Australian Tax Office (ATO) perturbed the income data
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by adding random numbers to them, out of privacy consideration, because
the distribution that generates the random numbers was not revealed.

In the literature, jump regression analysis (cf., Qiu 2005) provides a natu-
ral framework for studying discontinuous relationship between random vari-
ables. In that framework, two approaches have been suggested for estimat-
ing a discontinuous curve. The first approach, called the indirect approach,
estimates the discontinuity locations first and then considers different seg-
ments of the design interval, in which the underlying function is assumed
to be continuous and can be estimated as usual. See, for example, Eubank
and Speckman (1994), Gijbels et al. (1999), Gijbels and Goderniaux (2004),
Kang and Qiu (2014), Kang et al. (2015), Muller (1992), Müller (2002), Qiu
(1991), Qiu et al. (1991), Qiu and Kang (2015), Wu and Chu (1993), among
others. The second approach, called the direct approach, estimates the re-
gression curve directly, without first estimating the number and locations
of discontinuities. Methods based on this idea include Gijbels et al. (2007),
McDonald and Owen (1986), Qiu (2003), and the references therein. Most
existing jump-preserving estimation methods assume that the explanatory
variable does not have any measurement error involved. Error-in-Variables
(EIV) regression models, on the other hand, allow measurement error in the
explanatory variables. But most of them assume that the regression func-
tion is smooth and that the measurement error distribution is known or it
can be estimated reasonably well beforehand (cf., Carroll et al. 1999, 2012,
Comte and Taupin 2007, Cook and Stefanski 1994, Delaigle and Meister
2007, Fan and Masry 1992, Fan and Truong 1993, Hall and Meister 2007,
Staudenmayer and Ruppert 2004, Stefanski 2000, Stefanski and Cook 1995,
and Taupin 2001).

In this paper, we propose a jump-preserving curve estimation method
for discontinuous EIV regression models. The proposed method is a direct
approach without explicitly detecting jumps first and thus it is easy to use.
Another feature of our method is that it does not require the measurement er-
ror distribution to be specified beforehand, making it applicable to many real
problems. The remainder of this article is organized as follows. In Section
2, our proposed method is described in detail. In Section 3, some asymp-
totic properties of the proposed estimator are discussed. In Section 4, the
numerical performance is evaluated by simulated examples. In Section 5, the
proposed method is applied to the PHI data. Several remarks conclude the
article in Section 6. Some technical details are provided in a supplementary
file.
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2 Proposed Methodology

Let {(Wi, Yi) : i = 1, · · · , n} be independent and identically distributed
(i.i.d.) observations from the model described below.

Yi = g(Xi) + εi, (1)

Wi = Xi + σnUi, (2)

where i = 1, · · · , n, g is the unknown regression function with possible dis-
continuities, Yi is the ith observation of the response variable, Xi is the ith
observation of the unobservable explanatory variable, εi’s are i.i.d. random
errors with mean 0 and unknown variance τ 2 > 0, Wi is the observed value
of Xi with a measurement error, σn > 0 denotes the standard deviation of
the measurement error in Xi, and Ui is the standardized measurement error
with mean 0 and variance 1. It is also assumed that Ui’s are i.i.d., Ui is
independent of both Xi and Yi, the distribution of Ui, denoted as fU , and
the distribution of Xi, denoted as fX , are both unknown. Without loss of
generality, assume that the design interval is [0, 1]. Our major goal is to
estimate g(x) from the observed data.

Our idea of estimating a regression function with possible jump points of
unknown jump locations is that each point in the design interval is a potential
jump point and thus the estimation method should adapt at each point to
a possible discontinuity. Next, we describe the proposed method in detail.
For any given point x ∈ [hn, 1 − hn], where hn ∈ (0, 1/2) is a bandwidth
parameter, consider a small neighborhood of x defined by

N(x;hn) = {z ∈ (0, 1) : |z − x| ≤ hn},

and the following local linear kernel (LLK) smoothing procedure:

min
a,b

∑
N(x;hn)

[Yi − a− b(Wi − x)]2K

(
Wi − x
hn

)
, (3)

where K is a density kernel function with support [−1, 1]. Let
(
ân(x), b̂n(x)

)
be the solution to (a, b) in (3). Then, the weighted residual mean squares
(WRMS) at x is defined by

WRMSn(x) =

∑
N(x;hn)

[
Yi − ân(x)− b̂n(x)(Wi − x)

]2
K
(
Wi−x
hn

)
∑

N(x;hn)
K
(
Wi−x
hn

) . (4)

If x is a jump point, then the jump structure of the regression function
would be dominant even when there is a measurement error involved. This
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Figure 1: The solid line denotes the regression function g(·) that has a jump
at x = 0.5 (marked by the vertical dashed line). The dark points denote ob-
servations of (W,Y ) where W is the observed value of X with measurement
error involved. It can be seen that the jump structure of g(·) is quite visi-
ble among observations in N(x;h′n) (i.e., those fall between the two vertical
dotted lines) even in the presence of measurement error.
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fact is illustrated in Figure 1. By this observation, if x is near a jump point,
there should be a significant evidence of lack-of-fit of the LLK smoothing
procedure (3). In other words, WRMSn(x) would be relatively large. Thus,
if the following is true:

WRMSn(x) > un, (5)

where un is a threshold value, then x is likely to be close to a jump point,
and we cannot use all observations near x to estimate g(x) because it would
blur the jump otherwise. When there is no measurement error in X, the one-
sided estimators can estimate g(x) reasonably well (cf., Qiu 2003). In the
case when X has measurement error involved, such estimators are unavailable
because Xi’s are no longer observable. It may be problematic if we simply
replace Xi’s by Wi’s for constructing a one-sided estimator because we do
not know whether a specific value Xi is located on the right (or left) side of
x when its observed value Wi is on the right (or left) side of x, due to the
measurement error. To overcome this difficulty, we can make use of the fact
that the jump structure of g(·) is still quite visible even in the presence of
measurement error (cf., Figure 1). We suggest classifying all observations in
the neighborhood N(x;h′n) of x into two significantly separated groups, (i.e.,
Group 1 versus Group 2 in Figure 1), where the bandwidth parameter h′n
could be different from hn. Then, we can estimate g(x) using the observations
in one group. As long as the observations are properly clustered, the jump
should be preserved well.

Next, we describe our clustering procedure mentioned above. An ideal
classification would put observations whose unobservable X values are on
the same side of the jump location into a same group. So, a classification
should be reasonable when certain separation measure reaches the maximum.
Intuitively, if the two groups of observations are well separated, the within-
group variability would be small and the between-group variability would be
large. Consequently, the ratio of between-group variability and within-group
variability would be large. Therefore, we can use this ratio as a separation
measure of the two groups. Specifically, let G(x;h′n) = {(Wi, Yi) : Wi ∈
N(x;h′n)}, Gl(x;h′n) and Gr(x;h′n) be a partition of G(x;h′n) (i.e., G(x;h′n) =
Gl(x;h′n) ∪Gr(x;h′n) and Gl(x;h′n) ∩Gr(x;h′n) = ∅), and

W l =
1

|Gl(x;h′n)|
∑

(Wi,Yi)∈Gl(x;h′n)

Wi, Y l =
1

|Gl(x;h′n)|
∑

(Wi,Yi)∈Gl(x;h′n)

Yi,

W r =
1

|Gr(x;h′n)|
∑

(Wi,Yi)∈Gr(x;h′n)

Wi, Y r =
1

|Gr(x;h′n)|
∑

(Wi,Yi)∈Gr(x;h′n)

Yi,

where |A| denotes the number of elements in the pointset A. Next, we con-

5



sider the following LLK smoothing procedures:

min
a,b

∑
(Wi,Yi)∈Gl(x;h′n)

[Yi − a− b(Wi − x)]2K

(
Wi − x
h′n

)
, (6)

and

min
a,b

∑
(Wi,Yi)∈Gr(x;h′n)

[Yi − a− b(Wi − x)]2K

(
Wi − x
h′n

)
. (7)

And the WRMS’s defined in (4) can be computed after N(x;hn) is replaced
by Gl(x;h′n) and Gr(x;h′n), respectively. They are denoted as WRMSl(x;h′n)
and WRMSr(x;h′n). Then, we define the following separation measure:

T (Gl(x;h′n), Gr(x;h′n)) =
(W l −W r)

2 + (Y l − Y r)
2

WRMSl(x;h′n) + WRMSr(x;h′n)
. (8)

It can be seen that the numerator in (8) represents between-group variability
and the denominator represents within-group variability. Let G∗l (x;h′n) and
G∗r(x;h′n) denote the partition that maximizes (8). In practice, solving the
optimization in (8) by exhaustive search would be too time-consuming (cf.,
Everitt et al. 2011, Chapter 5). The more efficient algorithm proposed in
Hartigan and Wong (1979) is well received in the literature. We adopt that
algorithm in this paper. Let âl,n(x) and âr,n(x) denote the solution to a in
(6) and (7), respectively. If |G∗l (x;h′n)| > |G∗r(x;h′n)|, then it is more likely
for x to be on the same side of the jump point as the X values of those
observations in G∗l (x;h′n). So, our proposed estimator of g(x) is

ĝn(x) =

{
âl,n(x), if |G∗l (x;h′n)| > |G∗r(x;h′n)|,
âr,n(x′), otherwise.

(9)

The proposed jump-preserving curve estimation procedure is summarized as
follows.

Jump-preserving Curve Estimation Procedure

Step 1: For any given x, compute its WRMS by (4).

Step 2: If (5) is true, go to Step 3. Otherwise, estimate g(x) by ân(x), the
solution to a in (3).

Step 3: Cluster the observations in G(x;h′n) by maximizing (8), then com-
pute ĝn(x) by (9).
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In the proposed estimation procedure (3)–(9), there are three parameters,
hn, h′n and un, to choose. Note that hn is used for two purposes: to flag
possible jump points in (5) and to estimate the curve in continuity regions.
The purpose that hn serves in our procedure is similar to what the bandwidth
parameter does in the conventional kernel smoothing. Thus, we suggest to
select hn to minimize the following leave-one-out cross validation score:

min
hn

n∑
i=1

[
Yi − â(−i)n (Wi)

]2
,

where â
(−i)
n (·) denotes the estimate ân(·) when the ith observation (Wi, Yi) is

omitted.
Next, we discuss the selection of h′n and un. In simulation studies, the

true regression function g could be known. Then, once hn is selected, (h′n, un)
can be chosen to be the pair that minimizes the Mean Square Error (MSE),
defined as

MSE (ĝ, g;h′n, un) =
1

n

n∑
i=1

[ĝ(xi)− g(xi)]
2 , (10)

where {x1, x2, · · · , xn} are equally spaced values on [0, 1]. In practice, g is
usually unknown. In such cases, we suggest the following bootstrap selection
procedure:

• For a given bandwidth value h′n > 0 and threshold value un > 0, ap-
ply the proposed estimation procedure (3)–(9) to the original dataset
{(W1, Y1), (W2, Y2), · · · , (Wn, Yn)}, and obtain an estimator of g, de-
noted as ĝ(· ;h′n, un).

• Draw with replacement n times from the original dataset to obtain
the first bootstrap sample, denoted as {(W̃ (1)

1 , Ỹ
(1)
1 ), (W̃

(1)
2 , Ỹ

(1)
2 ), · · · ,

(W̃
(1)
n , Ỹ

(1)
n )}.

• Apply the proposed estimation procedure (3)–(9) to the first boot-
strap sample, and obtain the first bootstrap estimator of g, denoted as
g̃(1)(· ;h′n, un).

• Repeat the previous two steps B times and obtain B bootstrap esti-
mators of g: {g̃(1)(· ;h′n, un), g̃(2)(· ;h′n, un), · · · , g̃(B)(· ;h′n, un)}.

• Then, the bandwidth h′n and the threshold un are chosen to be the
minimizer of

min
h′n,un

1

B

B∑
k=1

1

n

n∑
i=1

[
g̃(k)(xi;h

′
n, un)− ĝ(xi;h

′
n, un)

]2
. (11)
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3 Asymptotic Properties

In this section, we discuss some asymptotic properties of the proposed esti-
mation procedure (3)–(9). To this end, we have the theorem below.

Theorem 1. Suppose that the following conditions hold:

(1) {(W1, Y1), (W2, Y2), · · · , (Wn, Yn)} are i.i.d. observations from models
(1) and (2).

(2) g(·) is a bounded, piecewise continuous function defined on [0, 1] with
finitely many jump points in [0, 1]; at each jump point, g(·) has finite
one-sided limit; its first-order derivative, g′(·), is also a bounded func-
tion and is continuous on [0, 1] except on those jump points; at each
jump point, g′(·) also has finite one-sided limit. Denote the set of all
the jump points by S.

(3) The support of fX is [0, 1]; fX is uniformly continuous, bounded, and
positive on (0, 1) and has bounded derivatives on (0, 1).

(4) fU is continuous on its support, symmetric about 0 with fU(0) > 0 and
satisfies the conditions that

r∞
−∞ ufU(u) du = 0 and

r∞
−∞ u

2fU(u) du =
1.

(5) E|ε1|4 <∞.

(6) hn = o(1), 1/(n1/3hn) = o(1), h′n = o(1), σ2
n/h

′
n = o(1), and 1/(n1/3h′n) =

o(1)

(7) The kernel function K is a Lipschitz-1 continuous density function with
support [−1, 1] and is symmetric about 0.

(8) un = τ 2 + δn, where δn is sequence of positive numbers such that δn =
o(1) and that [h2n + σ2

n + (log n)1+γ/(nhn)β]/δn = o(1) for some γ > 0
and some β ∈ (0, 1/4).

Then, we have, with probability 1,

ĝn(x)− g(x) =

{
O
(
h2n + σ2

n + (log n)1+γ/(nhn)β
)
, if dE(x, S) > hn,

O
(
h′2n + σ2

n + (log n)1+γ/(nh′n)β
)
, otherwise,

where S is the set of all true jump points and dE(x, S) = minxs∈S |x− xs|.

The Theorem 1 shows that the proposed estimation procedure (3)–(9)
estimates g(·) consistently under some regularity conditions. Its proof is
given in a supplementary file.
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Remark 1: Theorem 1 requires that the measurement error standard devi-
ation σn tends to 0 when the sample size increases. In the literature, it has
been pointed out that this condition is needed for consistently estimating the
regression function when its observations have measurement errors involved
and when little prior information about the measurement error distribution
is available (cf., Delaigle 2008).

Remark 2: The rate of convergence of σn to 0 does not need to be compa-
rable to that of hn for our proposed method to flag all jump points correctly
(see the supplementary file for details). However, the condition σ2

n/h
′
n = o(1)

is required for classifying a jump point into the correct cluster. This is a
weaker condition than the one σn/h

′
n = o(1) which would be required by ex-

isting jump regression methods (e.g., Gijbels et al. 2007, Qiu 2003) to ensure
consistency.

4 Numerical Studies

In this section, we study the numerical performance of the proposed method
described in Section 2, which are organized in two subsections. Section 4.1
presents some simulation examples related to the procedure (3) – (11). Sec-
tion 4.2 compares the proposed curve estimator to the piecewise-linear kernel
estimator (PLKE) that ignores the measurement error (see Qiu 2003 for a
detailed discussion of PLKE).

4.1 Numerical Performance of the Proposed Method-
ology

In this subsection, the performance of the proposed estimation procedure is
evaluated using the following two true regression functions:

g1(x) = (3x2 + 0.53)1{0.3≤x<0.7} + (2x2 + 2.22)1{0.7≤x≤1},

g2(x) = cos(4π(0.5− x))1{0≤x<0.5} − cos((4π(x− 0.5))1{0.5≤x≤1},

where 1{·} is an indicator function taking the value of 1 if the argument in
the brace is true and 0 otherwise. g1 and g2 are graphed in Figure 2(a) and
Figure 2(c), respectively. It can be seen that g1 has two jump points. One is
at x = 0.3 with jump size 0.8 and the other one is at x = 0.7 with jump size
0.8. g2 has a single jump of size 2 at x = 0.5. For each regression function, we
consider cases when the sample size n equals 500 or 1000, fX ∼ Unif[0, 1], and
fU is either a Normal, a Laplace, or a Uniform distribution with E(U) = 0
and Var(U) = 1. τ and σn are fixed at 0.1 and 0.05, respectively. In each
combination of g, n, and fU , the simulation is repeated 200 times. For each
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given bandwidth h′n and threshold value un, 200 values of MSE(ĝ, g;h′n, un)
defined in (10) are computed. Their average is called the Average Mean
Square Error (AMSE) and is denoted as AMSE(h′n, un). The minimizer of
AMSE(h′n, un) is called the optimal bandwidth and the optimal threshold,
and is denoted as h′opt and uopt, respectively. We also compute the bandwidth
value and threshold value using the proposed bootstrap selection procedure.
Such bandwidth and threshold are called the bootstrap bandwidth and the
bootstrap threshold, denoted as h′bt and ubt, respectively. Throughout this
section, if there is no further specification, the bootstrap sample size B is
chosen to be 200, and K used in (3), (4), (6), and (7) is chosen to be the
Epanechnikov kernel function (i.e., K(x) = 0.75(1− x2)1{|x|≤1}). The values
of h′opt, uopt, h

′
bt, ubt, and AMSE(h′opt, uopt) are presented in Table 1.

Table 1: Numerical summary of two simulation examples based on 200 repli-
cated simulations

g n fU h′opt h′bt uopt ubt AMSE

Normal 0.06 0.06 0.09 0.10 0.0229

500 Laplace 0.05 0.07 0.09 0.11 0.0220

g1 Uniform 0.08 0.09 0.07 0.07 0.0237

Normal 0.07 0.06 0.08 0.10 0.0155

1000 Laplace 0.04 0.06 0.09 0.11 0.0158

Uniform 0.09 0.08 0.07 0.07 0.0175

Normal 0.04 0.05 0.37 0.39 0.0675

500 Laplace 0.05 0.03 0.32 0.34 0.0572

g2 Uniform 0.06 0.08 0.39 0.41 0.0779

Normal 0.04 0.04 0.34 0.36 0.0521

1000 Laplace 0.04 0.03 0.29 0.31 0.0425

Uniform 0.05 0.05 0.38 0.40 0.0589

From the table, it can be seen that (i) the performance of the proposed
estimation procedure improves as the sample size n increases, and (ii) the
bootstrap selection procedure chooses parameters close to the optimal ones.

Next, in the case when n = 500 and fU is Normal, the realizations of
{(Wi, Yi) : i = 1, · · · , n} when g is g1 and g2 and their corresponding esti-
mates are shown in Figure 2(b) and Figure 2(d), respectively. It can be seen
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that our curve estimation procedure preserves the jumps well in the presence
of measurement error. It also can be seen that there were little kinks near the
jump points in the estimated curves. This is because when WRMSn(x) ap-
proaches to but does not exceed the threshold un, ĝn(x) = ân(x) which uses
observations from both sides of the jump point. As x gets closer to the jump
point, once WRMSn(x) exceeds un, the clustering procedure kicks in and
ĝn(x) will use the observations from one cluster only. Thus, the slight kinky
behavior is mainly caused by the hard thresholding used in the proposed
procedure.
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Figure 2: (a): g1. (b): One realization with the regression function g1 (dark
dots) and ĝ1 (solid line). (c): g2. (d): One realization with the regression
function g2 (dark dots) and ĝ2 (solid line).
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4.2 Comparison to the PLKE Procedure

The PLKE proposed by Qiu (2003) is a direct curve estimation method that
preserves jumps well when there is no measurement error involved. In this
subsection, we compare our proposed procedure with PLKE procedure in
an artificial example. The proposed procedure is denoted as NEW and the
PLKE procedure is denoted as PLKE. Assume that the regression function
is

g(x) =

{
−25

9
(x− 0.6)2, if x ∈ [0, 0.6),

4(x− 0.6)3 + 0.5, if x ∈ [0.6, 1.0].

It can be seen that g(x) is a piecewise polynomial with a jump size 0.5 at x =
0.6, as plotted in Figure 3(a) (the solid line). In this numerical comparison,
we choose the sample size n to be 500, τ to be 0.05, fU to be N(0, 0.12),
and fX to be either Unif[0, 1], Beta(2,2), Beta(3,2) or Beta(2,3). In each
case, the simulation is repeated 200 times, the optimal parameters (i.e., the
bandwidth-threshold pair for NEW and the bandwidth parameter for PLKE)
are selected based on the AMSE from 200 replicated simulations. The AMSEs
and their standard deviations (denoted as SDAMSE) are computed. These
results are presented in Table 2. From Table 2, it can be seen that the
proposed procedure outperforms the PLKE procedure, across all difference
choices of fX .

Table 2: Numerical comparison of the proposed method NEW with the
PLKE method based on 200 replicated simulations. The numbers are in
10−3.

NEW PLKE
fX AMSE SDAMSE AMSE SDAMSE

Unif[0,1] 7.2116 0.1938 7.4668 0.1079
Beta(2,2) 14.2586 0.2717 20.4528 2.1102
Beta(3,2) 19.8202 0.5693 42.3686 4.3060
Beta(2,3) 23.2024 3.7319 25.5297 1.1948

Next, one realization of {(Wi, Yi), i = 1, · · · , n} when fX is Unif[0, 1] is
shown in Figure 3(a). The fitted curve by the proposed procedure and the
one fitted by PLKE are shown together in Figure 3(b). It can be seen that
PLKE blurred the jump due to the impact of the measurement error whereas
the proposed procedure preserves the jump well.
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Figure 3: (a): g(x) (solid line) and one realization of {(Wi, Yi), i = 1, · · · , n}
(dark dots). (b): Estimated curves by NEW (long-dashed line) and by PLKE
(dot-dashed line), respectively. The dotted lines mark the jump location (i.e.,
xs = 0.6) and the one-sided limits limx→xs± g(x).

5 Analysis of the PHI Data

In this section, we apply our proposed jump detector to the PHI data for
evaluating the impact of MLS on the take-up rate of PHI, as discussed in Sec-
tion 1. The purposes of introducing PHI in Australia were to give consumers
more choices and take some pressure off the public medical system. However,
the PHI take-up rate by Australians was very low at the beginning when the
PHI was first introduced in 1984, and the take-up rate has been in declining
until the end of 1990s (the take-up rate was only about 31 percent at that
time) when a series of policies (including MLS) were introduced. Impact of
some of these policy measures (e.g., Lifetime Health Cover) has been studied
in a few studies, including Butler (2002), Frech et al. (2003), Palangkaraya
and Yong (2005), and Palangkaraya et al. (2009). But the role of MLS has
not been identified separately yet. The MLS was imposed in 1997 on high-
income taxpayers who did not have private insurances. Between 1997-1998
and 2007-2008, the threshold of annual taxable income at which MLS was
payable was $50,000 for singles without children, and $100,000 for couples.
For each dependent child in the household, the threshold increased by $3,000.
So, people having children may lead to multiple jumps in the current PHI
data. Unfortunately, we do not have information on the number of children
in a family. Also, multiple jump locations within a relatively narrow range
would be difficult to distinguish, given the measurement error involved in
the PHI data. To mitigate the effect of multiple jumps due to people having
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children, this paper focuses only on singles in the current PHI data.
The data used here are from a confidentialised “1% Sample Unit Record

File of Individual Income Tax Returns” for the 2003-04 financial year, that
was developed by ATO for research purposes. The file contains just over
109,000 records of individual tax returns and detailed information on income
from various sources; different types of tax deductions; taxable income; and
the take-up of PHI by the individuals. It also contains a limited number of
demographic variables, including gender, age group, and marital status. In
this paper, we focus on singles between 20 and 69 years old, who were all
subject to the same income threshold of $50,000 for the MLS. Therefore, the
PHI take-up rate is expected to have a jump around that level of the annual
taxable income. In the tax and transfer system or in the health insurance
premium regime in Australia, there is no other differential treatment related
to the PHI take-up. Other demographic covariates (such as gender and age)
would not generate discontinuity in the take-up rate either. So, in the current
PHI data, MLS seems to be the only factor responsible for the jump in the
take-up rate.

As a method of confidentialisation, ATO ‘perturbed’ the income vari-
ables and the deductions, and provided the following information on the way
the data was perturbed: several random numbers within a specified range
for each individual were generated, which were converted into a rate (equal
probability of being positive or negative) and which was then applied to the
various components of the tax return. These rates were applied to the com-
ponents in a way to try to maintain relationships with similar items. This
was achieved by grouping the components into three broad categories: work
or employment related income and deductions; investment income and de-
ductions; and business and other income and deductions. Thus, there is some
information about the measurement errors in the income data, but the actual
distribution of the measurement errors is impossible to be identified based on
the provided information. The sample was further restricted to minimize the
number of income sources/deduction sources so that the distribution of the
error term could be more homogeneous, according to the following criteria:
1) Only those who had positive earnings as the only sources of income were
selected; 2) Individuals whose taxable income was not positive (which means
their total tax deductions were not less than their earnings) were dropped;
and 3) We further dropped individuals whose non-work related deductions
formed a significant part of their taxable income—specifically, we dropped
those individuals whose work related deductions were less than 90 percent
of earnings when the total deductions were more than 10 percent of earn-
ings; whose total deductions were over 50 percent of earnings; or whose total
deductions were all non-work related and the total deductions were over 10
percent of their earnings.
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The final sample for analysis contains 9,685 records of individual tax re-
turns. By a preliminary analysis, we found that about 26% singles bought
PHI in 2003-04, and the PHI take-up rates for those whose annual taxable
incomes were below $50,000 and those whose annual taxable incomes were
above that level were quite different. The PHI take-up rate for the former
group was about 21%, and it was about 57% for the latter group. Because
ATO perturbed the income data by multiplying each original income obser-
vation by a random number, we used the income variable in log scale in our
analysis, so that the additive measurement error assumption in (2) is valid
here. Also, the response variable is 0 when an individual did not purchase
PHI in 2003-04 and 1 otherwise. We transformed binned observations to
meet the model assumption in (1) that the response variable is continuous
numerical. Specifically, the bin size is chosen to be 40. For each bin, the
average of annual taxable income on log scale in that bin is used as the value
for the new explanatory variable. And the log odds of the PHI take-up rate
(i.e., log(p(x)/(1− p(x)), where p(x) denotes the PHI take-up rate when the
bin average of the logarithm of the annual taxable income is x) is used as the
transformed response variable. The log odds in the ith bin is computed by

log

(
Ni + c

m−Ni + c

)
, (12)

where m = 40 is the bin size, Ni denotes the number of people in the ith

bin who purchased PHI during 2003-04, and c is some positive constant to
avoid the numerical instabilities in computing the log odds. (12) is known as
the empirical logistic transformation when c = 0.5 and it yields some good
statistical properties (see Cox 1970 for a detailed discussion). This choice for
c is also adopted here. The transformed PHI data is shown in Figure 4 (dark
dots). From the figure, it can be seen that there is an abrupt change in the
log odds of PHI take-up rate within [10.75, 11.25] (i.e., the annual income
is within [$36315, $59874]). The impact of the measurement error is also
visible.

We then apply our proposed estimation procedure (3)–(9) to the trans-
formed PHI data. The bandwidth and the threshold are chosen to be 0.135
and 0.13, respectively. The results are shown in Figure 4 (dashed line). From
the plot, the abrupt change in the log odds is estimated to be at 10.99 (≈
$59,278). This finding confirms our intuition that people usually act later
than they are hit by the MLS. From Figure 4, it can also be seen that the jump
size is around 0.4945 in log odds (≈ 12.3% in the PHI take-up rate). This
number shows that the impact of the MLS tax policy is quite substantial. For
individuals with only one income source, the policy can be considered locally
exogenous because the observations to the left and right of (but close to) the
jump position are more or less homogeneous except the policy treatment. It
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implies that, among the individuals whose annual taxable income is around
$59,278, MLS brings about an extra 12.3% of them onto the private health
system. This also implies a negative price elasticity of PHI demand since the
jump in the take-up rate can be seen as a response to a price discount in the
premium.
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Figure 4: The estimated log(p(·)/(1 − p(·))) (dashed line) and the observa-
tions of the PHI data after transformation (solid dots).

6 Concluding Remarks

We have proposed a jump-preserving curve estimation method when the
explanatory variable has measurement error involved. A major feature of
the proposed method is that it preserves jumps well without requiring much
prior knowledge on the measurement error distribution, making it applicable
in practice. The challenge caused by measurement error with an unknown
distribution is handled by locally clustering of observations by maximizing a
separation measure. Also, the proposed method is a direct approach without
explicitly detecting the jump points beforehand. Thus, it is easy to use.
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There is much room for further improvement of the current method. First,
estimated curve by the proposed method exhibits kinky behavior near jump
points due to the hard thresholding. Some post-processing modifications
may help improve the fitted curve. Second, the regression function at con-
tinuity points is estimated by the conventional local linear kernel smoothing
procedure and the measurement error is ignored in such cases. It might be
possible to estimate the distribution of the measurement error to some extent
by making use of the jump structure of the regression function and then re-
fine our estimate of the regression function in continuity regions. Fourth, the
proposed bootstrap parameter selection procedure is evaluated by numerical
studies only. It requires future research to derive the theoretical justification
of its asymptotic behavior.
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