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Abstract

Blind image deblurring is a challenging ill-posed problem. It would have infinite solutions

even in cases when an observed image contains no noise. In reality, the observed image almost

always contains noise, and the presence of noise would make the image deblurring problem

even more challenging because the noise can cause numerical instability in many existing image

deblurring procedures. In this paper, a novel blind image deblurring approach is proposed, which

can remove both noise and image blur efficiently without imposing restrictive assumptions on

either the point spread function (psf) or the true image. It even allows the psf to be location

variant. In the proposed approach, local pixel clustering is used for handling the challenging task

of restoring complicated edge structures tapered by blur and nonparametric regression is used

for removing noise at the same time. Numerical comparisons with other state-of-the-art image

deblurring methods on images with various synthetic and real-life degradations show that our

proposed method is capable of handling a wide variety of blurs and works well in applications.

Index Terms: Blind image deblurring, clustering, deconvolution, denoising, edges, image

reconstruction, smoothing, surface estimation, nonparametric regression.

1 Introduction

Observed images are not always faithful representations of the scenes that we see. In practice,

some degradation often arises in the recording of a digital image. For example, in astronomical

imaging, the incoming light in the telescope is often bent by atmospheric turbulence. In aerial

reconnaissance, the optical system in camera lens may be out of focus. In daily life, image distortion

often arises in cases when there is relative motion between the camera and the object. Among
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different degradations, point degradation (or, noise) and spatial degradation (or, blur) are the most

common in practice. Other types of degradations involve chromatic or temporal effects. See

Bates and McDonnell (1986) for a detailed discussion about formation and description of various

degradations.

In the literature, a commonly used model for describing the relationship between the true image

f and its degraded version Z is as follows.

Z(x, y) = G{f}(x, y) + ε(x, y), for (x, y) ∈ Ω, (1)

where G{f}(x, y) =
∫ ∫

R2 g(u, v;x, y)f(x − u, y − v) dudv denotes the convolution between a 2-D

point spread function (psf) g and a true image intensity function f , ε(x, y) is the pointwise noise

at (x, y), and Ω is the design space of the image. In model (1), it is assumed that the true image

f is degraded spatially by g and pointwise by ε, the spatial blur is linear, and the pointwise noise

is additive. In most references, it is further assumed that the psf g, which describes the spatial

blurring mechanism, is location (or spatially) invariant. That is, g(u, v;x, y) does not depend on

(x, y).

Blind image deblurring (BID) is for estimating f from Z when the psf g is not completely

specified. This problem is ill-posed in nature because only Z is observed and g, f and ε are

all unobservable. So, the number of unknowns is larger than the number of observations. This

ill-posed nature would get even worse in cases when g changes over location. In the literature,

some image deblurring procedures have been developed under the assumption that the psf g is

completely known. Such procedures are referred to be non-blind. The main difficulty in non-blind

image deblurring has to do with the presence of noise (cf., Qiu 2005, Chapter 7). To overcome the

difficulty, a number of image deblurring techniques have been proposed using the regularization

framework (e.g., Oliveira et al. 2009). In practice, however, it is hard to fully specify the psf g.

In cases when the assumed psf is quite different from the true psf, the deblurred image would be

seriously distorted. To avoid such limitations, a number of BID methods have been developed.

Some of them assume that g follows a parametric model with one or more unknown parameters,

and these parameters are estimated together with the true image f by certain algorithms (e.g.,

Carasso 2001, Carasso 2002, Hall and Qiu 2007a, Joshi and Chaudhuri 2005, Katsaggelos and Lay

1990). Some others assume that the true image f has one or more regions with certain known
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edge structures (e.g., Hall and Qiu 2007b, Kundur and Hatzinakos 1998, Qiu 2008, Yang et al.

1994). Several BID methods use the Bayesian framework to make the originally ill-posed BID

problem well-posed by assuming some prior information on the psf or the true image (e.g., Fergus

et al. 2006). Some other BID methods estimate both g and f in an alternating fashion, using the

iterative Richardson-Lucy scheme (e.g., Biggs and Andrews 1997, Jansson 1997).

This paper proposes an alternative approach to the BID problem. We notice that spatial blur

alters the image structure dramatically around step edges (i.e., jumps in f). But the observed

image is not affected much by spatial blur at places where f is straight. Based on this observation,

our proposed approach pays a special attention to regions around step edges. It consists of two

major steps. First, pixels in a neighbourhood of a given pixel are clustered into two groups based

on their observed image intensities. At the same time, we make a hypothesis test to check whether

the two groups are significantly different from each other. Second, the true image intensity at the

given pixel is estimated by a weighted average of the observed image intensities at the pixels in

that neighbourhood that belong to the same group as the given pixel. One major feature of this

approach is that it does not require any restrictive assumptions on either g or f . It even allows

g to vary over location. Numerical comparisons with some representatives of the state-of-the-art

image deblurring methods show that the proposed method is capable to handle a wide variety of

blurs and it works well in various applications.

The rest part of the article is organized as follows. Our proposed methodology is described in

detail in Section 2. Some numerical examples are presented in Section 3. Several remarks conclude

the paper in Section 4.

2 Methodology

We describe our proposed BID method in three parts. In Subsection 2.1, our new procedure is

described in detail. In Subsection 2.2, a modification to address misclassification in local pixel

clustering is discussed. In Subsection 2.3, selection of procedure parameters is discussed.
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2.1 Proposed BID Method

Assume that an observed image follows the model

Zij = G{f}(xi, yj) + εij , for i, j = 1, 2, . . . , n,

where {(xi, yj), i, j = 1, 2, . . . , n} are equally spaced pixels in the design space Ω = [0, 1] × [0, 1],

{Zij , i, j = 1, 2, . . . , n} are observed image intensities, and {εij , i, j = 1, 2, . . . , n} are independent

and identically distributed (i.i.d.) random errors with mean 0 and unknown variance σ2. It is further

assumed that f is continuous in Ω except on some edge curves (see Qiu 1998 for a mathematical

definition).

For a given pixel (x, y) ∈ [hn, 1−hn]×[hn, 1−hn] where hn ∈ (0, 1/2) is a bandwidth parameter,

let us consider its circular neighbourhood

O(x, y;hn) =

{
(xi, yj) ∈ Ω :

√
(xi − x)2 + (yj − y)2 ≤ h2n

}
.

In this neighbourhood, a local plane is fitted by the following local linear kernel (LLK) smoothing

procedure (cf., Fan and Gijbels 1996):

min
a,b,c


n∑
i=1

n∑
j=1

[Zij − a− b(xi − x)− c(yj − y)]2K

(
xi − x
hn

,
yj − y
hn

) , (2)

where K is a circularly symmetric bivariate density kernel function with its support on the unit

disk. The above LLK smoothing procedure approximates the image intensity surface locally by a

plane and uses the kernel function K to control the weights in the weighted least squares procedure

(2). Usually, K is chosen such that pixels closer to (x, y) receive more weights, which is intuitively

reasonable because pixels closer to (x, y) should provide more information about the image intensity

at (x, y). Let (â(x, y), b̂(x, y), ĉ(x, y)) denote the solution to the minimization problem (2). They

have the following expression:

â(x, y) =

∑n
i=1

∑n
j=1w

(1)
ij (x, y)Zij∑n

i=1

∑n
j=1w

(1)
ij (x, y)

, (3)

b̂(x, y) =

∑n
i=1

∑n
j=1w

(2)
ij (x, y)Zij∑n

i=1

∑n
j=1w

(2)
ij (x, y)

, (4)

ĉ(x, y) =

∑n
i=1

∑n
j=1w

(3)
ij (x, y)Zij∑n

i=1

∑n
j=1w

(3)
ij (x, y)

, (5)

4



where

w
(1)
ij (x, y) = [A11(x, y) +A12(x, y)(xi − x) +A13(x, y)(yj − y)]K

(
xi − x
hn

,
yj − y
hn

)
,

w
(2)
ij (x, y) = [A21(x, y) +A22(x, y)(xi − x) +A23(x, y)(yj − y)]K

(
xi − x
hn

,
yj − y
hn

)
,

w
(3)
ij (x, y) = [A31(x, y) +A32(x, y)(xi − x) +A33(x, y)(yj − y)]K

(
xi − x
hn

,
yj − y
hn

)
,

A11(x, y) = r20(x, y)r02(x, y)− r11(x, y)r11(x, y),

A12(x, y) = r01(x, y)r11(x, y)− r10(x, y)r02(x, y),

A13(x, y) = r10(x, y)r11(x, y)− r01(x, y)r20(x, y),

A21(x, y) = r01(x, y)r11(x, y)− r10(x, y)r02(x, y),

A22(x, y) = r00(x, y)r02(x, y)− r01(x, y)r01(x, y),

A23(x, y) = r01(x, y)r10(x, y)− r00(x, y)r11(x, y),

A31(x, y) = r10(x, y)r11(x, y)− r20(x, y)r01(x, y),

A32(x, y) = r01(x, y)r10(x, y)− r00(x, y)r11(x, y),

A33(x, y) = r00(x, y)r20(x, y)− r10(x, y)r10(x, y),

rs1,s2(x, y) =
n∑
i=1

n∑
j=1

(xi − x)s1(yj − y)s2K

(
xi − x
hn

,
yj − y
hn

)
, for s1, s2 = 0, 1, 2,

and â(x, y) in (3) is called the LLK estimator of f(x, y). Its weighted residual mean square (WRMS)

is defined by

e(x, y) =

∑n
i=1

∑n
j=1

[
Zij − â(x, y)− b̂(x, y)(xi − x)− ĉ(x, y)(yj − y)

]2
K
(
xi−x
hn

,
yj−y
hn

)
∑n

i=1

∑n
j=1K

(
xi−x
hn

,
yj−y
hn

) . (6)

If (x, y) is in the continuity region of f , then the image structure within O(x, y;hn) should be

approximated well by the local plane described by (â(x, y), b̂(x, y), ĉ(x, y)). Thus, e(x, y) should be

relatively small. On the other hand, if O(x, y;hn) contains edge curves, then the fitted local plane

cannot well describe the image structure within O(x, y;hn). Consequently, the value of e(x, y) would

be relatively large. Therefore, e(x, y) can be used to judge whether the neighborhood O(x, y;hn)

contains any edge curves. More specifically, if

e(x, y) > un, (7)
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then we can conclude that there are edge curves in O(x, y;hn), where un is a threshold value.

In such a case, we can cluster the pixels in O(x, y;hn) into two groups based on their observed

image intensities. Intuitively, pixels on the same side of an edge curve have similar intensity values.

So, they can be put in the same group. Pixels on different sides of the edge curve have quite

different intensity values, and they should be put in different groups. An informative pixel clustering

procedure should generate groups such that pixels within a group are similar in their intensity values

and pixels in different groups have quite different intensity values. Thus, pixel clustering within

O(x, y;hn) should reflect the local edge structure well without requiring restrictive conditions on

the smoothness or shape of the edge curve. In this paper, we suggest using a cut-off constant c to

define the two clusters in O(x, y;hn). More specifically, the two clusters are defined to be

O1(x, y;hn, c) = {(xi, yj) ∈ O(x, y;hn) : Zij ≤ c},

O2(x, y;hn, c) = {(xi, yj) ∈ O(x, y;hn) : Zij > c},

where c ∈ R(x, y;hn), and R(x, y;hn) is the range of the image intensity values in O(x, y;hn).

Namely,

R(x, y;hn) =

(
min

(xi,yj)∈O(x,y;hn)
Zij , max

(xi,yj)∈O(x,y;hn)
Zij

)
.

So, it is obvious that both O1(x, y;hn, c) and O2(x, y;hn, c) are non-empty sets for any constant

c ∈ R(x, y;hn), O(x, y;hn, c) = O1(x, y;hn, c)∪O2(x, y;hn, c), and O1(x, y;hn, c)∩O2(x, y;hn, c) =

∅. Let c0 be the maximizer to the following maximization problem:

max
c∈R(x,y;hn)

|O1(x, y;hn, c)|(ξ1 − ξ)2 + |O2(x, y;hn, c)|(ξ2 − ξ)2∑
(xi,yj)∈O1(x,y;hn,c)

(Zij − ξ1)2 +
∑

(xi,yj)∈O2(x,y;hn,c)

(Zij − ξ2)2
, (8)

where |A| denotes the number of elements in the pointset A, ξs denotes the sample mean of the

intensity values of the pixels in Os(x, y;hn, c), for s = 1, 2, and ξ denotes the sample mean of

the intensity values of all pixels in O(x, y;hn, c). In (8), the numerator measures the dissimilarity

between the two groups, and the denominator measures the dissimilarity of intensity values within

each of the two groups. Thus, it is reasonable to cluster the pixels in O(x, y;hn, c) by maximizing

their ratio. It can be checked that (8) is actually the one dimensional version of the clustering

criterion proposed by Friedman and Rubin (1967).

Without loss of generality, assume that (x, y) ∈ O1(x, y;hn, c0). Then, a weighted average of

observations in O1(x, y;hn, c0) should provide a good estimate for f(x, y) when there is no blurring
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involved, as discussed in the image denoising literature (cf., Qiu 1998). In cases when the observed

image contains blur, if the intensity of a pixel is closer to the cut-off constant c0, then it should

receive less weight in the weighted average since it is more likely for that pixel to have blur involved.

To address this issue about image blur, besides a bivariate kernel function used in the conventional

kernel smoothing procedure to assign more weights to pixels closer to (x, y), a univariate kernel

function is used to assign less weights to pixels whose intensity values are closer to c0. Then, the

proposed BID estimator f̂(x, y) is defined to be the solution to a0 in the following local constant

kernel (LCK) smoothing procedure:

min
a0∈R

∑
(xi,yj)∈O1(x,y;hn,c0)

(Zij − a0)2K
(
xi − x
hn

,
yj − y
hn

)
L

(
|Zij − c0|
|Z(1)
min − c0|

)
, (9)

where L is a univariate increasing density kernel function with support [0, 1], and Z
(1)
min denotes the

minimum intensity in O1(x, y;hn, c0). It is easy to check that f̂(x, y) has the following expression:

f̂(x, y) =

∑
(xi,yj)∈O1(x,y;hn,c0)

ZijK
(
xi−x
hn

,
yj−y
hn

)
L

(
|Zij−c0|
|Z(1)

min−c0|

)
∑

(xi,yj)∈O1(x,y;hn,c0)
K
(
xi−x
hn

,
yj−y
hn

)
L

(
|Zij−c0|
|Z(1)

min−c0|

) . (10)

In cases when (x, y) ∈ O2(x, y;hn, c0), f̂(x, y) can be defined in the same way except that O1(x, y;

hn, c0) and Z
(1)
min in (10) should be replaced by O2(x, y;hn, c0) and Z

(2)
max, respectively, where Z

(2)
max

denotes the maximum intensity in O2(x, y;hn, c0).

To demonstrate the efficacy of the image deblurring procedure (10), a cross section of an image

around a step edge, a blurred version, a blurred-and- noisy version and the deblurred version by

(10) when K and L are chosen to be the ones used in Section 3 are shown in plots (a)-(d) of Figure

1, respectively. From plot (d), it can be seen that (10) can restore the blurred edge structure to

some extent while removing the noise at the same time.

In cases when (7) is not satisfied, it is likely that the pixel (x, y) is in a continuity region of f .

In such cases, the spatial blur would not alter the image much, as discussed in Section 1. So, we

suggest estimating f(x, y) by the conventional LLK estimator â(x, y) in (3). There are two benefits

of doing this. First, it has been well demonstrated in the literature that the LLK estimator has

less bias compared to the LCK estimator in continuity regions of f (cf., Fan and Gijbels 1996).

Second, since â(x, y) is already computed as a by-product in (7) before we compute f̂(x, y), it saves

7



Figure 1: (a): A cross section of an image around a step edge; (b): A blurred version of (a); (c): A

blurred-and-noisy version of (a); (d): The deblurred version from (c) by the BID procedure (10).

much computation. By taking into account all these considerations, our proposed BID procedure

is summarised below.

Proposed Blind Image Deblurring Procedure

1. For a given pixel (x, y), solve the minimization problem (2) by (3)-(5).

2. Compute the WRMS in (6).

3. If (7) holds, then do local clustering by maximizing (8) and estimate f(x, y) by (10). Other-

wise, estimate f(x, y) by (3).
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2.2 A Modification

When the noise level of the observed image is quite low, the clustering procedure introduced in the

previous subsection works well. However, its misclassification rate would get higher as the observed

image gets noisier. As a brief demonstration, let us consider a toy example about an image with

a single step edge. A blurred version and a blurred-and-noisy version of this image are shown in

Figure 2(a), (b), respectively. The deblurred image by our proposed BID procedure (8)– (10) is

presented in Figure 2(c). It can be seen that the step edge structure is restored well and the noise

is mostly removed as well. But, the true image intensities of certain pixels around the step edge

are not estimated well, which is mainly caused by the misclassification of the clustering procedure.

To address this issue, we suggest a modification procedure described below. Assume that (7) holds

at a given pixel (x, y). Then, local clustering needs to be performed in O(x, y;hn) by the clustering

procedure discussed in Subsection 2.1 and all the pixels in that neighborhood are grouped into

two clusters. If more than four of the eight immediately neighboring pixels of (x, y) are grouped

into the same cluster as (x, y), then we say that (x, y) has been correctly classified. Otherwise,

we say that (x, y) has been misclassified because (x, y) should belong to the same cluster as most

of its immediately neighboring pixels (cf., Figure 3 for a demonstration). The deblurred image of

the one presented in Figure 2(b) by the BID procedure (8)–(10) after the modification is shown

in Figure 2(d). Compared to Figure 2(c), it can be seen that the misclassification rate has been

greatly reduced by the suggested modification.

2.3 Parameter Selection

In the proposed BID procedure (8)–(10), there are two parameters to choose, including the threshold

value, un in (7) and the bandwidth hn in (2). To choose a reasonable threshold value un, we need

to derive the asymptotic distribution of e(x, y) defined in (6). Based on (6), we have

e(x, y)

=

∑
(xi,yj)∈O(x,y;hn)

[
εij +G{f}(xi, yj)− â(x, y)− b̂(x, y)(xi − x)− ĉ(x, y)(yj − y)

]2
K
(

xi−x
hn

,
yj−y
hn

)
∑

(xi,yj)∈O(x,y;hn)
K
(

xi−x
hn

,
yj−y
hn

)
=

∑
(xi,yj)∈O(x,y;hn)

ε2ijK
(

xi−x
hn

,
yj−y
hn

)
∑

(xi,yj)∈O(x,y;hn)
K
(

xi−x
hn

,
yj−y
hn

) +
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Figure 2: (a): A blurred version of an image with a step edge; (b): A blurred- and-noisy version;

(c): The deblurred image by the BID procedure (8)– (10) without the modification; (d): The

deblurred image by the BID procedure (8)–(10) with the modification.

2
∑

(xi,yj)∈O(x,y;hn)
εij

[
G{f}(xi, yj)− â(x, y)− b̂(x, y)(xi − x)− ĉ(x, y)(yj − y)

]
K
(

xi−x
hn

,
yj−y
hn

)
∑

(xi,yj)∈O(x,y;hn)
K
(

xi−x
hn

,
yj−y
hn

) +

∑
(xi,yj)∈O(x,y;hn)

[
G{f}(xi, yj)− â(x, y)− b̂(x, y)(xi − x)− ĉ(x, y)(yj − y)

]2
K
(

xi−x
hn

,
yj−y
hn

)
∑

(xi,yj)∈O(x,y;hn)
K
(

xi−x
hn

,
yj−y
hn

) +

=: I1(x, y) + I2(x, y) + I3(x, y).

Note that G{f} is actually a continuous function. By some arguments similar to those in the

proofs of Theorem 2 in Qiu (2009) and Lemma A.1 in Sun and Qiu (2007), it can be checked that

both I2(x, y) and I3(x, y) converge to zero fast. Also, we notice that I1(x, y) is a weighted average

of i.i.d. random variables {εij}. By the Central Limit Theorem, e(x, y) has an asymptotic normal
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Figure 3: Pixels separated by an edge curve belong to different clusters, which are represented by

two different symbols: circles and triangles.

distribution with mean µe and variance σ2e , where

µe = σ2, σ2e =

(
E(ε411)− σ2

)∑n
i=1

∑n
j=1K

(
xi−x
hn

,
yj−y
hn

)2
[∑n

i=1

∑n
j=1K

(
xi−x
hn

,
yj−y
hn

)]2 . (11)

Therefore, a natural choice of un is µe + σeZ1−αn/2, where Z1−αn/2 is a (1 − αn/2)th quantile of

the standard normal distribution in (11), the significance level αn needs to be specified beforehand,

both E(ε411) and σ2 are usually unknown in practice. But they can be reasonably estimated using

the conventional local kernel smoothing method.

In numerical simulations, the true image is often known. In such cases, hn can be chosen by

minimizing

MSE(f, f̂ ;hn) =
1

n2

n∑
i=1

n∑
j=1

[
f(xi, yj)− f̂(xi, yj)

]2
, (12)

where f̂ is the deblurred image. In practice, f is usually unknown. In such cases, the cross

validation (CV) approach is natural to consider (cf., Qiu 2005, Chapter 2). In the image deblurring

problem, however, the mean response is G{f}, instead of f . In such cases, the CV approach is

inappropriate to use because the chosen parameter is for approximating G{f}. So we suggest
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choosing hn by visual perception of the deblurred image. Note that the choice of hn is related to

the image resolution (i.e., n), the noise level, and the blurring extent (see its definition in Section

3). Based on our numerical experience, when deblurring a typical image with 512×512 pixels by

the proposed BID method, it often gives a reasonably good result by choosing hn between 6/512

and 10/512.

3 Numerical Studies

In this section, we discuss several numerical examples concerning the performance of the proposed

BID procedure, denoted as NEW, in comparison with three representative state-of-the-art existing

deblurring methods in the literature. The first existing method considered here is the one accom-

plished by the MATLAB blind deconvolution routine deconvblind, which is based on the method

discussed by Biggs and Andrews (1997) and Jansson (1997) under the framework of Richardson-

Lucy (RL) algorithm. The second existing method is the total variation (TV) image deblurring

method proposed by Oliveira et al. (2009). The third existing method is the blind image decon-

volution procedure developed under the Bayesian framework by Fergus et al. (2006). These three

existing methods are denoted as RL, TV and Bayes, respectively. It should be pointed out that

both RL and Bayes are blind image deblurring schemes, but TV is designed for non-blind image

deblurring. Two versions of TV, denoted as TV1 and TV2, distinguished by how the psf g is spec-

ified, are considered in each numerical example. The specific meanings of TV1 and TV2 will be

clarified in the context of each example. Throughout this section, the bandwidth hn used in (2)

is chosen by minimizing (12) except in the example of brain image where hn is chosen by visual

perception of the deblurred image, the significance level αn is fixed at 0.9995, the two dimensional

kernel function K used in (2) and (10) is chosen to be (2/π)(1−x2−y2)I(x2 +y2 ≤ 1), and the one

dimensional kernel function L used in (10) is chosen to be (1/1.194958) exp(x2/2)I(0 ≤ x ≤ 1). We

choose these two kernel functions because the former is the Epanechnikov kernel function, which is

a standard choice in the Statistics literature, and the latter is a truncated Gaussian kernel function,

which is commonly used in the Computer Science literature.

In the first example, we consider the Lena test image with 512× 512 pixels. The following two
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psf’s are used:

g1(u, v;x, y) =


1

C1(x,y)
exp{−u2+v2

2 }I(u2 + v2 ≤ 0.12) if y > 0.5,

δ0(u)δ0(v) otherwise;

g2(u, v;x, y) =


1

C2(x,y)
I(|u| ≤ 0.1)δ0(v) if |x− 0.5| ≤ 0.3 and |y − 0.5| ≤ 0.3,

1
C2(x,y)

δ0(u)I(|v| ≤ 0.1) otherwise,

where Cj(x, y) is the standardization constant such that
∫ ∫

R2 gj(u, v;x, y) dudv = 1, for any

(x, y) ∈ Ω and j = 1, 2, and δ0(·) is the delta function with the point mass at 0. The random noise

is generated from the normal distribution N(0, σ2), and two different noise levels, σ = 5 and 10

are considered. From the above expression, we can see that g1 is a truncated Gaussian blur for the

upper half of the image and there is no blur for the lower half; g2 is a horizontal motion blur for

the central part of the image and is a vertical motion blur for the rest part of the image. Figure

4(a)-(c) present the original Lena image, its blurred version with g2, and its blurred-and-noisy

version with g2 and σ = 10, respectively. Figure 4(d)–(h) present the deblurred images by NEW,

RL, TV1, TV2 and Bayes, respectively, where TV1 and TV2 denotes the TV method when the psf

is specified as the horizontal motion blur of g2 and the vertical motion blur of g2, respectively. It

should be pointed out that the support of the psf needs to be specified when using RL and the true

support of g2 is used in this example to show its best performance, and a subregion defined by the

coordinates [86/512, 214/512]× [293/512, 421/512] is prespecified for Bayes, as suggested in Fergus

et al. (2006) that their algorithm performs better and runs faster if a smaller patch, rich in edge

structure, is manually selected. From Figure 4, it can be seen that (i) NEW removes noise and the

blur well, (ii) there are many artifacts in the deblurred image of RL and the noise has not been

reduced much, and (iii) TV generates many artifacts at places where the psf is misspecified.

Next, we compare the five methods quantitatively. Table 1 presents the values of the root

mean squared error (RMSE) defined to be RMSE=
√∑n

i=1

∑n
j=1[f(xi, yj)− f̂(xi, yj)]2/n of the

five methods for each case considered based on 100 replicated simulations. The number in each

parenthesis represents the standard error of the corresponding RMSE. In cases when the psf is g1,

TV1 and TV2 denotes the TV method when the psf is specified as the Gaussian blur of g1 and

a horizontal motion blur, respectively. From Table 1, it can be seen that NEW outperforms all

the other four methods. Interestingly, all deblurring methods except the two TV-based methods
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Figure 4: (a)–(c): Original Lena image, its blurred version and its blurred-and-noisy version,

respectively. (d)–(h): Deblurred images by NEW, RL, TV1, TV2 and Bayes, respectively.

perform better as the noise level decreases. But, it turns out that the two TV-based methods

perform counter-intuitively the other way. We checked the source code and it seemed that the TV

method presented in Oliveira et al. (2009) is adaptive in the sense that it does not require users to

specify the value of the regularization parameter. In our specific cases when σ = 5, the TV method

automatically chooses the parameter value that does not give a good performance.

Next, we discuss the second numerical example, in which the test image of peppers with

256× 256 pixels is used. The psf g considered has the expression:

g(u, v;x, y) =
3

πr2(x, y)

(
1−

√
u2

r2(x, y)
+

v2

r2(x, y)

)
I(u2 + v2 ≤ r2(x, y)),

where r(x, y) > 0 may change over location and it is the radius of the circular support of g.

In this papers, r(x, y) is called the blur extent function. Three blur extent functions, r1(x, y) =

0.03(1 − (x − 0.5)2 − (y − 0.5)2), r2(x, y) = 0.03x, r3(x, y) = 0.02, and two noise levels, σ = 5,

σ = 10, are considered. Clearly, r1(x, y) and r2(x, y), are location variant., and r3(x, y) is location

invariant. In the case with r3(x, y), the blur described by g(u, v;x, y) is homogeneous across the

entire image, which is the case discussed by most references. As in the previous example, the
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Table 1: Estimated values of RMSE of the five image deblurring methods in the Lena image example

based on 100 replicated simulations. The numbers in the parentheses are the standard errors of

RMSE.

h1 h2

Methods σ = 5 σ = 10 σ = 5 σ = 10

New 9.13 (0.01) 9.54 (0.02) 12.09 (0.02) 12.99 (0.03)

RL 19.80 (0.03) 30.73 (0.05) 26.61 (0.04) 29.67 (0.08)

TV1 295.65 (9.66) 17.11 (0.49) 79.9 (2.02) 26.34 (2.79)

TV2 185.30 (1.56) 92.24 (4.90) 22.73 (0.22) 14.64 (0.64)

Bayes 26.43 (1.54) 38.11 (1.08) 27.93 (1.11) 40.91 (1.95)

noise is generated from the distribution N(0, σ2). Regarding the five image deblurring methods, we

would like to make the following remarks. (i) RL requires the blur extent function to be constant

(i.e., location invariant) and completely specified. So, in this example, we searched the value of r

to achieve the minimum RMSE such that RL performs the best. (ii) TV requires the psf g to be

completely specified and the blur extent function needs to be constant as well. In this example the

value of r is searched to achieve the minimum RMSE values for TV1 and TV2 as well, where TV1

and TV2 denote the TV method when the parametric form of g is correctly specified and when it

is misspecified as a horizontal motion blur, respectively. (iii) The prespecified subregion for Bayes

is chosen to be [78/256, 206/256]× [42/256, 170/256].

The results in the same setup as Figure 4 are shown in Figure 5, where the blur extent function

r2(x, y) and σ = 10 are considered. From the figure, it can be seen that (i) the blur gets more severe

when moving from the left side of the image to the right side (cf., plot(b)), (ii) NEW deblurs the

image and removes the noise well, (iii) RL performs poorly, (iv) the middle part of the deblurred

image by TV1 looks good but the places near the boundary contain many artifacts because TV

cannot handle location variant blur, (v) TV does not work well when the blurring mechanism is

misspecified (cf., plot(g)), and (vi) Bayes performs poorly in this example.

In cases when r3(x, y) (i.e., blur is location invariant) and σ = 10 are considered, the results

are shown in Figure 6. In this case, TV is denoted by TV1 when the psf is correctly specified and
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Figure 5: (a)–(c): Original Peppers image, its blurred version and its blurred-and-noisy version,

respectively. (d)–(h): Deblurred images by NEW , RL, TV1, TV2 and Bayes, respectively.

by TV2 when the psf is wrongly specified as a horizontal motion blur. From Figure 6, we can see

that (i) both RL and Bayes perform poorly, (ii) TV is highly sensitive to the misspecification of

the psf, (iii) TV1 performs well in this case because the psf is location invariant and completely

specified, and (iv) NEW still gives a comparable performance to TV1 despite it uses much less prior

information.

The quantitative performance measures of the five methods in the same setup as that of Table

1 are presented in Table 2. It can be seen from Table 2 that (i) NEW outperforms all the other

four methods in most cases considered and it works stably as the blur extent function and noise

level change, (ii) TV1 , which requires the parametric form of the psf is correctly specified, works

slightly better than NEW in a few cases , and (iii) RL, TV2 and Bayes all perform poorly.

Finally, we consider an example with a brain test image. Figure 7(a) shows an observed brain

image with 217 × 217 pixels which seems to have some blur involved. Its noisy version is shown

in Figure 7(b), where the noise is generated from N(0, 72). Figure 7(c)–(f) present the deblurred

images by NEW, RL, TV and Bayes, respectively. The bandwidth in NEW is chosen to be 4/217.
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Figure 6: (a) Blurred-and-noisy Peppers image in the case when the blur extent function is r3(x, y)

and σ = 10. (b)–(f): Deblurred images by NEW, RL, TV1, TV2 and Bayes, respectively.

The support of the psf for RL is chosen to give its best visual impression. For TV, the psf is specified

as a horizontal motion blur and the blur extent is chosen to give the best visual impression. We

also tried several other forms of psf for TV but they did not provide significant improvements. The

prespecified subregion required by Bayes is chosen to be [84/217, 138/217] × [22/217, 76/217]. It

can be seen from Figure 7 that (i) NEW sharpens the image and removes the noise efficiently, (ii)

both RL and Bayes generate many artifacts in their deblurred images around edges, and (iii) the

deblurred image by TV does not seem to improve much of the observed image.

4 Concluding Remarks

We have proposed a blind image deblurring method which simultaneously removes spatial blur and

pointwise noise from an observed image without imposing restrictive assumptions on the blurring

mechanism. It even allows the psf to vary over location. This method is based on our observation

that spatial blur alters the image structure significantly around step edges, but does not change
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Table 2: Estimated values of RMSE of the five image deblurring methods in the the Peppers image

example based on 100 replicated simulations. The numbers in the parentheses are the standard

errors of RMSE.

r1(x, y) r2(x, y) r3(x, y)

Methods σ = 5 σ = 10 σ = 5 σ = 10 σ = 5 σ = 10

New 18.92 (0.04) 19.78 (0.06) 15.44 (0.05) 16.91 (0.07) 17.27 (0.04) 18.12 (0.06)

RL 27.03 (0.06) 34.73 (0.12) 42.79 (1.46) 47.16 (0.69) 37.91 (0.10) 40.15 (0.18)

TV1 22.94 (0.09) 19.64 (0.08) 65.37 (0.93) 63.95 (5.98) 26.84 (0.39) 17.76 (0.09)

TV2 27.71 (0.26) 38.60 (12.02) 76.25 (0.66) 103.17 (1.56) 92.82 (2.13) 62.01 (26.69)

Bayes 29.19 (6.75) 45.05 (3.89) 34.80 (9.00) 43.48 (7.07) 28.28 (10.00) 42.89 (7.68)

image structure much in continuity regions of the image intensity surface. The challenging task

of restoring complicated edge structures tapered by blurring is accomplished by a local clustering

procedure and by a weighted local smoothing. Numerical comparison with some state-of-the-art

image deblurring methods shows that our proposed procedure can do a better job in a wide variety

of different blurs and different noise levels.

Our proposed methodology can be generalized in several directions. First, this paper focuses

on removing blur around step edges because those places dominate human visual perception. A

natural improvement is to properly deblur the observed image around roof/valley edges as well.

Moreover, features other than step and roof/valley edges (e.g., peaks, corners, etc.) should also

be preserved during image deblurring and denoising. Second, we used a single bandwidth for local

smoothing in the current method. The idea of multilevel smoothing that uses variable bandwidths

can be incorporated into the proposed method. Third, our method is not fully automatic in the

sense that it requires users to choose the bandwidth parameter via visual perception. Automatic

bandwidth selection is notoriously difficult in the blind deconvolution problem and it requires much

future research.
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