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Nonparametric deconvolution in density estimation and its companion in re-
gression (i.e., nonparametric regression with measurement errors) have broad
applications. Many nonparametric deconvolution methods in the literature are
based on kernel estimation. There are also some nonparametric deconvolution
methods constructed based on the Fourier transformation, splines, wavelet,
and other function expansions in specific basis function spaces. In this paper,
some representative methods in the latter type are introduced. Some recent
methods in the related image deblurring area are also described.

1.1 Introduction

Assume that we are interested in estimating the distribution of a random
variable X, but it cannot be observed directly. What is observed is its con-
taminated version X∗ defined by

X∗ = X + U, (1.1)

where U is the measurement error, and X and U are assumed to be indepen-
dent with probability density functions fX and fU , respectively. From (1.1),
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it is obvious that

fX∗(x∗) =

∫
fU (x∗ − x)fX(x) dx, (1.2)

where fX∗ denotes the density of X∗. Namely, the density of X∗ is a convo-
lution of the densities of X and U . In the literature, it is often assumed that
fU is known and we will make that assumption throughout this chapter; for
the case where fU is unknown, see Chapter ?? (Delaigle and Van Keilegom,
2021). Then, our major goal is to estimate fX from a set of observations of
X∗ through (1.2), which is a deconvolution problem.

Let {X∗1 , X∗2 , . . ., X∗n} be a set of independent and identically distributed
(i.i.d.) observations of X∗. To obtain a nonparametric estimator of fX , de-

noted as f̂X , we wish to “invert” (1.2), since fX∗ can be estimated from
the observations of X∗. Thus, the deconvolution problem is an inverse prob-
lem. More specifically, let F{f}(ω) or f̃(ω) denote the Fourier transformation∫∞
−∞ exp(iωx)f(x)dx of a function f(x), and F−1{f̃}(x) denote the inverse

Fourier transformation of f̃(ω). Then, by the property of the Fourier trans-
formation that the Fourier transformation of the convolution of two functions
equals the product of the Fourier transformations of the two individual func-
tions, we have

F{fX∗}(ω) = F{fU}(ω)F{fX}(ω).

Therefore, a reasonable estimator of F{fX}(ω), denoted as F̂{fX}(ω), can be
defined as

F̂{fX}(ω) =
F̂{fX∗}(ω)

F{fU}(ω)
,

where F̂{fX∗}(ω) is an estimator of F{fX∗}(ω) that can be obtained from
the observations of X∗ and F{fU}(ω) can be computed from the known func-
tion fU . In the above expression, F{fU}(ω) generally approaches zero rapidly

when |ω| increases, but for |ω| large, F̂{fX∗}(ω) is a poor estimator that

oscillates. Therefore, the ratio F̂{fX∗}(ω)/F{fU}(ω) is numerically unsta-
ble, which makes the deconvolution problem challenging to solve. Therefore,
the deconvolution problem is a so-called “ill-posed” problem in the literature
(Tikhonov and Arsenin, 1977).

The deconvolution problem has a vigorous history, including considerable
work on kernel-based methods that involve estimating fX∗ by a kernel es-
timator and then solving equation (1.2) using a Fourier transformation. See
for example the contribution of Carroll and Hall (1988), Devroye (1989), Dig-
gle and Hall (1993), Efromovich (1997), Fan (1991a), Fan (1991b), Liu and
Taylor (1989), Masry (1991), Masry (1993), Stefanski (1990), Stefanski and
Carroll (1990), Taylor and Zhang (1990), and Zhang (1990). In addition to the
kernel-based methods, several alternative approaches using series expansions
have been suggested over the years. For instance, a Fourier series (cosine-
sine) method was proposed by Hall and Qiu (2005) and Delaigle et al. (2006).
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Spline-based methods were discussed by Mendelsohn and Rice (1982) and Koo
and Park (1996). Wavelet methods were addressed by Pensky and Vidakovic
(1999), Walter (1999), Fan and Koo (2002) and Pensky (2002). Taylor series
low order approximation methods were explored by Carroll and Hall (2004).

Kernel-based methods for density and regression estimation are introduced
in Chapters ?? (Delaigle, 2021) and ?? (Apanasovich and Liang, 2021). This
chapter aims to introduce some of the alternative methods. Our introduction
will focus on the main ideas of some fundamental methodologies, their major
strengths and limitations, their potential applications in other areas (e.g.,
image analysis), and certain important open problems for future research.
The remaining part of the chapter is organized as follows. Methods based on
the Fourier series expansion are discussed in Section 1.2. Spline-based methods
are described in Section 1.3. Wavelet methods are introduced in Section 1.4.
Methods using low order approximations are discussed in Section 1.5. Then,
in Section 1.6, we discuss the image deblurring problem which is essentially a
deconvolution problem in image analysis. Some concluding remarks are given
in Section 1.7.

1.2 Deconvolution by the Fourier Series Expansion

The deconvolution method suggested by Hall and Qiu (2005) is based on the
Fourier series expansion. Its major idea is to use the property of trigonometric-
series expansions that the effect of the random error U in (1.1) can be factor-
ized out and becomes separate from the effect of X. More specifically, assume
that the support of the distribution of X is contained in a known compact
interval I. This requires only knowledge of an upper bound for the support
of fX , although methodologies have been developed for estimating the actual
support (e.g., Delaigle and Gijbels 2006) when I is unknown. Without loss of
generality, let I = [0, π]. Then, we consider the cosine-series expansion of fX
on I (the reason for choosing the cosine series, rather than the full cosine and
sine series, will be explained later):

fX(x) = a+
∑
j≥1

a1j cos(jx),

where a = π−1, akj = (2/π)
∫
I fX(x)cskj(x) dx, and

cskj(x) =

{
cos(jx), k = 1,

sin(jx), k = 2.

The case where k = 2 is considered above because the related quantities will be
used below. Then, fX can be estimated by fX(x) = π−1 +

∑
j≥1 a1j cos(jx),
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where akj denotes an estimator of akj , for k = 1, 2 and j ≥ 1. To obtain akj ,
recall that αkj = E[cskj(U)] is known for all j and k. By the basic properties
of trigonometric functions, we have

bkj ≡
2

π
E[cskj(X

∗)] =
2

π
E[cskj(X + U)] =

{
a1jα1j − a2jα2j , if k = 1,

a2jα1j + a1jα2j , if k = 2.

(1.3)

Therefore, bj = (b1j , b2j)
T can be expressed as bj = Mjaj , where aj =

(a1j , a2j)
T and Mj is the 2 × 2 matrix with (Mj)11 = (Mj)22 = α1j and

(Mj)21 = −(Mj)12 = α2j . If

|α1j |+ |α2j | 6= 0 (j ≥ 1), (1.4)

then aj can be expressed as(
a1j

a2j

)
=

1

α2
1j + α2

2j

(
α1j α2j

−α2j α1j

)(
b1j
b2j

)
. (1.5)

So, a1j and a2j can be estimated by replacing b1j and b2j by their estimators

on the right-hand side of (1.5). Now, b̂kj = (2/π)n−1
∑
i cskj(X

∗
i ) are the

moment estimators of bkj , for all k and j, which are unbiased. Therefore, akj
can be estimated by(

â1j

â2j

)
=

1

α2
1j + α2

2j

(
α1j α2j

−α2j α1j

)(
b̂1j
b̂2j

)
. (1.6)

Thus, the following estimator of a1j is obtained:

â1j =
α1j b̂1j + α2j b̂2j
α2

1j + α2
2j

. (1.7)

In the literature, it is often assumed that the distribution of U is known
and symmetric about its mean. In such cases, without loss of generality, we
can further assume that the mean of U equals zero. Then, α2j = 0 and the
assumption (1.4) reduces to α1j 6= 0, for each j. Then, (1.7) becomes â1j =

α−1
1j b̂1j , and the corresponding estimator of fX(x) can be defined as

fX(x) = π−1 +

∞∑
j=1

α1jb1j cos(jx), (1.8)

where b1j = b̂1j for j ≤ m and 0 otherwise, and m is a parameter. Here,
m works as a smoothing parameter and it can be chosen by a smoothing
parameter selection procedure, such as the cross-validation procedure.

In (1.8), the cosine-series is used, instead of the sine-series or the full
cosine/sine-series, because the corresponding estimator of fX(x) is robust



Nonparametric Deconvolution by Fourier Transformation and Other Related Approaches 5

against edge effects on [0, π], as explained below. If f1(x) and f2(x) have
a smooth derivative on [0, π] and [−π, π], respectively, then (by integration by
parts)∫ π

0

f1(x) cos(jx) dx = −1

j

∫ π

0

f ′1(x) sin(jx) dx

=
1

j2

[
(−1)jf ′1(π)− f ′1(0)

]
− 1

j2

∫ π

0

f ′′1 (x) cos(jx) dx

= j−2
[
(−1)jf ′1(π)− f ′1(0)

]
+ o

(
j−2
)
, (1.9)

Similarly, we have∫ π

−π
f2(x) sin(jx) dx = j−1(−1)j+1 [f2(π)− f2(−π)] + o

(
j−1
)
. (1.10)

Formula (1.10) implies that, unless fX(x) satisfies the periodic-continuity con-
dition fX(π) = fX(−π), coefficients in the full cosine/sine-series on [−π, π]
converge only at rate of j−1. On the other hand, (1.9) implies that, without
such a condition, the cosine-series on [0, π] converges at rate of j−2. This faster
rate entails a smaller order of bias, and hence a faster rate of convergence in
mean squares, of the estimator fX in (1.10).

A counterpart of the deconvolution problem in regression is the errors-in-
variables problem described below. Let Y be a response variable, and X be a
predictor. We are interested in the functional relationship between X and Y .
However, X cannot be observed directly. Instead, we can observe X∗. Then,
a statistical model for describing this errors-in-variables problem can be the
following one: {

Y = g(X) + V,

X∗ = X + U,
(1.11)

where U and V are random errors, and X, U and V are independent of each
other. Let (X∗1 , Y1), (X∗2 , Y2), . . ., (X∗n, Yn) be i.i.d. observations of (X∗, Y ).
Then, the major goal of the errors-in-variables problem is to estimate the
regression function g from the observations {(X∗i , Yi), i = 1, 2, . . . , n}. To this
end, the method based on the cosine-series expansion discussed above can be
modified for solving the errors-in-variables problem, as described below. Let
ψ(x) = g(x)fX(x). We again assume that the support of fX is included in
[0, π]. Then the support of ψ is included in [0, π] as well. In the case where
we do not have knowledge of an upper bound for the support of fX , we can
estimate the support using the methodology proposed in Delaigle and Gijbels
(2006).

Next, the cosine-series expansion of ψ is

ψ(x) = β0 +
∑
j≥1

βj cos(jx), for x ∈ [0, π],
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where β0 = π−1, and βj = (2/π)
∫ π

0
ψ(x) cos(jx) dx, for all j. Note that βj

can be written as

βj =
2

π
E [cos(jX)g(X)] .

By the elementary properties of the trigonometric functions, we have

cos(jX∗)g(X) = cos(jX + jU)g(X)

= cos(jX)g(X) cos(jU)− sin(jX)g(X) sin(jU). (1.12)

By the assumptions that the distribution of U is symmetric about zero and
α1j 6= 0, we have

E [cos(jX)g(X)] = α−1
1j E [cos(jX∗)g(X)] .

Now, E [cos(jX∗)g(X)] = E [cos(jX∗)Y ] and n−1
∑
i cos(jX∗i )Yi is an unbi-

ased estimator of E [cos(jX∗)Y ]. So, ψ(x) can be estimated by

ψ̂(x) = β0 +
∑
j≥1

β̂j cos(jx),

where β̂j = (2/π)α−1
1j n

−1
∑
i cos(jX∗i )Yi for j ≤ m, and 0 otherwise. As

below (1.8), m is a smoothing parameter in the above expression. Next, one

can construct the estimator of g(x) by ĝ(x) = ψ̂(x)/f̂X(x), where f̂X(x) can
be fX(x) defined in (1.8). A similar estimator of g(x) in the special case when
X is uniformly distributed on an interval and U has a normal distribution was
considered in Efromovich (1994) and Efromovich (1999).

One advantage to use the Fourier series expansions as the basis for infer-
ence in the deconvolution problems is that the effect of the random errors can
be factorized out in a way that is easy to handle empirically (i.e., (1.3) and
(1.12)). This property is from the elementary addition formulae for sine and
cosine functions, and it is not readily available when one is using methods
based on the continuous Fourier transformation. It allows to construct rela-
tively simple estimators, which are based on additions of finite series, rather
than integrations. These methods are particularly effective when edge effects
are involved, and they are easy to code too. However, there is room for im-
provement. For instance, the estimator defined by (1.8) can produce density
estimates that take negative values when the true density is close to zero at
certain places. Thus, when the method is used to estimate smooth densities it
will suffer from the same vulnerability to negativity as kernel-based methods.

In comparison with kernel-based methods theoretically, the convergence
rate achieved by the estimator (1.8) is governed by the rate of convergence
of the cosine-series expansion, which is not a natural property for kernel esti-
mators. In other words, it is possible to construct densities where the Fourier
series approach gives much faster convergence rates than the kernel methods.
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We refer readers to the numerical examples provided in Section 3 in Hall and
Qiu (2005) for more details.

Delaigle et al. (2006) modified the Fourier series approach described above
for solving the so-called Berkson errors-in-variables problem which is the same
as the problem described by (1.11), except that the positions of X and X∗ are
switched and X∗, U and V are assumed independent in this case. Interested
readers can read the paper Delaigle et al. (2006) for more details.

1.3 Deconvolution by Splines

Deconvolution by B-splines and least squares estimation. Motivated
by the analysis of DNA-content data obtained by microfluorimetry, Mendel-
sohn and Rice (1982) proposed to approximate fX by a function in a finite
dimensional family of densities Lp of dimension p, where p is a tuning param-
eter. Because of computational convenience of the B-splines, Lp can be chosen
to be the space spanned by the B-spline basis functions with fixed knot loca-
tions. Then, the estimate of fX , f̂X , can be defined as a linear combination
of the B-spline basis functions

f̂X(x) =

p∑
j=1

γ̂jBj(x), (1.13)

where Bj(x) is the jth B-spline basis function of degree k−1 with knots t1, t2,
. . ., tp+k, the coefficients {γ̂j} are the solution of the following least squares
problem:

min
γj ,1≤j≤p

m∑
i=1

f̂X∗(si)−
p∑
j=1

γjfU ∗Bj(si)

2

, (1.14)

{f̂X∗(si), i = 1, 2, . . . ,m} is a histogram estimate of fX∗ , and fU ∗Bj denotes
the convolution product and can be numerically evaluated using the Simpson’s
rule.

One advantage to use the estimator (1.13) is that it is convenient to make

f̂X a legitimate probability density (i.e., a nonnegative function with a unit
integration) as follows. By the properties of the B-splines that

∫
Bj(x) dx =

(tj+k − tk)/k and Bj(x) ≥ 0, we can solve the least squares problem (1.14)
by restricting the coefficients γ = (γ1, . . . , γp)

T to be γ ≥ 0 and cTγ = 1,
where c = (c1, . . . , cp)

T and cj = (tj+k − tk)/k, for j = 1, 2, . . . , p. Then, it

follows immediately that f̂X is a probability density. On the other hand, there
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are several potential limitations with the above procedure. First, Mendelsohn
and Rice (1982) suggested that the knots were chosen equally spaced and p
was determined by increasing its value until the occurrence of high frequency
oscillations. This is similar to the eyeball method when choosing a bandwidth
parameter for kernel smoothing methods. Thus, it is subjective and could be
labor intensive as well. Second, in the application to the DNA-content data in
Mendelsohn and Rice (1982), the data were used in the form of histograms,
which might be less efficient compared to the likelihood-based approach to
estimate the coefficients in (1.14). This latter approach was studied in Koo
and Park (1996) and will be discussed in more details in the next part.

Logspline deconvolution with the EM algorithm. Koo and Park
(1996) considered the deconvolution problem in the following complete-
incomplete data specification. The complete unobserved data were (X1, X

∗
1 ),

(X2, X
∗
2 ), . . ., (Xn, X

∗
n), which was a random sample of size n from

the joint distribution of (X,X∗) whose probability density was given by
f(X,X∗)(x, x

∗) = fU (x∗ − x)fX(x). The incomplete observed data were X∗1 ,
X∗2 , . . ., X∗n. They considered how to estimate fX from the observed data
alone. Let L and R be numbers such that −∞ ≤ L ≤ R ≤ ∞, L < t1 < t2 <
· · · < tK < R be K knots. Define S to be the space of all twice continuously
differentiable functions s on (L,R) such that s is a cubic polynomial on each
of the intervals [t1, t2], [t2, t3], . . ., [tK−1, tK ], and is a linear function on each
of the intervals (L, t1]) and [tK , R). Then, all functions in S are called natural
cubic splines, and S has a basis B1, B2, . . ., BK that can be generated from
the conventional B-splines (Stone and Koo, 1986). Now, we assume that the
support of fX is [L,R] and consider the following logspline model:

fX|θ(x) = exp(s(x;θ)− C(θ)), L < x < R,

where

s(x;θ) =

K−1∑
j=1

θjBj(x) and C(θ) = log

(∫ R

L

exp(s(x;θ)) dx

)
<∞.

Then fX|θ(·) is a positive density function on (L,R). Clearly, the logspline
model assumes that fX is twice continuously differentiable. Also, by the prop-
erty of B-splines that

∑K
j=1Bj(x) = 1 for all x ∈ (L,R), the last basis function

will not be used in the above expression to make the logspline model identifi-
able (Stone and Koo, 1986). Now, the log likelihood function of the incomplete
observed data X∗1 , X∗2 , . . ., X∗n is

lX∗(θ) =

n∑
i=1

log

(∫ R

L

fU (X∗i − x)fX|θ(x) dx

)

=

n∑
i=1

log

(∫ R

L

fU (X∗i − x) exp (s(x;θ)− C(θ)) dx

)



Nonparametric Deconvolution by Fourier Transformation and Other Related Approaches 9

=

n∑
i=1

log

(∫ R

L

fU (X∗i − x) exp(s(x;θ)) dx

)
− nC(θ).

The usual maximum likelihood estimate θ̂ is the maximizer of lX∗(θ). Direct
maximization of lX∗(θ) is difficult numerically, because of the integrals inside
the logarithms. The EM algorithm, which is briefly described below, provides
a simpler approach. Let fX|X∗,θ(x|x∗) denote the conditional density of X
given X∗. We have

fX|X∗,θ(x|x∗) =
f(X,X∗)|θ(x, x∗)

fX∗|θ(x∗)
.

In terms of log-likelihoods, we have

lX∗(θ) = l(X,X∗)(θ)− lX|X∗(θ).

Taking conditional expectations with respect to the distribution of X|X∗ gov-
erned by the parameter θ0 gives

lX∗(θ) = E
[
l(X,X∗)(θ)|X∗,θ0

]
− E

[
lX|X∗(θ)|X∗,θ0

]
≡ G(θ|θ0)−R(θ|θ0).

In each iteration of the EM algorithm, we first compute G(θ|θ0) (i.e., the
expectation step) and then maximize G(θ|θ0) over θ (i.e., the maximization
step). Thus, a key quantity in the EM algorithm is the following conditional
expectation:

G(θ|θ0) =EX|θ0,X∗
[
log
(
f(X,X∗)|θ(Xi, X

∗
i )
)]

=

∫ R

L

fX|X∗,θ0(x|X∗i ) log
(
fU (X∗i − x)fX|θ(x)

)
dx

=

∫ R

L

fX|X∗,θ0(x|X∗i )s(x;θ) dx− C(θ) + terms not involving θ

=

K−1∑
j=1

θj

∫ R

L

Bj(x)fX|X∗,θ0(x|X∗i ) dx− C(θ) + terms not involving θ,

where

fX|X∗,θ(x|x∗) = fU (x∗ − x) exp(s(x;θ)− C(θ|x∗)),

C(θ|x∗) = log

(∫ R

L

fU (x∗ − x) exp(s(x;θ)) dx

)
.

In the maximization step, if θ1 maximizes G(θ|θ0), then we have lX∗(θ1) ≥
lX∗(θ0). To see this, note that R(θ|θ0) is the expectation of a log-likelihood
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of a density (indexed by θ), with respect to the same density indexed by θ0.
Hence, by Jensen’s inequality, R(θ|θ0) ≤ R(θ0|θ0) and it follows that

lX∗(θ1)− lX∗(θ0) = [G(θ1|θ0)−G(θ0|θ0)]− [R(θ1|θ0)−R(θ0|θ0)] ≥ 0.

We now state the EM algorithm for computing θ̂ in the complete-incomplete
data specification. It starts with an initial estimate θ̂0 and iteratively updates
the estimate as follows.

Expectation-Step: Given the current estimate θ̂(k) of θ, calculate

bj

(
θ̂(k)

)
=

n∑
i=1

∫ R

L

Bj(x)fX|X∗,θ̂(k) (x|X∗i ) dx, 1 ≤ j ≤ K − 1.

Maximization-Step: Determine the updated estimate θ̂(k+1) by maximizing

Q
(
θ|θ̂(k)

)
=

K−1∑
j=1

θjbj

(
θ̂(k)

)
− nC(θ).

The EM algorithm stops when lX∗(θ̂(k+1)) − lX∗(θ̂(k)) < 10−6. In the
Maximization-step, the Newton-Raphson algorithm with step-halving can be
employed for the maximization. More specifically, let S(θ) be the score func-

tion at θ with elements bj(θ̂
(k)) − ∂C(θ)/∂θj and let H(θ) be the Hessian

matrix of C(θ) at θ with elements∫ R

L

Bj1(x)Bj2(x)fX|θ(x) dx−
∫ R

L

Bj1(x)fX|θ(x) dx

∫ R

L

Bj2fX|θ(x) dx.

Now, the computation of θ̂(k+1) starts with θ̃(0) = θ̂(k) and iteratively deter-
mines θ̃(m+1) according to the expression

θ̃(m+1) = θ̃(m) + 2−q
[
H
(
θ̃(m)

)]−1

S
(
θ̃(m)

)
,

where q is the smallest nonnegative integer such that

lX∗

(
θ̃(m) + 2−q

[
H
(
θ̃(m)

)]−1

S
(
θ̃(m)

))
≥ lX∗

(
θ̃(m)

)
.

The Newton-Raphson algorithm stops when lX∗(θ̃(m+1))− lX∗(θ̃(m)) < 10−6.

To make the entire estimation procedure fully automatic, a data-driven
rule for determining the final number and locations of knots is needed. Choos-
ing the number of knots is similar to choosing a bandwidth in kernel smooth-
ing. Too many knots would lead to a noisy estimate, and too few knots would
give an estimate that is overly smoothed. The knot locations are also impor-
tant, since more knots are needed in a region where the curvature of fX is
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larger. To this end, Koo and Park (1996) suggested the following stepwise knot
deletion strategy. Let K∗ be an initial number of knots, and the knot loca-
tions are determined by an initial knot placement rule. Koo and Park (1996)
suggested that K∗ can be chosen to be the integer closest to 3(log n)1/2, and
the knots can initially be placed at equally spaced percentiles of X∗i once the
initial number of knots is given. Then, at each stage of the stepwise knot
deletion process, the EM algorithm is used to obtain the estimate θ̂K with K
being the number of remaining knots at that stage. The Bayesian information
criterion (BIC) is calculated as:

BIC = −2lX∗

(
θ̂K

)
+ (K − 1) log n.

Delete the knote that results in the biggest drop in BIC and repeat this dele-
tion process until BIC stops to decrease.

The logspline deconvolution method has advantages similar to those of
logspline density estimates in the usual density estimation problem (cf.,
Kooperberg and Stone, 1991). It gives density estimates that are positive with
unit integrations. However, that method also has some limitations. First, it is
known that under fairly general conditions the EM algorithm could converge
to a local maximum of lX∗(θ). When this function is not concave, there is
no guarantee that such a local maximum has unique maximizer, or that it
is a global maximum. Second, the numerical studies in Koo and Park (1996)
showed that the logspline deconvolution estimates may require a large sam-
ple size to perform well when the true density function has a complex (e.g.,
bimodal) structure. Third, the above procedure for determining K∗ is ad hoc
in nature.

1.4 Deconvolution by Wavelets

Wavelet methods are well received in the literature of density estimation (e.g.,
Walter 1981, Penskaya 1985, Kerkyacharian and Picard 1992, Masry 1994, Hall
and Patil 1995) and curve estimation (e.g., Antoniadis et al. 1994, Abramovich
and Silverman 1998, Donoho and Johnstone 1995, Hall et al. 1998, Hall et al.
1997, Walter 1994). Pensky and Vidakovic (1999) proposed several wavelet
estimators of the density function fX in the deconvolution problem (1.1). The
underlying idea is to represent fX via a wavelet expansion and estimate the
coefficients using a deconvolution algorithm. Their estimators are based on
the Meyer-type wavelets, which are band-limited and their Fourier transforms
would have bounded supports (Hernández and Weiss, 1996). These wavelet
estimators are constructed as follows.

Assume that fX is square integrable and the Fourier transform of fX∗ ,
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denoted as f̃X∗(ω), does not vanish for real ω. Let ϕ(x) and ψ(x) be a scaling
function and a wavelet for an orthonormal multi-resolution decomposition
of L2(−∞,∞), respectively. Then, for any integer m, fX has the following
expansion:

fX(x) =
∑
k∈Z

am,kϕm,k(x) +
∑
k∈Z

∞∑
j=m

bj,kψj,k(x), (1.15)

where ϕm,k(x) = 2m/2ϕ(2mx − k) and ψj,k(x) = 2j/2ψ(2jx − k), and the
coefficients am,k and bj,k have the forms

am,k =

∫ ∞
−∞

ϕm,k(x)fX(x) dx, bj,k =

∫ ∞
−∞

ψj,k(x)fX(x) dx. (1.16)

The scaling function ϕ(x) and the wavelet function ψ(x) can be defined as
the functions whose Fourier transforms are (Walter 1994; Zayed and Walter
1996)

ϕ̃(ω) =

[∫ ω+π

ω−π
dP

]1/2

, ψ̃(ω) = exp(−iω/2)

[∫ |ω|−π
|ω|/2−π

dP

]1/2

,

where P is a probability measure that satisfies the following conditions: (i)
support of P is included in [−π/3, π/3], and (ii) ϕ̃(ω) and ψ̃(ω) are s ≥ 2 times
continuously differentiable on (−∞,∞). This ensures that ϕ(x) and ψ(x) have
sufficient rates of descent as |x| → ∞. Then, both ϕ̃(ω) and ψ̃(ω) would have
bounded supports: supp ϕ̃ ⊂ [−4π/3, 4π/3] and supp ψ̃ ⊂ [−8π/3,−2π/3] ∪
[2π/2, 8π/3]. Moreover, we have

Cϕ = sup
x

[|ϕ(x)|(|x|s + 1)] <∞, Cψ = sup
x

[|ψ(x)|(|x|s + 1)] <∞.

Let um,k and vj,k be the solutions of the following equations:∫ ∞
−∞

fU (z − x)um,k(z) dz = ϕm,k(x),

∫ ∞
−∞

fU (z − x)vj,k(z) dz = ψj,k(x).

(1.17)

Then, the coefficients am,k and bj,k can be viewed as mathematical expecta-
tions of the functions um,k and vj,k (by (1.16)):

am,k =

∫ ∞
−∞

∫ ∞
−∞

fU (z − x)fX(x)um,k(z) dxdz

=

∫ ∞
−∞

fX∗(z)um,k(z) dz = E [um,k(X∗)] , (1.18)

bj,k =

∫ ∞
−∞

∫ ∞
−∞

fU (z − x)fX(x)vj,k(z) dxdz
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=

∫ ∞
−∞

fX∗(z)vj,k(z) dz. = E [vj,k(X∗)] . (1.19)

It is worth mentioning that (1.18) and (1.19) are much more convenient to
work with, compared to (1.16), since the X∗i ’s are observable whereas the
Xi’s are not. Before the wavelet estimators of fX can be formally defined,
we still need to obtain the expressions for um,k and vj,k. To this end, after
taking the Fourier transform on both sides of (1.17), we have um,k(x) =
2m/2Um(2mx− k), and vj,k(x) = 2j/2Vj(2

jx− k), where Um(·) and Vj(·) are
the inverse Fourier transforms of the functions

Ũm(ω) =
ϕ̃(ω)

f̃U (−2mω)
, Ṽj(ω) =

ψ̃(ω)

f̃U (−2jω)
,

respectively. Thus, we can estimate am,k and bj,k by

âm,k =
1

n

n∑
i=1

2m/2Um(2mX∗i − k), b̂j,k =
1

n

n∑
i=1

2j/2Vj(2
jX∗i − k).

Then, from (1.15), we can define a linear wavelet estimator of fX as

f̂
(L)
X,n(x) =

∑
k∈Z

âm,kϕm,k(x),

and a nonlinear wavelet estimator of fX(x) as

f̂
(N)
X,n =

∑
k∈Z

âm,kϕm,k(x) +

m+r∑
j=m

[∑
k∈Z

b̂j,kψj,k(x)

]
I

(∑
k∈Z

b̂2j,k > δ2
j,n

)
,

where δj,n are thresholding parameters. Note that f̂
(L)
X,n(x) and f̂

(N)
X,n(x) both

seem computationally intractable since their definitions involve the calculation
of infinite series. Under some minor conditions, we can modify the infinite

series estimators f̂
(L)
X,n(x) and f̂

(N)
X,n(x) to be finite series estimators as follows

f̂
(LF )
X,n (x) =

∑
|k|≤Kn

âm,kϕm,k(x),

f̂
(NF )
X,n =

∑
|k|≤Mn

âm,kϕm,k(x) +

m+r∑
j=m

 ∑
|k|≤Ln

b̂j,kψj,k(x)

 I
 ∑
|k|≤Ln

b̂2j,k > δ2j,n

 ,

without any loss in the convergence rates. Here, Kn, Mn, and Ln are smooth-
ing parameters.

Pensky and Vidakovic (1999) showed that f̂
(L)
X,n(x), f̂

(LF )
X,n (x), f̂

(N)
X,n(x),
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and f̂
(NF )
X,n (x) all achieve the optimal rates of convergence established in Fan

(1993). Furthermore, in the case when fU is super smooth (i.e., f̃U (ω) expo-

nentially decreases as ω increases), the linear wavelet estimators f̂
(L)
X,n(x) and

f̂
(LF )
X,n (x) are adaptive in the sense that the choice of m, which yields the opti-

mal rate of convergence, does not depend on the unknown smoothness of the

density fX . Similarly, the nonlinear wavelet estimators f̂
(N)
X,n(x) and f̂

(NF )
X,n (x)

are adaptive in the case when f̃U has a polynomial descent. Therefore, all these
wavelet estimators have nice theoretical properties. However, the above con-
struction of these estimators cannot guarantee that they are nonnegative with
unit integrations. More recent work (e.g., Bigot and Van Bellegem 2009) has
lifted this limitation by proposing new wavelet-based methods that guarantee
the related estimators to be legitimate density functions.

1.5 Deconvolution by Low Order Approximations

The deconvolution methods discussed in the previous sections all assume that
the distribution of U is known. This is a common assumption in the decon-
volution literature because the related problem is difficult to solve otherwise.
However, little information is generally available in practice about the dis-
tribution of U . Even under the assumption of a known fU , Carroll and Hall
(1988) have showed that the fastest possible convergence rate of a density
estimator in the deconvolution problem is in the reciprocal of the logarithmic
of the sample size when U has a normal distribution. Fan (1991b) discussed
settings in which the optimal convergence rate could be in the reciprocal of a
polynomial of the sample size. Even in such settings, the optimal convergence
rate is often slow, unless fU is very unsmooth (e.g., it has a discontinuity). The
implication of these results is that consistent estimation of fX is difficult in
practical terms. An alternative approach would be to estimate a function that
approximates fX and is relatively easy to estimate. Carroll and Hall (2004)
suggested an approach based on this idea. It requires knowledge of only low
order moments of fU . This information is often available either from a sample
drawn from the distribution of U or from a small number of repeated ob-
servations of X∗ for the same X. This approach is introduced below in two
parts.

Density estimation by low order approximations. Conventional ker-
nel estimators of fX∗ and fX are given by

f̂X∗(x∗) =
1

nh

n∑
i=1

K

(
x∗ −X∗i

h

)
,
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f̂X(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K(·) is a kernel function and h is a bandwidth. Because we do not ob-

serve the Xi’s in practice, f̂X cannot be computed directly from the observed
data. Nevertheless we can try to find a good approximation to f̂X or its mean.
To this end, let K(j) be the jth derivative of K. Define

λj(x) = E

[
K(j)

(
x−X
h

)]
,

κj(x) = E

[
K(j)

(
x−X∗

h

)]
,

uj = E
(
U j
)
.

Assume that U has finite moments and K is an analytic function in the sense
that all its derivatives are well defined on the entire real line. Obviously,
the analyticity condition is satisfied for the commonly used Gaussian kernel
function. Now, by the Taylor expansion of K(j)(·) at (x−X)/h, we have

λj(x) = κj(x)−
∑
k1≥1

(−1)k1uk1
k1!hk1

λj+k1(x)

= κj(x)−
∑
k1≥1

(−1)k1uk1
k1!hk1

κj+k1(x)− ∑
k2≥1

(−1)k2uk2
k2!hk2

λj+k1+k2(x)


= κj(x)−

∑
k1≥1

(−1)k1uk1
k1!hk1

κj+k1(x) +
∑
k1≥1

∑
k2≥1

(−1)k1+k2uk1uk2
k1!k2!hk1+k2

λj+k1+k2(x)

...

= κj(x) +

∞∑
r=1

∞∑
k1=1

· · ·
∞∑

kr=1

(−1)k1+...+kr+r

k1! . . . kr!hk1+...+kr
uk1 · · ·ukrκk1+...+kr+j(x).

(1.20)

From (1.20), we have

E[f̂
(j)
X (x)] = E[f̂

(j)
X∗(x)]

+

∞∑
r=1

∞∑
k1=1

· · ·
∞∑

kr=1

(−1)k1+...+kr+r

k1! . . . kr!
uk1 · · ·ukrE[f̂

(k1+...+kr+j)
X∗ (x)].

Therefore, if ûj is a consistent estimator of uj and Var(U) → 0, then a

reasonable estimator of the νth-order approximation to E[f̂
(j)
X (x)] is

f̂
(j)
X,ν(x) = f̂

(j)
X∗(x)

+r≥1,k1≥

∑
···
∑

1,··· ,kr≥1:k1+...+kr≤ν
(−1)k1+...+kr+r

k1! . . . kr!
ûk1 · · · ûkr f̂

(k1+...+kr+j)
X∗ (x).
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In particular, the estimators of the second-, fourth- and sixth-order approxi-
mations are given by

f̂
(j)
X,2(x) = f̂

(j)
X∗(x) + û1f̂

(j+1)
Y (x) +

1

2
(2û2

1 − û2)f̂
(j+2)
X∗ (x), (1.21)

f̂
(j)
X,4(x) = f̂

(j)
X,2(x) +

1

6
(6û3

1 − 6û1û2 + û3)f̂
(j+3)
X∗ (x)

+
1

24
(24û1

4 − 36û2
1û2 + 8û1û3 + 6û2

2 − û4)f̂
(j+4)
X∗ (x), (1.22)

f̂
(j)
X,6(x) = f̂

(j)
X,4(x) +

1

120
(120û5

1 − 240û3
1û2 + 60û2

1û3

+ 180û1û
2
2 + 10û1û4 − 20û2û3 + û5)f̂

(j+5)
X∗ (x)

+
1

720
(720û6

1 − 1800û4
1û2 + 480û3

1û3 + 1080û2
1û

2
2 − 90û2

1û4

+ 12û1û5 − 360û1û2û3 − 90û3
2 + 20û2

3 + 30û2û4 − û6)f̂
(j+6)
X∗ (x).

(1.23)

In the literature, it is common to assume that the distribution of U is symmet-
ric. In such cases, we can let ûk = 0, for odd k, and only use approximations of

even orders. Then, the estimator of the 2νth order approximation to E[f̂
(j)
X (x)]

can be simplified to

f̂
(j)
X,2ν(x) = f̂

(j)
X∗(x)

+r≥1,k1≥

∑
···
∑

1,··· ,kr≥1:k1+...+kr≤ν
(−1)r

(2k1)! . . . (2kr)!
û2k1 · · · û2kr f̂

(2k1+...+2kr+j)
X∗ (x),

and the equations (1.21) – (1.23) would have simpler forms as well.

Errors-in-variables regression by low order approximations. It is
worth mentioning that the above approximation procedure can also be applied
to the errors-in-variables regression (cf., (1.11)). Let us consider the Nadaraya-
Watson (NW) estimator of the regression function g(x) = E(Y |X = x), de-
fined by

ḡNW (x) =

∑n
i=1 YiK

(
x−Xi

h

)∑n
i=1K

(
x−Xi

h

) ,

where h is a bandwidth and K is a kernel function. Again, because the Xi’s are
unobservable, ḡNW cannot be obtained from the observed data. Nonetheless
we can obtain estimators of the low order approximations to its mean using
results similar to (1.20). To this end, we have

E

[
Y K

(
x−X
h

)]
= E

[
Y K

(
x−X∗

h

)]
+ (1.24)

∑
r≥1

∑
k1≥1

· · ·
∑
kr≥1

(−1)k1+...+kr+r

k1! . . . kr!hk1+...+kr
uk1 . . . uk2E

[
Y K(k1+...+kr)

(
x−X∗

h

)]
.
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Then, by (1.20) and (1.24), an estimator of the second order (i.e., ν = 2)
approximation to E(ḡNW ) is

ĝNW (x) =

∑n
i=1 YiL

(
x−X∗

i

h

)
∑n
i=1 L

(
x−X∗

i

h

) ,

where L(v) = K(v)−(û2/(2h
2))K(2)(v). Of course, estimators of higher orders

approximations can be constructed similarly.

1.6 Deconvolution Problems in Image Analysis

As discussed in Section 1, the deconvolution problem is an ill-posed inverse
problem. There are similar ill-posed inverse problems in different disciplines
and areas. In image processing, the image deblurring problem is a such inverse
problem, which will be discussed below. In image deblurring, we aim to recover
a true image f from its blurred and noisy version Z, where the relationship
between Z and f can be described by the following model:

Z(x, y) = (h ∗ f)(x, y) + ε(x, y), for (x, y) ∈ Ω, (1.25)

where ε(x, y) denotes pointwise noise at (x, y), Ω is the design space of the
image, and (h∗f)(x, y) =

∫ ∫
f(x−u, y−v)h(u, v) dudv is a spatially blurred

version of f . Obviously, the blurred image (h ∗ f) is the convolution between
a point spread function (psf) h and the true image f , and the blurring mech-
anism is described by the psf h. Similar to the density deconvolution problem
(1.1), the image deblurring problem (1.25) is ill-posed in the following sense. In
the case when h is unknown, there could be many different sets of h and f that
correspond to the same observed image. Even in cases when h is completely
known, an estimated true image is often numerically unstable, as discussed in
Section 1 about the inverse problem (1.1). Thus, image deblurring is a chal-
lenging problem and has attracted much attention in the image processing
community (cf., Campisi and Egiazarian 2016, Hansen et al. 2006, Qiu 2007).

Image deblurring methods that assume a known h are often called non-
blind image deblurring methods. The assumption that h is known might be
reasonable in certain applications. For instance, the linear psf h is appropriate
for describing the image blur caused by relative location move between the
image acquisition device and the object. The Gaussian blur is often used for
describing image blur caused by atmospheric turbulence in remote sensing
and aerial imaging. After h is specified, f can be estimated based on the
relationship that

F{Z}(u, v) = F{h}(u, v)F{f}(u, v) + F{ε}(u, v), for (u, v) ∈ R2,
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where F{g} denotes the Fourier transform of function g. Many estimators of
f , called inverse filters in the image processing literature, have been proposed.
A popular one is the Wiener filter (Gonzalez and Woods, 2008), defined by

f̂(x, y) =
1

(2π)2
R

{∫ ∫
F{h}(u, v)F{Z}(u, v)

|F{h}(u, v)|2 + α(u2 + v2)β/2
exp{−i(ux+ vy)} dudv

}
,

(1.26)

where F{h}(u, v) denotes the complex conjugate of F{h}(u, v), R{C} de-
notes the real part of the complex number C, and α, β > 0 are two parameters.
It can be seen that f̂(x, y) in (1.26) bears some resemblance with the decon-
volution kernel density estimator in Stefanski and Carroll (1990). In (1.26),
inclusion of the term α(u2 + v2)β/2 is mainly for handling the noise effect.
If the pointwise noise in the observed image can be ignored, then we actu-
ally do not need this term. In cases where the pointwise noise is substantial,
the noise effect would dominate the image estimator, because F{f}(u, v) and
F{h}(u, v) usually converge to zero rapidly, as u2 + v2 approaches infinity,
but F{ε}(u, v) goes to zero much more slowly.

In many applications, however, it is difficult to specify the psf h completely
based on our prior knowledge about the image acquisition device. Image de-
blurring when h is unknown is often referred to as blind image deblurring. A
popular blind image deblurring approach in the literature is based on the total
variation (TV) minimization. Based on the work by You and Kaveh (1996),
Chan and Wong (1998) introduced the TV blind deblurring procedure as

min
f,h∈BV

{
||h ∗ f − Z||2L2 + λf

∫
Ω

|∇h(x, y)|dxdy + λh

∫
Ω

|∇f(x, y)|dxdy
}
,

(1.27)

where λf and λh are two positive parameters, ∇ is the gradient operator, and
the space of all functions with bounded variation (BV) is defined as BV = {s ∈
L1(Ω) :

∫
Ω
|∇s(x, y)|dxdy <∞}. Clearly, in (1.27), the first term measures the

goodness-of-fit of the estimators, and the second and third terms regularize
their total variations. Chan and Wong (1998) solved the minimization problem
by an iterative algorithm, after λf and λh are properly selected. More recently,
Hall and Qiu (2007b) suggested estimating the psf h from an observed test
image of an imaging device. The true test image considered in the paper has
a square block in the middle with a uniform background. The idea in the
paper, however, can also be applied to cases when the test image has step
edges at known locations with uniform background. In a follow-up research,
Hall and Qiu (2007a) suggested a two-step image deblurring procedure. In
the first step, the psf h was estimated from an observed test image. Then, in
the second step, any observed image Z(x, y) taken by the same camera could
be deblurred using the estimated psf obtained in the first step. The psf h in
this method was assumed to have a parametric form. This assumption was
later removed in the paper Qiu (2008). A more flexible blind image deblurring
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method without restrictive assumptions on both h and f was proposed in
Qiu and Kang (2015), based on the hierarchical nature of image blurring that
the image structure was altered most significantly around step edges, less
significantly around roof/valley edges, and least significantly at places where
the true image intensity function was straight. For related discussions, see
papers Kang (2020), Kang et al. (2018) and Kang and Qiu (2014).

1.7 Some Concluding Remarks

In the previous sections, we introduced some nonparametric deconvolution
methods based on the discrete Fourier transformation and other series expan-
sion approaches. These methods have their own strengths and limitations. For
instance, the methods based on the Fourier series expansion are computation-
ally convenient, but they cannot guarantee the estimators to be legitimate
probability densities. The methods based on low order approximations are
flexible to use in practice, because they only require information about the
low order moments of the error distribution. However, they may not be sta-
tistically consistent. Therefore, the deconvolution problem is far away from
being solved satisfactorily and much more future research is required. In ad-
dition, the deconvolution problem and its variants have broad applications
in econometrics, signal processing, image restoration and many other areas.
The related inverse problems in these applications often have similar struc-
tures (e.g., they are usually ill-posed), but with their own features and special
properties. It should be helpful if the related research in different areas are
better connected.
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