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Abstract

Traditional statistical process control charts are based on the assumptions that

process observations are independent and identically normally distributed when the

related process is in-control (IC). In recent years, it has been demonstrated in the

literature that these traditional control charts are unreliable to use when their model

assumptions are violated. Several new research directions have been developed, in

which new control charts have been proposed for handling cases when the IC process

distribution is nonparametric with a reasonably large IC data, when the IC process

distribution is unknown with a small IC data, or when the process observations are

serially correlated. However, existing control charts in these research directions can

only handle one or two cases list above, and they cannot handle all cases simultaneously.

In most applications, it is typical that the IC process distribution is unknown and hard

to be described by a parametric form, the process observations are serially correlated

with a short-memory dependence, and only a small to moderate IC dataset is available.

This paper suggests an effective charting scheme to tackle such a challenging and

general process monitoring problem. Numerical studies show that it works well in

different cases considered.

Key Words: Data correlation; In-control data; Nonparametric; Online monitoring;

Self-starting chart; Statistical process control.

1 Introduction

Statistical process control (SPC) charts have broad applications in manufacturing in-

dustries, disease surveillance, environmental monitoring, and more. Traditional SPC charts

are based on the assumptions that process observations are independent and identically dis-

tributed (i.i.d.) and follow a parametric distribution (e.g., normal) when the related process
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is in-control (IC). See systematic descriptions in books such as Hawkins and Olwell (1998),

Montgomery (2012), and Qiu (2014). In practice, these assumptions are rarely valid, and it

has been well demonstrated in the literature that the traditional SPC charts are unreliable

to use when their model assumptions are violated (cf., Chakraborti et al. 2015, Qiu 2018).

This paper tries to develop a general charting scheme for process monitoring applications in

which all assumptions mentioned above might be invalid.

In the SPC literature, it has been discussed intensively that the IC performance of

traditional SPC charts based on a parametric distribution assumption could be far from

what would be expected in cases when such a parametric distribution assumption is invalid.

More specifically, the IC average run length (ARL) value could be substantially different

from a nominal value in such cases. To overcome this limitation of traditional SPC charts,

nonparametric SPC has become an active research area, and many nonparametric SPC charts

have been developed recently. Most nonparametric SPC charts are constructed based on the

ranking/ordering information in the observed data (e.g., Chakraborti et al. 2001, Li et al.

2013, Mukherjee et al. 2013, Qiu and Hawkins 2001, 2003, Zou et al. 2012). Some others

are based on data categorization and categorical data analysis (e.g., Li 2017, Qiu 2008, Qiu

and Li 2011). For a recent overview, see Qiu (2018). In cases when process observations are

serially correlated, it is demonstrated in Hawkins and Olwell (1998) and Qiu (2014) that the

data correlation should not be ignored. Otherwise, the related control charts are unreliable.

To overcome that limitation, a commonly used strategy in the literature is to fit a parametric

time series model and then apply a control chart to the residuals of the fitted model (e.g.,

Apley and Tsung 2002, Loredo et al. 2002, Wardell et al. 1994). However, it has been shown

that process monitoring based on this idea is unrobust to the assumed parametric time series

model (Apley and Lee 2003, 2008). Thus, some modifications have been suggested in papers,

such as Lee and Apley (2011), Qiu et al. (2019) and Zhang (1998). Another strategy for

handling serially correlated data is to adjust control limits of conventional control charts

(e.g., Runger 2002, Vermaat et al. 2008). In most methods mentioned above for handling

cases with nonparametric process distributions and/or serially correlated observed data, a

large IC dataset is often needed for estimating IC parameters or setting up the control charts

to have a reliable IC performance. In some applications, such a large IC dataset may not

be available. To overcome this difficulty, Hawkins (1987) suggested the idea of self-starting

process monitoring, by which observations collected during online monitoring were combined

with the existing IC data if no signal was given at the current time point. Thus, a self-starting

2



control chart only requires a handful of IC observations before online monitoring and the IC

sample size would keep increasing during process monitoring.

In industrial applications, it is often the case that the IC process distribution is un-

known and inappropriate to be described by a parametric form, the process observations are

serially correlated with a short-memory dependence but the serial data correlation cannot

be described by a parametric time series model, and a large IC dataset is unavailable. See

Section 4 for a real-data example. The existing methods discussed above try to address

one or two such issues. But, to make a SPC chart most useful to industrial applications,

it should be able to tackle all of them properly. So far, we cannot find a single method

to achieve that challenging goal yet, and this paper aims to fill the gap. In this paper, we

propose a general charting scheme for monitoring serially correlated process observations

with short-memory data dependence and unknown process distributions. This chart does

not require any parametric form to describe the process IC distribution. It does not require

a parametric time series model either for describing serial data dependence. All it needs is a

small to moderate IC dataset for providing initial estimates of certain IC parameters. Then,

the estimates of these IC parameters will be updated recursively in the proposed chart for

improving their accuracy. So, the proposed control chart is a self-starting nonparametric

chart which can accommodate short-memory data dependence. As far as we know, it is the

first chart of this type in the literature. The remaining part of the paper is organized as

follows. Our proposed method is described in detail in Section 2. Its numerical performance

is investigated in Section 3. A real-data application is discussed in Section 4. Then, several

remarks conclude the paper in Section 5.

2 Proposed General Charting Scheme

We focus on Phase II online monitoring of process observations X1, X2, . . . , Xn, where

n ≥ 1 is the current time point during process monitoring. The IC process distribution is

assumed to be unknown. All we have about the IC process distribution is a small to moderate

set of IC observations XIC = {X−m0+1, X−m0+2, . . . , X0} with the size m0, collected before

Phase II online monitoring. The process observations could be serially correlated. Because it

is reasonable to assume that the process under consideration in many industrial applications

is covariance stationary when it is IC, we assume that γ(s) = Cov(Xi, Xi+s) does not depend
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on i, for all i ≥ 1. Namely, the correlation between two observations Xi and Xi+s does not

change if the distance in their observation indices, s, keeps a constant. Furthermore, in

most applications it is reasonable to assume that the correlation between Xi and Xi+s would

decrease when s increases. Consequently, when two observations are sufficiently apart in

observation times, the correlation between them is negligible. Therefore, in this paper, we

assume that γ(s) = 0 when s ≥ bmax, where bmax ≥ 1 is an integer.

2.1 Initial estimation from the IC data

From the IC data XIC of size m0, we first calculate initial estimates of the IC mean µ

and IC covariances {γ(s), 0 ≤ s ≤ bmax}. Because the IC process distribution is unknown,

moment estimates of these parameters are reasonable to use, which are defined as follows:

µ̂(0) =
1

m0

0∑
i=−m0+1

Xi,

γ̂(0)(s) =
1

m0 − s

−s∑
i=−m0+1

(
Xi+s − µ̂(0)

) (
Xi − µ̂(0)

)
, for s = 0, 1, . . . , bmax.

Then, the IC data can be de-correlated recursively by the following algorithm that is based

on the Cholesky decomposition of the covariance matrices:

• When i = −m0 + 1, define the de-correlated and standardized observation to be X∗
i =

(Xi − µ̂(0))/
√
γ̂(0)(0), and let b = 1.

• For i > −m0 + 1, let the estimated covariance matrix be

Σ̂i,i =


γ̂(0)(0) · · · γ̂(0)(b)

...
. . .

...

γ̂(0)(b) · · · γ̂(0)(0)

 =

(
Σ̂i−1,i−1 σ̂i−1

σ̂T
i−1 γ̂(0)(0),

)
,

where σ̂i−1 = (γ̂(0)(b), . . . , γ̂(0)(1))T . Define the ith de-correlated and standardized

observation to be

X∗
i =

Xi − µ̂(0) − σ̂T
i−1Σ̂

−1
i−1,i−1ei−1

d̂i
,

where d̂2
i = γ̂(0)(0) − σ̂T

i−1Σ̂
−1
i−1,i−1σ̂i−1, and ei−1 = (Xi−b − µ̂(0), . . . , Xi−1 − µ̂(0))T .

Let b = min(b+ 1, bmax) and i = i+ 1. Repeat this step until i > 0.
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Theoretically speaking, if µ̂(0) and {γ̂(0)(s), 0 ≤ s ≤ bmax} were the true IC process mean

and covariances, then it can be checked that the de-correlated and standardized observations

{X∗
i , i = −m0 +1, . . . , 0} are uncorrelated and each has mean 0 and variance 1. See a related

discussion in Li and Qiu (2016), where the Cholesky decomposition is used in the context

of dynamic process monitoring. Because the sample size m0 of the IC data could be small,

the accuracy of µ̂(0) and {γ̂(0)(s), 0 ≤ s ≤ bmax} in estimating the IC process mean and

covariances may be limited. According to Box et al. (2013), these estimates might be

reliable only when m0 ≥ 50 and s ≤ m0/4. To overcome this limitation, a self-starting

control chart is suggested below for online process monitoring, in which the estimates of the

IC process mean and covariances are updated sequentially.

2.2 Self-starting monitoring of correlated data with nonparamet-

ric distributions

To monitor the correlated Phase II observations X1, X2, . . . properly, we first sequentially

de-correlate and standardize them so that conventional control charts can be applied. Let

n be the current time point. Then, Xn needs to be de-correlated with all previous observa-

tions at time n, which will be computing intensive, especially in cases when n is large. To

reduce the computing burden, we would like to make use of the restarting mechanism of the

CUSUM chart that previous observations up to the current time point n can be ignored in

subsequent process monitoring if all available observations suggest that there is no evidence

of a process distributional shift. More specifically, we will use the spring length Tn first

suggested in Chatterjee and Qiu (2009), defined as the number of observations between the

current time point n and the last time point at which a CUSUM charting statistic is zero.

By using the idea of spring length, all observations collected before the time n − Tn can

all be ignored in subsequent process monitoring, because they do not provide evidence of

process distributional shift and their inclusion can only make the chart less sensitive to a

future shift. Thus, we only need to de-correlate the current observation Xn with the previous

Tn−1 observations and ignore all other history data. The sequentially de-correlated data are

denoted as X∗
1 , X

∗
2 , . . ., and more details will be given below.

Second, the estimates of the IC parameters µ and {γ(s), 0 ≤ s ≤ bmax} should be updated

at time n if the related control chart does not give a signal at time n and thus the observation
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Xn can be combined with the IC data. The recursive formulas for updating these estimates

are given below: for n ≥ 1 and 0 ≤ s ≤ bmax,

µ̂(n) =
1

m0 + n
Xn +

m0 + n− 1

m0 + n
µ̂(n−1), (1)

γ̂(n)(s) =
1

m0 + n− s
(Xn − µ̂(n))(Xn−s − µ̂(n)) +

m0 + n− s− 1

m0 + n− s
γ̂(n−1)(s). (2)

If the original observations X1, X2, . . . are normally distributed, then the de-correlated

and standardized observations X∗
1 , X

∗
2 , . . . will be roughly i.i.d. and normally distributed.

In such cases, the conventional charts, such as the regular CUSUM and EWMA charts,

should be appropriate to apply to the de-correlated and standardized observations for process

monitoring. However, in practice, the IC distribution of the original observations could

be far away from a normal distribution (e.g., skewed or heavy-tailed). In such cases, the

conventional charts would be unreliable and their results could be misleading if they are

applied to the de-correlated and standardized observations directly, because the distribution

of the de-correlated observations could be far away from a normal distribution (cf., Qiu 2014,

Chapters 8 and 9). For this reason, we suggest using the following nonparametric control

chart based on data categorization, modified from the one in Qiu and Li (2011) where a

univariate nonparametric CUSUM chart was proposed based on data categorization when

process observations are assumed independent and a large IC data are assumed available for

estimating IC parameters (i.e., self-starting chart was not discussed there).

Let I1 = (−∞, q1], I2 = (q1, q2], . . . , Ip = (qp−1,∞) be a partition of the real line, with

−∞ < q1 < q2 < · · · < qp−1 <∞ being the p−1 boundary points of the partitioning intervals.

Define Yn,l = I(X∗
n ∈ Il), for l = 1, 2, . . . , p, and Yn = (Yn,1, Yn,2, . . . , Yn,p)

T . Then, Yn has

one component being 1 and the remaining being 0, and the index of the component being

1 is the index of the partitioning interval that contains X∗
n. Let f (0) = (f

(0)
1 , f

(0)
2 , . . . , f

(0)
p )T

be the IC distribution of Yn. Then, it is not difficult to check that if there is a location

or scale shift from the IC distribution of the original observations, the distribution of the

discretized data Yn will change from f (0). So, detection of a location or scale shift in the

distribution of the original data can be achieved by detecting a distributional shift in the

discretized data. According to Agresti (2012), the distributional shift detection will be most

effective if we choose f (0) = (1/p, 1/p, . . . , 1/p)T . In such cases, ql, for l = 1, 2, . . . , p − 1,

can be estimated by the (l/p)th sample quantile of the decorrelated IC dataset. Then, the

suggested nonparametric CUSUM chart is defined as follows. Let Sobs
0 = Sexp

0 = 0 be two
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p× 1 column vectors, and
Sobs

n = Sexp
n = 0, if Dn ≤ k

Sobs
n = (Sobs

n−1 + Yn)(Dn − k)/Dn, if Dn > k

Sexp
n = (Sexp

n−1 + f (0))(Dn − k)/Dn, if Dn > k,

where

Dn =
{

(Sobs
n−1 − S

exp
n−1) + (Yn − f (0))

}T
(diag(Sobs

n−1+f (0)))−1
{

(Sobs
n−1 − S

exp
n−1) + (Yn − f (0))

}
,

and k is an allowance parameter. Define the charting statistic to be

Cn = (Sobs
n − Sexp

n )T (diag(Sexp
n ))−1(Sobs

n − Sexp
n ). (3)

Then, the chart gives a signal if

Cn > h, (4)

where h > 0 is a control limit. In the above expressions, Sobs
n−1 + Yn tends to denote the

cumulative observed counts of the de-correlated observations in the p partitioning intervals,

and Sexp
n−1 +f (0) tends to denote the cumulative expected counts when the process is IC. The

charting statistic Cn in (3) measures the difference between the observed and expected counts.

By using similar arguments to Appendix C in Qiu and Hawkins (2001) where a multivariate

nonparametric control chart was proposed based on anti-ranks of multivariate observations,

we can check that Cn = max(0, Dn − k). So, the charting statistic Cn repeatedly restart

at 0 when there is little evidence of a distributional shift in Yn (i.e., when Dn ≤ k). This

restarting mechanism would make the chart (3)-(4) effective in shift detection, as discussed

in the literature about the conventional CUSUM chart (cf., Qiu 2014, Chapter 4).

In the above CUSUM chart (3)-(4), the (l/p)th sample quantiles, for l = 1, 2, . . . , p− 1,

need to be calculated from the IC dataset. At the current time point n, if the chart (3)-(4)

does not give a signal, then Xn can be combined with the previous IC dataset, and these

sample quantiles should be updated recursively to improve their accuracy in estimating the

corresponding population parameters. To be more specific, let the (l/p)th sample quantiles

from the de-correlated and standardized original IC data X∗
IC = {X∗

−m0+1, X
∗
−m0+2, . . . , X

∗
0}

be q̂
(0)
l , the (l/p)th sample quantiles from the combined IC data up to the previous time

point n − 1 be q̂
(n−1)
l , and the de-correlated and standardized process observations by time

n − 1 that are immediately before and after q̂
(n−1)
l in the ordered data be X∗

l,b and X∗
l,a,
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respectively, for l = 1, 2, . . . , p − 1. Then, the (l/p)th sample quantiles by time n is one of

{X∗
l,b, q̂

(n−1)
l , X∗

l,a}, depending on whether l(m0 + n− 1)/p and l(m0 + n)/p specify different

observations at times n− 1 and n and which partitioning interval the new de-correlated and

standardized observation X∗
n belongs to.

The proposed control chart for monitoring serially correlated data with unknown and

nonparametric IC process distribution can then be summarized below.

• When n = 1, define the standardized observation to be X∗
n = (Xn − µ̂(0))/

√
γ̂(0)(0).

Calculate the charting statistic Cn using (3) in which the p− 1 boundary points of the

partitioning intervals are chosen to be q̂
(0)
l , for l = 1, 2, . . . , p − 1. The chart gives a

signal if (4) is true.

• When n > 1, if Tn−1 = 0, then define X∗
n = (Xn − µ̂(n−1))/

√
γ̂(n−1)(0). Otherwise, let

Σ̂n,n =


γ̂(n−1)(0) · · · γ̂(n−1)(Tn−1)

...
. . .

...

γ̂(n−1)(Tn−1) · · · γ̂(n−1)(0)

 =

(
Σ̂n−1,n−1 σ̂n−1

σ̂T
n−1 γ̂(n−1)(0),

)
,

where σ̂n−1 = (γ̂(n−1)(Tn−1), . . . , γ̂(n−1)(1))T . Then, define

X∗
n =

Xn − µ̂(n−1) − σ̂T
n−1Σ̂

−1
n−1,n−1en−1

d̂n
,

where d̂2
n = γ̂(n−1)(0)−σ̂T

n−1Σ̂
−1
n−1,n−1σ̂n−1, and en−1 = (Xn−Tn−1−µ̂(n−1), . . . , Xn−1−

µ̂(n−1))T . Then, we calculate Cn by (3) in which the p − 1 boundary points of the

partitioning intervals are chosen to be q̂
(n−1)
l , for l = 1, 2, . . . , p − 1. If Cn = 0, then

define Tn = 0. Otherwise, define Tn = min(Tn−1 + 1, bmax). The quantities µ̂(n),

{γ̂(n)(s), 0 ≤ s ≤ bmax} and {q̂(n)
l , l = 1, 2, . . . , p−1} can be calculated by the recursive

algorithms described above. The chart gives a signal when (4) is true.

This chart is called G-CUSUM chart hereafter, where the first letter “G” represents “gen-

eral”. From the above description, it can be seen that G-CUSUM combines the ideas of

nonparametric process monitoring based on data categorization, recursive estimation of IC

parameters under a self-starting monitoring framework, and data decorrelation. In the liter-

ature, there are existing methods using one of these ideas. But, G-CUSUM chart is the first

one that combines all of them in a dynamic and efficient way so that it can handle a wide

variety of process monitoring problems.
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2.3 Practical guidelines on parameter selection

On selection of m0: The proposed self-starting control chart G-CUSUM requires an IC

dataset XIC of the size m0. If m0 is chosen too small, then process monitoring in the initial

stage may not be reliable because the estimates of the IC parameters µ, {γ(s), 0 ≤ s ≤ bmax}
and {ql, l = 1, 2, . . . , p− 1} may not be reliable. In such cases, if a short-run change occurs,

then it is likely to be missed. Numerical results given in Section 3 show that (i) the IC

performance of the chart G-CUSUM is reliable when m0 ≥ 200, (ii) its OC performance for

detecting moderate to large shifts is good when m0 ≥ 200, and (iii) its OC performance for

detecting small shifts is reasonably good when m0 ≥ 500.

On selection of h: In the CUSUM chart (3)-(4), the allowance constant k is usually

pre-specified together with the ARL0 value. Then, the control limit h should be chosen

to reach the given ARL0 value. To this end, it can be determined easily by a numerical

algorithm described below. First, choose an initial value for h (e.g., h = 10). Then, compute

the actual ARL0 value based on a large number (e.g. 10,000) of replicated simulation runs,

in each of which the IC multinomial observations Yn are sequentially generated from the IC

distribution f (0) = (1/p, ..., 1/p)T . If the computed ARL0 value is smaller than the given

ARL0 value, then increase the value of h. Otherwise, choose a smaller h value. The above

process is repeated until the given ARL0 value is reached within a desired precision. In this

process, some numerical searching schemes, such as the bisection search, can be applied (cf.,

Qiu 2008).

On selection of bmax: Serial data correlation is assumed homogeneous in this paper

and two observations are assumed uncorrelated if they are at least bmax + 1 time points

apart. In applications, bmax is often unknown and it needs to be pre-specified to use the

proposed method. Of course, selection of bmax is usually application specific. Intuitively,

bmax should be chosen as large as possible. But, as pointed out in Section 2.1, the estimates

of {γ(s), 0 ≤ s ≤ bmax} may not be reliable if bmax is chosen too large, especially in the initial

period of process monitoring. From our numerical experience, performance of the proposed

chart does not change much when 10 ≤ bmax ≤ 20, and the results could be worse in some

cases when bmax is chosen larger than 20. In Section 3, we will present many numerical

results of G-CUSUM when bmax = 10. This value has been shown to work well for a wide

range of serial data correlation structures, and it is recommended here.
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3 Numerical Studies

We present some simulation results in this section about the performance of the proposed

control chart G-CUSUM. For comparison purposes, the following four alternative methods

are also considered, which well represent the current process control strategies in the litera-

ture for serially correlated data with unknown nonparametric IC distributions.

• Self-starting CUSUM, denoted as SS-CUSUM: The original self-starting CUSUM sug-

gested by Hawkins (1987) was designed for cases when the process observations are as-

sumed independent, the IC process distribution is assumed normal, and the IC process

mean µ and variance σ2 were assumed unknown. Then, the two unknown parameters

µ and σ2 can be estimated by µ̂(n) and γ̂(n)(0) (cf., (1)-(2)), respectively, for monitoring

the process at time n. Let

Zn = Φ−1

[
Υm0+n−2

(√
m0 + n− 1

m0 + n
× Xn − µ̂(n)√

γ̂(n)(0)

)]
,

where Φ is the cumulative distribution function (cdf) of the N(0, 1) distribution, Φ−1

is its inverse, and Υm0+n−2 is the cdf of the t(m0 + n − 2) distribution. Then, the

charting statistics of SS-CUSUM are defined to be: for n ≥ 1,

C+
n,SS = max(0, C+

n−1,SS + Zn − kSS), C−
n,SS = min(0, C−

n−1,SS + Zn + kSS),

where C+
0,SS = C−

0,SS = 0, and kSS > 0 is an allowance constant. The chart gives a

signal when C+
n,SS > hSS or C−

n,SS < −hSS, where hSS > 0 is a control limit that can be

computed by the R-package spc for pre-specified ARL0 and kSS values. Note that this

chart cannot accommodate serial data correlation. It also assumes that the original

process observations are normally distributed.

• Nonparametric CUSUM chart suggested in Qiu and Li (2011), denoted as QL-CUSUM:

This chart is based on data categorization. It cannot accommodate serial data corre-

lation. The IC parameters used in the chart are estimated from the original IC data

XIC only (i.e., it is not self-started).

• EWMA chart by Lee and Apley (2011) for monitoring correlated data, denoted as

LA-EWMA: This chart assumes that the IC process observations follow an ARMA

model Xn = Θ(B)
Φ(B)

εn, for n ≥ 1, where B is a backward shift operator, Φ(B) = 1 −
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φ1B − φ2B
2 − · · · − φr1B

r1 is an autoregressive polynomial of order r1, Θ(B) = 1 −
θ1B− θ2B

2− · · · − θr2Br2 is an moving averaging polynomial of order r2, and {εn} are

i.i.d. random errors with the N(0, 1) distribution. After the ARMA model is estimated

from the IC data XIC with the orders r1 and r2 determined by AIC, we define the

residuals of the estimated ARMA model to be ên = Θ̂−1(B)Φ̂(B)Xn, for n ≥ 1. Then,

the charting statistic of LA-EWMA is defined by

En = (1− λ)En−1 + λên, for n ≥ 1,

where E0 = 0 and λ ∈ (0, 1] is a weighting parameter. The control limits of the chart

are chosen to be ±L
√
E(σ2

E|γ̂), where E(σ2
E|γ̂) can be computed by formula (10) in

Lee and Apley (2011), γ̂ = (φ̂1, . . . , φ̂r1 , θ̂1, . . . , θ̂r2)
T is the vector of the estimated

parameters obtained from the IC data XIC , and L > 0 is a threshold value chosen to

reach a given ARL0 value.

• Simplified G-CUSUM chart, denoted as G1-CUSUM: This chart is the same as G-

CUSUM, except that the self-starting mechanism is not implemented (i.e., all the IC

parameters are estimated from XIC only).

The following four IC models are considered in the numerical studies. Case I: Process

observations {X1, X2, . . .} are i.i.d. and N(0, 1) distributed. Case II: Process observations

follow the AR(1) model Xn = 0.5Xn−1 + εn, for n ≥ 1, where X0 = 0 and {εn} are i.i.d.

random errors with the N(0, 1) distribution. Case III: Process observations follow the

ARMA(2,1) model Xn = 0.85Xn−1− 0.5Xn−2 + εn− 0.5εn−1, for n ≥ 2, where X0 = X1 = 0,

and {εn} are i.i.d. with the common χ2(3) distribution. Case IV: Process observations

follow the model Xn = 1.5ξn + εn, where {εn} are i.i.d. and t(4)-distributed, and {ξn} is

a two-state Markov process with the transition matrix

(
0.75, 0.25

0.25, 0.75

)
and the two states

(0, 1). Case I is the conventional case considered in the SPC literature. Cases II and III

are two different cases with correlated data that follow ARMA models. Case IV considers a

serially correlated data scenario that the data correlation cannot be described by an ARMA

model. In each of the above four cases, the IC process mean and variance are re-scaled to

be 0 and 1, respectively.
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3.1 IC performance

We first evaluate the IC performance of the related control charts. In the simulation

study, the IC sample size m0 is fixed at 200, and the nominal ARL0 value is fixed at 200

for all charts. In the charts G-CUSUM and QL-CUSUM, the number of categories in the

data categorization process is fixed at p = 10. The allowance constants in the CUSUM

charts SS-CUSUM, QL-CUSUM, G-CUSUM and G1-CUSUM are all chosen to be 0.1. The

weighting parameter of the chart LA-EWMA is chosen to be λ = 0.05. The actual ARL0

values of all five control charts are computed based on 10,000 replicated simulations. The

results are presented in Table 1. From the table, it can be seen that the IC performance of

SS-CUSUM is good in Case I because all its model assumptions are valid in that case. Its

actual ARL0 values are substantially different from 200 in other three cases because some of

its model assumptions (e.g., normality, data independence) are violated in those cases. Both

QL-CUSUM and G1-CUSUM do not perform well in all cases because their IC parameter

estimates obtained from the original IC dataXIC are unreliable due to the relatively small IC

data size. The chart LA-EWMA performs well in Cases I and II when its model assumptions

are valid, bad in Case III when some model assumptions (e.g., data correlation follows an

ARMA model) are valid but the normality assumption is violated, and bad in Case IV when

the ARMA data correlation and normality assumptions are both violated. The difference

between the actual and nominal ARL0 values in Cases I and II can be explained by the fact

that the ARMA model is estimated from the original IC data XIC whose data size is quite

small. As a comparison, the IC performance of the proposed chart G-CUSUM is good in all

cases considered.

Table 1: Actual ARL0 values and their standard errors (in parentheses) of five control charts

when their nominal ARL0 values are fixed at 200 and the IC sample size m0 is 200.

SS-CUSUM QL-CUSUM LA-EWMA G-CUSUM G1-CUSUM

Case I 198 (1.68) 82 (1.61) 177 (3.43) 204 (3.66) 62 (1.27)

Case II 52 (0.36) 23 (0.49) 185 (3.68) 196 (3.52) 64 (1.33)

Case III 755 (7.47) 61 (1.24) 2291 (21.87) 197 (3.57) 64 (1.31)

Case IV 111 (0.88) 39 (1.05) 151 (2.60) 195 (3.44) 60 (1.26)

To see how the IC data size m0 affects the performance of our proposed chart G-CUSUM,

we let m0 change among 50, 100, 200 and 500, and the remaining setup is kept unchanged

12



from those in Table 1. The calculated actual ARL0 values of G-CUSUM are presented in

Table 2. It can be seen from the table that the IC performance of G-CUSUM when m0 = 50

is not quite reliable because the differences between the actual and nominal ARL0 values

are more than 10% of the nominal ARL0 value in Cases II-IV. When m0 gets larger, the IC

performance of G-CUSUM gets more reliable. Actually, the differences between the actual

and nominal ARL0 values are less than or equal to 10% of the nominal ARL0 value in all

cases considered when m0 = 100.

Table 2: Actual ARL0 values and their standard errors (in parentheses) of G-CUSUM when

its nominal ARL0 values are fixed at 200 and the IC sample size m0 changes among 50, 100,

200 and 500.

m0 = 50 100 200 500

Case I 202 (4.07) 205 (3.91) 204 (3.66) 202 (3.57)

Case II 178 (3.59) 186 (3.78) 196 (3.52) 200 (3.42)

Case III 165 (3.26) 182 (3.45) 197 (3.57) 199 (3.55)

Case IV 169 (3.47) 180 (3.55) 195 (3.44) 199 (3.39)

3.2 OC performance

Next, we study the OC performance of the related control charts in cases when m0 = 200

and 1000. In order to make the comparison more meaningful, we intentionally adjust the

control limits of the charts SS-CUSUM, QL-CUSUM, LA-EWMA and G1-CUSUM so that

their actual ARL0 values equal 200 in all cases considered. In the simulation study, we

assume that a shift of size δσX occurs at the beginning of Phase II monitoring, where δ

changes from -1.0 to 1.0 with a step of 0.25 and σX is the standard deviation of the IC

process observations. Because different control charts have different procedure parameters

(i.e., the allowance constant of the four CUSUM-type charts and the weighting parameter of

the EWMA-type chart) and their performance may not be comparable if their parameters

are set to be the same, we use the following strategy to set up these charts. For a given chart,

its parameter is chosen to be the optimal one for detecting a shift of size 0.5σX . Namely, the

parameter is chosen by minimizing the ARL1 value of the chart when detecting the shift of

size 0.5σX while maintaining the ARL0 value at 200. This approach for comparing different

13



control charts has been used in the literature (cf., Qiu and Li 2011). The calculated ARL1

values of the five charts based on 10,000 replicated simulations when m0 = 200 and 1000

are presented in Figures 1 and 2, respectively. From the plots in the figures, it can be seen

that i) all charts perform reasonably well in Case I, ii) charts LA-EWMA and QL-CUSUM

perform better than the remaining three charts for detecting small shifts while G-CUSUM

performs better for detecting large shifts when m0 = 200, and these three charts perform

better than the other two charts with G-CUSUM having a small lead in performance when

m0 = 1000 in Case II, iii) G-CUSUM performs the best when m0 = 200 and both G-CUSUM

and G1-CUSUM perform well when m0 = 1000 in Case III, and iv) both G-CUSUM and

QL-CUSUM perform well when m0 = 200 and G-CUSUM performs the best m0 = 1000

in Case IV. This example shows that the proposed method G-CUSUM performs well in all

cases considered, while the remaining charts perform well in some special cases only.

The OC performance of the chart G-CUSUM is affected by the IC data size m0. In

the next example, we let m0 change among 100, 200, 500, 1,000 and 2,000, and other chart

setup remains the same as that in the example of Figure 1. The results are shown in Figure

3. From the plots, it can be seen that i) the larger the value of m0, the better G-CUSUM

performs, ii) the chart is quite stable in most cases when m0 ≥ 500, and iii) it seems that

its OC performance is reasonably stable in all cases considered when m0 ≥ 1, 000.

In the above examples, the allowance constant k of G-CUSUM is chosen to be the optimal

ones for detecting the shift of 0.5σX in Cases I-IV. Next, we study the impact of k on the

performance of G-CUSUM by changing the k value among {0.001, 0.005, 0.01, 0.05, 0.1} and

keeping the other chart setup to be the same as that in Figure 1. The results are shown in

Figure 4. From the plots, we can see that the OC performance of G-CUSUM is stable in all

cases considered when k ≤ 0.01.

The chart G-CUSUM is based on data categorization and the number of categories is

fixed at p = 10 in all examples discussed above. To study the impact of p on the OC

performance of G-CUSUM, we let p change among 2, 5, 10, and 15 in the next example,

and other chart setup remains unchanged from that in the example of Figure 1. The results

are shown in Figure 5. From the plots, it can be seen that the chart performance is stable

when p ≥ 5 in most cases considered, and its performance could not be improved much when

p ≥ 10.
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Figure 1: ARL1 values of five control charts when ARL0 is set at 200, m0 = 200, and the

procedure parameters are chosen to be the optimal ones for detecting a shift of the size

0.5σX .

In the next example, we study the joint impact of m0, p and bmax on the OC performance

of G-CUSUM. In the setup of Figure 1, we let m0 change between 200 and 1000, p change

between 2 and 10, and bmax change between 5 and 10. In each of the eight combinations of

m0, p and bmax, the ARL1 values of G-CUSUM are calculated in the same way as that in

Figure 1 that ARL0 is set at 200 and the allowance constant k is chosen to minimize the

ARL1 value for detecting the shift of 0.5σX . The results in Cases I-IV are shown in Figure

6. From the plots in the figure, it can be seen that: i) the chart performance is similar when

bmax changes from 5 to 10 in all cases considered, ii) the chart performs much better when

p equals 10, compared to its performance when p equals 2, and iii) the overall performance

of the chart is improved when m0 increases from 200 to 1000, although the improvement
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Figure 2: ARL1 values of five control charts when ARL0 is set at 200, m0 = 1000, and

the procedure parameters are chosen to be the optimal ones for detecting a shift of the size

0.5σX .

is quite small in Cases I and III when p = 10. This example further confirms the results

obtained in the previous examples and our recommended guidelines given in Section 2.3.

4 A Real Data Application

In this section, we illustrate the proposed control chart using a real-data example about

the daily exchange rates between Korean Won and US Dollar in the period between March

28, 1997 and December 02, 1997. During this time period, the daily exchange rates were quite

stable early on and became unstable starting from early August, due to the global financial
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Figure 3: ARL1 values of G-CUSUM when ARL0 is set at 200, m0 changes among 100, 200,

500, 1,000 and 2,000, and the other chart setup remains the same as that in the example of

Figure 1.

crisis. This can be seen from Figure 7, where 173 daily exchange rates (Won/Dollar) observed

in that period are shown.

We then apply the related control charts considered in the previous section to this

dataset, by using the first 90 observations as the initial IC data (or Phase I data) and

the remaining observations for Phase II online monitoring. In Figure 7, the Phase I and

Phase II data are separated by a dashed vertical line. To take a closer look at the initial IC

data, the Durbin-Watson test for testing autocorrelation gives a p-value of 2.2×10−16, which

provides a strongly significant evidence that the initial IC data are correlated. The Shapiro

test for checking normality of the IC data gives a p-value of 1.965× 10−4, implying that the
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Figure 4: ARL1 values of G-CUSUM when ARL0 is set at 200, m0 = 200, k changes among

0.001, 0.005, 0.01, 0.05, and 0.1, and the other chart setup remains the same as that in the

example of Figure 1.

IC data are significantly non-normal. To check whether an ARMA model is appropriate for

describing the data autocorrelation, we fit an ARMA model to the centralized Phase I data

and use AIC for choosing its orders. Then, the resulting model is the following ARMA(1,0)

model Xj = 0.9008Xj−1 +εj. Remember that if this ARMA model provides a good fit to the

centralized Phase I data, then the residuals should be approximately normally distributed

with mean 0. The Q-Q plot of the residuals is shown in Figure 8, from which it can be seen

that the distribution of the residuals is quite far away from normal. Thus, the fitted ARMA

model is inappropriate for describing the data autocorrelation in the Phase I exchange rate

data, and all existing methods based on ARMA models are inappropriate to use in this

example either.
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Figure 5: ARL1 values of G-CUSUM when ARL0 is set at 200, m0 = 200, p changes among

2, 5, 10, and 15, and the other chart setup remains the same as that in the example of Figure

1.

When the nominal ARL0 value is fixed at 200, the allowance constants of the four

CUSUM charts are all chosen to be 0.1, and the weighting parameter in LA-EWMA is

chosen to be λ = 0.05, the five control charts are shown in Figure 9, where the dashed

horizontal lines denote their control limits. From the plots, the G-CUSUM, G1-CUSUM,

SS-CUSUM, QL-CUSUM, and LA-EWMA charts give signals at the 9th, 24th, 36st, 22th,

and 29th Phase II observations, respectively. Therefore, the signal by G-CUSUM is the

earliest one in this example, and the control charts confirm that the exchange rate between

Korean Won and US Dollar does have a distributional shift during an early stage of Phase

II process monitoring.
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Figure 6: ARL1 values of G-CUSUM when ARL0 is set at 200, m0 = 200 or 1000, p = 2 or

10, bmax = 5 or 10, and the other chart setup remains the same as that in the example of

Figure 1.
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Figure 7: Original observations of the exchange rate data between Korean Won and US

Dollar during March 28 and December 02, 1997. The vertical dashed line separates the

initial IC data from the Phase II observations.

5 Concluding Remarks

We have proposed a general charting scheme for monitoring serially correlated process

observations with short-memory dependence and nonparametric IC distributions. This chart-

ing method only requires a small to moderate initial IC dataset and a quite flexible serial

data correlation structure that data correlation is homogeneous over time and the correlation

between two observations is weaker when the observation times are farther away. Numerical

studies show that it works well in different cases. Because of its great flexibility, it should be

able to provide a powerful tool for many process monitoring applications. It is our believe

that the already flexible homogeneous data correlation assumption can be further weakened.

One possibility is to estimate the covariance function γ(s) (cf., its definition in the first para-

graph of Section 2) based on a certain amount of previous observations that is immediately

before the current time point n only. In that case, the covariance function can be assumed

time-varying, instead of homogeneous in time. But, the estimated covariance function could

have relatively large variability. Also, the control limit h of the proposed chart G-CUSUM is

currently determined by the initial IC dataset alone. The chart can be improved by updating

the value of h every time when the current observation Xn is combined with the previous IC

data. But, the computation involved will be more demanding. These topics will be studied

in our future research.
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Figure 8: Q-Q plot of the residuals of the ARMA(1,0) model fitted from the Phase I exchange

rate data.
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Figure 9: Control charts G-CUSUM (plot (a)), G1-CUSUM (plot (b)), SS-CUSUM (plot (c)),

QL-CUSUM (plot (d)) and LA-EWMA (plot (e)) when they are applied to the exchange

rate data shown in Figure 7. The horizontal dashed lines are the control limits.
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