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Abstract

The integrative analysis of multiple sequences of multiple tests has enjoyed increas-

ing popularity in many applications, especially in large-scale genomics. In the context

of large-scale multiple testing, the concept of signal classification has been developed

recently for cases when the same features are involved in several independent studies,

with the goal of classifying each feature into one of several classes. This paper considers

the problem of such signal classification in a generalized compound decision-making

framework, where the observed data are assumed to be generated from an underlying

four-state Cartesian hidden Markov model. Two oracle procedures are proposed for the

total and set-specific control of misclassification rates, respectively, while the number

of correct classifications is maximized. Optimal data-driven procedures are also pro-

posed, with their asymptotic properties derived. It is shown that signal-classification

could be improved significantly by taking into account the dependence structure among

features, and the proposed procedures could have a better performance than their com-

petitors that ignore the dependence structure. The proposed methods are applied to

a psychiatric genetics study for detecting genetic variants that affect either or both of

bipolar disorder and schizophrenia.
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tive analysis; Signal classification under dependence.

Corresponding author: Dongdong Xiang, email: terryxdd@163.com.

1



1 Introduction

In recent years, combined datasets from multiple studies become increasingly popular in

genomics and genetics research, posing great challenges to the large-scale multiple testing

problem. The integrative analysis of such data from multiple studies could provide much use-

ful information by comparing different studies and finding their differences and similarities.

Thus, alongside research on a single sequence of multiple tests (Genovese and Wasserman,

2002; Sun and Cai, 2007; Efron, 2007; Basu et al., 2018; Li et al., 2020; Cai, Sun and Xia,

2021), development of effective methods for multiple sequences of multiple tests should be

important, which is the focus of this paper.

The large-scale multi-sequence integrative analysis in genomics and genetics research

can be formulated generally as a problem of grouping genomic features from multiple studies

into different classes based on their test statistics, which is briefly described below. Let

Xi = (Xi1, ..., Xim) be the vector of z-scores for the m genomic features in the ith study

(i = 1, ..., J). Let us focus on the case when J = 2 in this paper for simplicity, and the

extension to cases when J > 2 is quite straightforward. Assume that θij ∈ {0, 1} is the

unknown state of Xij (j = 1, ...,m), where “θij = 1” if Xij is a signal and “θij = 0”

otherwise. Then, the pair (θ1j, θ2j) denotes the joint state of (X1j, X2j). Table 1 lists all four

possible classes of (θ1j, θ2j) and their labels, which are also the four possible hidden states

of (X1j, X2j). To illustrate, in cases when Xij denotes the jth expression quantitative trait

locus in the ith tissue, isolating tissue-specific loci from cross-tissue ones is equivalent to

determining whether the related tests belong to the class 1, or 2, or 3 in Table 1.

Table 1: Four possible signal classes and labels for (X1j, X2j).

Class label (θ1j, θ2j)

0 (0,0)

1 (1,0)

2 (0,1)

3 (1,1)
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In the multiple-testing problem described above, one major goal is to assign as many

genomic features to their true signal classes as possible. Achieving this goal while controlling

the misclassification rate is referred to as signal classification in the multiple-testing literature

(Xiang, Zhao and Cai, 2019). Applications of signal classification are popular in modern

genomics studies. For instance, to learn the genetic regulation of human gene expressions,

data of genotype and gene expressions are often collected for many tissue types from many

donors (Lonsdale et al., 2013). One major goal to analyze such data is to identify the

specific genes that are regulated by certain genetic variants. Since a genetic variant may be

active in a part of tissues only, it is crucial to classify each variant in terms of the related

tissues (Torres et al., 2014; GTEx Consortium, 2015), which involves a large number of

sequences of multiple tests. Similarly, large-scale genome-wide association studies (GWAS)

have enabled researchers to compare the genetics of two clinically indistinguishable diseases

that share many symptoms (e.g., bipolar disorder and schizophrenia). Isolating genetic

variants that are significantly associated with one disease but not the other is often crucial

to the development of effective disease diagnostic methods, which also requires an integrative

analysis of two sequences of summary statistics: one from each disease.

As described above, proper analysis of multiple sequences of multiple tests becomes im-

portant due mainly to the rapid development of integrative genomics. However, most existing

methods for analyzing such data are designed for the simplified binary classification problem

in the sense that they typically focus on identifying signals that belong to the class 3 in

Table 1 (Benjamini et al., 2009; Chung et al., 2014; Heller and Yekutieli, 2014; Wang et al.,

2016; Wang and Zhu, 2019; Zhao and Nguyen, 2020). One main reason for this phenomenon

is that the related replicability analysis for detecting replicated signals could obtain repli-

cable scientific findings and provide useful information for genetic association studies. To

handle such a binary classification problem, a four-group mixture model is usually used for

describing the observed data {(X1j, X2j), j = 1, ...,m} with four possible signal classes. It

has been studied by many researchers about the optimal decision rule that is based on the

local false discovery rate (Lfdr). Urbut et al. (2019) and Li et al. (2018a, b) have extended

these results to cases with three or more sequences of multiple tests. In practice, however,
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identifying signals based on different sequences that belong to the class 3 in Table 1 may

not be our primary interest. For instance, in a GWAS study involving bipolar disorder and

schizophrenia, signals belonging to the class 1 or 2 in Table 1 should be more useful than

those belonging to the class 3, in order to differentiate patients with bipolar disorder from

those with schizophrenia. Recently, Xiang, Zhao and Cai (2019) introduced a new frame-

work for the signal classification problem that allows for two or more signal classes of interest.

Under the assumption that the test statistics are independent across different dimensions,

they proposed total and set-specific indices for measuring misclassification errors and devel-

oped asymptotically optimal multiple-testing procedures with their misclassification errors

in control, based on a generalized compound decision framework.

While many existing methods rely heavily on the assumption of independence, observed

data from large-scale multiple-testing studies often exhibit data dependence (Sun and Cai,

2009). For example, in GWAS, disease-associated SNPs may cluster into groups along bio-

logical pathways, indicating a dependence structure. Ignoring this dependence can lead to

invalidity or reduced efficiency of methods developed under the assumption of data indepen-

dence. To the best of our knowledge, it has not been discussed in the literature yet how to

accommodate the data dependence structure when handling the signal classification problem

with multiple sequences of tests that allow for two or more sets of signal classes of interest.

This paper aims to fill this gap by properly modeling the data dependence structure to gain

a better understanding of multiple sequences of tests with multiple signal classes of interest.

In this paper, we focus on the four-class signal classification problem with data de-

pendence. The main contributions of the paper are summarized as follows. From the

modeling perspective, the signal classification problem under a Cartesian hidden Markov

model (HMM) dependence structure is studied using the compound decision framework.

The HMM is an effective tool for modeling the data dependence structure and has been

widely used in areas such as speech recognition, signal processing and DNA sequence anal-

ysis. It assumes that the sequence of unknown joint states forms a four-state Markov chain

{(θ1j, θ2j), j = 1, ...,m}. When a positive dependence exists in an HMM, the signals belong

to the same class would form clusters, which is commonly seen in many real applications.
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For example, in GWAS, since the adjacent genomic loci tend to cosegregate in meiosis, the

disease-associated SNPs are always clustered and exhibit high correlation. As a result, HMM

has been successfully used in GWAS for modelling the clustered and locally dependent data

structure (e.g., Colella et al., 2007; Wei et al., 2009; Bercovici et al., 2010; Wang and Zhu,

2019). To proceed, we first develop oracle procedures for signal classification in cases when

the HMM parameters are assumed known based on a generalized local index of significance

(LIS), which enables us to borrow information from observations in adjacent locations by

exploiting the local dependence structure. We then develop data-driven procedures to mimic

the oracle ones by plugging in consistent estimates of the HMM parameters. In addition,

from the theoretical perspective, we show that the oracle procedures are optimal under some

mild conditions in the sense that they can control the corresponding misclassification er-

ror while maximizing the number of correct classifications. We also provide the asymptotic

optimality of the data-driven procedures.

The remainder of the paper is organized as follows. Section 2 provides a formulation of

the signal classification problem under the HMM data dependence. Section 3 introduces the

new oracle and data-driven procedures proposed for solving the signal classification problem,

along with their related theoretical results in terms of validity and optimality. Simulation

studies are presented in Section 4 to compare the proposed methods with some representative

existing methods in various settings. In Section 5, the proposed data-driven procedures are

applied to a genomic study for understanding the genetic architecture of bipolar disorder

and schizophrenia. Finally, a summary of the contributions of this paper and some possible

extensions of the proposed methods are discussed in Section 6. Proofs of some theoretical

results are given in a supplementary file.
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2 Problem Formulation

2.1 Some definitions

Let Xi = (Xi1, ..., Xim) be the vector of m observed values in the ith study (i = 1, ...J).

We focus on cases with J = 2 in this paper for simplicity, and extension of the proposed

methods to cases with J > 2 should be straightforward. Assume that θij is the unknown

state of Xij. More specifically, θij = 1 if Xij is a signal and θij = 0 otherwise. Table 1 lists

all four possible configurations of (θ1j, θ2j) and their labels, denoting four different states of

(X1j, X2j). Different from most multiple-testing problems discussed in the literature that

are about a single sequence, we are interested in classifying each genomic feature observed

in the two sequences into four signal classes. This is a so-called signal classification problem

(Xiang et al., 2019). To characterize the correlation structure of {(θ1j, θ2j), j = 1, ...,m}, we

consider using an HMM, in which it is assumed that {(θ1j, θ2j), j = 1, ...,m} is a stationary,

irreducible and aperiodic four-state Markov chain with the transition probabilities

auv = P{(θ1,j+1, θ2,j+1) = v|(θ1j, θ2j) = u},

where u, v ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. It is also assumed that auv’s do not depend on j,

0 < auv < 1 for each u and v, and
∑

v auv = 1 for each u.

Since X1j and X2j are usually observed from two independent studies, it is assumed

that they are conditionally independent given (θ1j, θ2j), and {(X1j, X2j), j = 1, ...,m} are

independent over different j as well given {(θ1j, θ2j), j = 1, ...,m}. Thus, the joint density

function of the observed data {(X1j, X2j), j = 1, ...,m} is

P
{{

(X1j, X2j)}mj=1|{(θ1j, θ2j)
}m
j=1

}
=

m∏
j=1

f(X1j|θ1j)
m∏
j=1

f(X2j|θ2j), (1)

where f(Xij|θij) = (1 − θij)fi0 + θijfi1, fi0 and fi1 are respectively the density functions of

Xij when θij = 0 and θij = 1, and {fi0, i = 1, 2} are known null distributions. In practice,

we usually assume that f10 and f20 are the densities of N(0, 1). Let π = (π00, π10, π01, π11)

be the initial distribution of the Markov chain, A = {auv}4×4 be the transition matrix, and
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F = {f10, f11, f20, f21} be the observation distribution. Then, ϑ = (π,A,F) is the collection

of all HMM parameters, where πpq = P{(θ11, θ21) = (p, q)}, for p, q ∈ {0, 1}.

Remark 1. In some applications, the four signal classes defined in Table 1 may not be

equally important. Generally speaking, the set of four classes can be divided into K + 1

disjoint subsets, where K can be 1, 2, or 3. Let G0 denote the set of unimportant classes

(e.g., G0 = {0}), and {Gk ⊂ {0, 1, 2, , 3}\G0, k = 1, ..., K} be disjoint subsets of classes

of interest with
⋃K
k=0Gk = {0, 1, 2, 3}. As an example, when K = 1, G0 = {0, 1, 2} and

G1 = {3}, the signal classification problem reduces to the replicability analysis in the literature

for discovering significant features in both sequences (Heller and Yekutieli, 2014). In this

paper, we focus on cases with K = 3 and Gk = {k}, for k = 0, 1, 2, 3. The extension of our

proposed methods to cases with K < 3 is straightforward.

2.2 Signal classification in a hidden Markov model

Given {Gk, k = 0, 1, 2, 3}, the decision rule of a signal classification procedure can be

denoted as δ = (δ1, ..., δm), where δj ∈ {0, ..., 3} indicates which class subset the jth genomic

feature should be assigned to, for j = 1, ...,m. The results of applying this decision rule to

the observed data can then be summarized in Table 2. The expected total number of true

positives is

ETPT(δ) = E

(
K∑
k=1

Ckk

)
,

where the subscript “T” of ETPT(δ) denotes “total”. Obviously, the quantity ETPT(δ)

denotes the expected total number of tests that correctly classify the m genomic features

into the K subsets of interest, which is commonly used for evaluating the power of δ. To

measure the misclassification error of δ, there are several choices. One commonly-used metric

is the following total marginal false discovery rate (mFDR):

mFDRT(δ) =
E(
∑K

k=1

∑
k′ 6=k Ck′k)

E(
∑K

k=1Rk)
.

In the above expression, the denominator is the expected total number of tests that are

classified into the K subsets of interest, and the numerator is the expected total number of
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misclassifications among them. In cases when K = 2, mFDRT(δ) is just the conventional

mFDR used in the binary classification problem. Thus, it can be regarded as a natural

generalization to the multi-class signal classification problem, and provides a proper metric

of the overall misclassification rate. Set-specific mFDR can be defined similarly for each

subset of interest as follows:

mFDRk
S(δ) =

E(
∑

k′ 6=k Ck′k)

E(Rk)
, k = 1, ..., K,

where the subscript “S” of mFDRk
S(δ) denotes “subset”, and the superscript “k” denotes

the kth subset. This index measures the misclassification error for the subset Gk only, which

should be more flexible than the metric mFDRT(δ) in the sense that different nominal

misclassification error rates can be set for different subsets.

The above two metrics of mFDR lead to the following two different signal classifica-

tion problems. First, the total mFDR-control problem aims to find a decision rule δ that

maximizes ETPT(δ) subject to the condition that mFDRT(δ) ≤ α, for a given 0 < α < 1.

Second, the set-specific mFDR-control problem aims to find a decision rule δ that maxi-

mizes ETPT(δ) subject to the condition that mFDRk
S(δ) ≤ αk, for k = 1, ..., K and given

0 < α1, ..., αK < 1. The latter problem enables a proper control of the misclassification errors

for individual subsets of interest by setting {αk, k = 1, ..., K}. However, in cases when it is

unclear how to choose {αk, k = 1, ..., K}, as is often the case in practice, the former problem

might be more convenient to use by setting the total misclassification error control at a single

level. Therefore, the two problems can complement each other well. In the following sections,

we focus on both problems and propose the corresponding signal classification procedures.

3 Proposed Statistical Methodology

3.1 Oracle procedures

We first derive the oracle signal classification rules under the HMM model described

in Section 2 for the total and set-specific mFDR-control problems, respectively, where the
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Table 2: Summary of signal classification results.

Predicted class True class Total

0 1 2 3

0 C00 C10 C20 C30 R0

1 C01 C11 C21 C31 R1

2 C02 C12 C22 C32 R2

3 C03 C13 C23 C33 R3

Total m0 m1 m2 m3 m

word “oracle” implies that an ideal situation is considered, in which the HMM parameters

ϑ = (π,A,F) are assumed known. To this end, it is straightforward to check that the total

mFDR-control problem is equivalent to the following maximization problem:

max
δ

E

{
K∑
k=1

m∑
j=1

I(δj = k)[1− LISkj (X1,X2)]

}

under the condition that

E

{
K∑
k=1

m∑
j=1

I(δj = k)
[
LISkj (X1,X2)− α

]}
≤ 0, (2)

where LISkj (X1,X2) = 1−P{(θ1j, θ2j) = (k1, k2)|X1,X2} is the conditional probability that

the class of the jth genomic feature is not k, and k1 and k2 are the two signal indicators of the

class k. It is important to notice that the quantity LISkj can be regarded as a generalization

of the LISj statistic in Sun and Cai (2009) that was designed for binary classification of a

single sequence of multiple tests. By pooling information from two sequences, the quantity

LISkj should be more effective for signal classification.

The above optimization problem under the inequality constraint (2) can be solved by

using the method of Lagrange multipliers by minimizing the Lagrangian objective function

LT (λ, δ) =
K∑
k=1

m∑
j=1

I(δj 6= k)[1− LISkj (X1,X2)] +
K∑
k=1

m∑
j=1

λI(δj = k)[LISkj (X1,X2)− α],

because any δ that minimizes LT (λ, δ) also minimizes E{LT (λ, δ)}. For a given λ > 0, the
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decision rule that minimizes LT (λ, δ) is denoted as δλT = (δλT1, ..., δ
λ
Tm), where

δλTj = arg min
k∈{0,...,K}


 ∑
k′∈{1,...,K},k′ 6=k

[1− LISk
′

j (X1,X2)]

+ λ[LISkj (X1,X2)− α]

 , (3)

for j = 1, ...,m. The following proposition shows two important properties of δλT .

Proposition 1. Consider an HMM model as defined in model (1) and the related decision

rule δλT defined in (3). Then, we have

(i) δλT minimizes E(LT (λ, δ)).

(ii) Let N(λ) = E
{∑K

k=1 I(δλTj = k)[LISkj (X1,X2)− α]
}

, and

λ∗ = inf{λ : N(λ) ≤ 0}.

Then, N(λ∗) = 0 if N(0) ≥ 0.

The quantity N(λ) is obtained by combining the constraint on mFDRT in (2) and the

decision rule defined in (3), which can be regarded as the difference between the actual and

pre-specified misclassification error rates of the decision rule δλT . It is straightforward to

check that N(λ) is non-increasing in λ (see the proof of Proposition 1 in the Supplementary

File). Therefore, the condition N(0) ≥ 0 is necessary to ensure that α can be achieved

when λ = λ∗. Then, the oracle procedure δλ
∗
T for the total error control problem can be

defined formally in the following theorem, along with its validity and optimality for the total

mFDR-control.

Theorem 1. Consider an HMM model as defined in model (1) and the related decision rule

δλT defined in (3). Then, oracle procedure is δλ
∗
T where λ∗ is defined in Proposition 1. If the

pre-specified misclassification error rate α satisfies the condition N(0) ≥ 0, then we have

(i) mFDRT(δλ
∗

T ) = α; and

(ii) For any decision rule δ satisfying mFDRT(δ) ≤ α, we have

ETPT(δ) ≤ ETPT(δλ
∗

T ).

10



The set-specific problem can be discussed similarly as follows. First, the constraints on

{mFDRk
S, k = 1, ..., K} can be written as

E

{
m∑
j=1

I(δj = k)[LISkj (X1,X2)− αk]

}
≤ 0, k = 1, ..., K,

and the optimal decision rule can be obtained by minimizing the Lagrangian

LS(λ, δ) =
K∑
k=1

m∑
j=1

I(δj 6= k)[1− LISkj (X1,X2)] +
K∑
k=1

m∑
j=1

λkI(δj = k)[LISkj (X1,X2)− αk].

Given λ = (λ1, ..., λK) with λk > 0 for all k, define the decision rule δλS = (δλS1, ..., δ
λ
Sm),

where

δλSj = arg min
k∈{0,...,K}


 ∑
k′∈{1,...,K},k′ 6=k

[1− LISk
′

j (X1,X2)]

+ λk[LISkj (X1,X2)− αk]

 . (4)

Then, δλS has two important properties given in the following proposition.

Proposition 2. For given λ with each element λk > 0, the decision rule δλS defined in (4)

has the following properties:

(i) δλS minimizes E(LS(λ, δ)); and

(ii) Let Nk(λ) = E
{
I(δλSj = k)[LISkj (X1,X2)− αk]

}
, for k = 1, ..., K, and

λ̌k,t = inf{λk ≤ λ̌k,t−1 : Nk(λ̌k,t−1) ≤ 0}, k = 1, ..., K,

where t ≥ 1, λ̌k,0 = ∞, and λ̌k,t−1 is the λ with λk′ = λ̌k′,t−1, k
′ 6= k. If αk + αk′ ≤ 1

holds for any k 6= k′ and 0 ∈ {(N1(λ), ..., Nk(λ))}, then λ∗k = limt→∞ λ̌k,t and Nk(λ
∗) =

0, for k = 1, ..., K, where λ∗ = (λ∗1, ..., λ
∗
K).

Similar to part (ii) of Proposition 1, part (ii) of Proposition 2 provides the necessary

conditions that guarantee the existence of λ∗ such that Nk(λ
∗) = 0, for k = 1, ..., K. Then,

the oracle procedure δλ
∗

S for the set-specific error control problem can be defined formally

in the following theorem, along with its validity and optimality for the set-specific mFDR-

control.
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Theorem 2. Consider an HMM model as defined in model (1) and the related decision rule

δλS defined in (4). Then, the oracle procedure is δλ
∗

S where λ∗ is defined in Proposition 2. If

{αk, k = 1, ...K} satisfy the conditions in Proposition 2(ii), then we have

(i) mFDRk
S(δλS ) = αk, for k = 1, ..., K; and

(ii) For any decision rule δ satisfying mFDRk
S(δ) ≤ αk, for k = 1, ..., K, we have

ETPT(δ) ≤ ETPT(δλS ).

Remark 2. For given ϑ in the HMM model (1), the oracle statistic LISkj (X1,X2) can be ex-

pressed in terms of the forward and backward density variables, which are defined respectively

as αj(p, q) = P (θ1j = p, θ2j = q, {X1i}ji=1, {X2i}ji=1) and βj(p, q) = P ({X1i}mi=j+1, {X2i}mi=j+1|θ1j =

p, θ2j = q). It can be shown that

LISkj (X1,X2) =

∑
(p,q) 6=(k1,k2)

αj(p, q)βj(p, q)∑1
p=0

∑1
q=0 αj(p, q)βj(p, q)

.

In addition, the quantities αj(p, q) and βj(p, q) can be calculated recursively by using the

forward-backward procedure (Rabiner, 1989; Wang and Zhu, 2019). More specifically, let

α1(p, q) = πpqf1p(X11)f2q(X21) and βm(p, q) = 1. Then, we have the following recursive

formulas:

αj+1(p, q) =
1∑
s=0

1∑
t=0

αj(s, t)a(s,t)(p,q)f1p(X1,j+1)f2q(X2,j+1),

βj(p, q) =
1∑
s=0

1∑
t=0

βj+1(s, t)a(p,q)(s,t)f1s(X1,j+1)f2t(X2,j+1).

3.2 Data-driven procedures

In practice, the HMM parameters ϑ are usually unknown, which makes the oracle pro-

cedures described in the previous part unusable. To address this issue, our strategy is to

first estimate these unknown parameters by ϑ̂, and then plug-in ϑ̂ to the related oracle

procedures to obtain the corresponding data-driven signal classification procedures. To this
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end, the maximum likelihood estimate (MLE) is commonly used in the literature because

of their appealing properties (e.g., statistical consistency, and asymptotic normality) under

some regularity conditions (Leroux, 1992; Bickel et al., 1998), and the MLE can be com-

puted by using the EM algorithm or other standard numerical optimization schemes, such

as the gradient search. Let ϑ̂ be the MLE of ϑ. After it is plugged into LISkj (X1,X2), the

corresponding plug-in statistic is denoted as L̂IS
k

j (X1,X2), which can be computed by using

the forward-backward procedure introduced in Remark 2.

Based on L̂IS
k

j (X1,X2), we can construct the data-driven procedure for the total error

control problem as follows. First, let δ̂λTj be the decision rule for the total error minimization

problem (3), after LISkj (X1,X2) is replaced by L̂IS
k

j (X1,X2). Then, the quantity N(λ) in

Proposition 1 can be approximated by

N̂(λ) =
1

m

m∑
j=1

K∑
k=1

I(δ̂λTj = k)[L̂IS
k

j (X1,X2)− α].

The above expression can be further simplified by using the result that

I(δ̂λTj = k) = I
{

L̂IS
k

j (X1,X2) ≤
αλ+ 1

λ+ 1
, L̂IS

k

j (X1,X2) ≤ min
k′ 6=k

L̂IS
k′

j (X1,X2)

}
.

Then, the data-driven classification rule for the total classification problem is defined to be

δ̂λ̂
∗

T = (δ̂λ̂
∗

T1, ..., δ
λ̂∗

Tm),

where

λ̂∗ = inf{λ : N̂(λ) ≤ 0}.

An adaptive step-up algorithm for calculating δ̂λ̂
∗
T is summarized in Table 3. The follow-

ing theorem establishes the asymptotic validity and optimality of δ̂λ̂
∗
T for the total mFDR-

control.

Theorem 3. For the HMM model (1), if all assumptions in Theorem 1 and the assumption

that ϑ̂ is a consistent estimate of ϑ (called Assumption 1 hereafter) are valid, then we have

(i) mFDRT(δ̂λ̂
∗
T ) = α + o(1); and
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Table 3: Data-driven algorithm for the total classification problem.

Let L̂IS
min

j (X1,X2) = mink L̂IS
k

j (X1,X2), and L̂IS
min

(j) (X1,X2) be the order statis-

tics of L̂IS
min

j (X1,X2), for j = 1, ...,m. The quantities δ̂λ̂
∗

T (j) and L̂IS
k

(j)(X1,X2)

are the corresponding decision rules and test statistics. Define r = max{i :

(1/i)
∑i

j=1 L̂IS
min

(j) (X1,X2)− α ≤ 0}. Then, we have

δ̂λ̂
∗

T (j) =

k if j ≤ r and L̂IS
min

(j) (X1,X2) = L̂IS
k

(j)(X1,X2),

0 if j ≥ r.

(ii) ETPT(δ̂λ̂
∗
T )/ETPT(δλ

∗
T ) = 1 + o(1).

Remark 3. From the definition of I(δ̂λTj = k) and the step-up procedure described in Table 3,

we can observe that the step-up procedure is based on ranking the quantities L̂IS
min

j (X1,X2) =

mink L̂IS
k

j (X1,X2), and considering the discrete cutoffs only in L̂IS
min

j (X1,X2). Such an

approach can effectively select the features that are most likely signals. More specifically,

even if L̂IS
0

j(X1,X2) > L̂IS
0

j′(X1,X2) for some j 6= j′, which implies that the jth feature

is more likely a signal, the j′th feature may still be selected because of L̂IS
min

j′ (X1,X2) <

L̂IS
min

j (X1,X2). This can happen especially when {L̂IS
k

j (X1,X2), k = 1, 2, 3} are close to

each other, which can also be found in the real-data analysis.

For the set-specific problem, the data-driven procedure can be developed similarly. More

specifically, after replacing LISkj (X1,X2) with L̂IS
k

j (X1,X2), let δ̂λSj be the solution to the

set-specific error minimization problem (4). Define

N̂k(λ) =
1

m

m∑
j=1

I(δ̂λSj = k)[L̂IS
k

j (X1,X2)− αk].

Then, for each k, consider a sequence {λ̂k,t, t ≥ 1} satisfying

λ̂k,t = inf{λk ≤ λ̂k,t−1 : N̂k(λ̂k,t−1) ≤ 0},

where λ̂k,0 = ∞, and λ̂k,t−1 is the λ with λk′ = λ̂k′,t−1, k
′ 6= k. The convergence of the se-

quence {λ̂k,t, t ≥ 1} can be proved similarly to the one in Proposition 2. Let λ̂∗k = limt→∞ λ̂k,t
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Table 4: Data-driven algorithm for the set-specific classification problem.

Step 1: Let L̂IS
k

(j)(X1,X2) be the order statistics of L̂IS
k

j (X1,X2), for each k = 1, ..., K.

Set λ = (λ1, ..., λK) to be λk = (1 − αk)/(L̂IS
k

(rk)
(X1,X2) − αk) − 1, and rk = max{i :

(1/i)
∑i

j=1 L̂IS
k

(j)(X1,X2)− αk ≤ 0}, for k = 1, ..., K.

Step 2: For each k, calculate N̂k(λ) and N̂k(λ̃k,rk+1), where λ̃k,j = (λ̃1,j, ..., λ̃K,j), λ̃k′,j =

λk′ when k′ 6= k, and λ̃k,j = (1 − αk)/(L̂IS
k

(j)(X1,X2) − αk) − 1. If N̂k(λ) ≤ 0 and

N̂k(λ̃k,rk+1) > 0, for all k, then set λ̂∗ = λ; otherwise, go to Step 3.

Step 3: Reset rk = r̃k, where r̃k = max{i ≥ rk : N̂k(λ̃k,i) ≤ 0}, for all k. Update λ in

Step 1 and repeat Steps 2 and 3 until the desired threshold vector λ̂∗ is obtained.

Step 4: Apply λ̂∗ to Equation (4) to obtain the classification rule δ̂λ̂
∗

S = (δ̂λ̂
∗

S1 , ..., δ̂
λ̂∗
Sm),

where {LISkj , k = 1, ..., K} should be replaced by {L̂IS
k

j , k = 1, ..., K}.

and λ̂∗ = (λ̂∗1, ..., λ̂
∗
K). Then, the data-driven classification rule is defined to be

δ̂λ̂
∗

S = (δ̂λ̂
∗

S1 , ..., δ̂
λ̂∗

Sm).

A simple and fast algorithm for calculating δ̂λ̂
∗

S is summarized in Table 4. The following

theorem establishes its asymptotic validity and optimality for the set-specific mFDR-control.

Theorem 4. For the HMM model (1), if all assumptions in Theorems 2 and 3 are valid,

then we have the following results: for each k = 1, ..., K,

(i) mFDRk
S(δ̂λ̂

∗
S ) = αk + o(1); and

(ii) ETPT(δ̂λ̂
∗

S )/ETPT(δλ
∗

S ) = 1 + o(1).

4 Simulation Studies

In this section, we investigate the numerical performance of the proposed oracle and

data-driven procedures and compare them with some alternative methods. In the simulation

study, the number of features to classify is fixed at m = 10000. The four-state Markov chain
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{(θ1j, θ2j), j = 1, ...,m} is generated using the initial state distribution π = (1, 0, 0, 0) and

the transition matrix

A =


0.94 0.02 0.02 0.02

h/3 1− h h/3 h/3

h/3 h/3 1− h h/3

h/3 h/3 h/3 1− h

 .

Given {(θ1j, θ2j), j = 1, ...,m}, the observations {(X1j, X2j), j = 1, ...,m} are generated as

follows: Xij ∼ N(0, 1) when θij = 0, and Xij ∼ N(µi, 1) when θij = 1, for i = 1, 2, j =

1, ...,m. As discussed in Remark 1, we focus on classifying the m features into either S0 =

{0}, S1 = {1}, S2 = {2}, or S3 = {3}. All simulation results presented in this section are

based on 200 replicated simulations. The EM algorithm for estimating the HMM parameters

in a normal mixture model is provided in the Supplementary file.

The following signal classification procedures are considered:

• the proposed oracle and data-driven procedures for the total and set-specific error

control problems, denoted as TO, TD, SO and SD, respectively, where “T” and “S”

in the first letter of a notation denote “total” and “set-specific”, and “O” and “D” in

the second letter of a notation denote “oracle” and “data-driven”;

• the oracle and data-driven procedures proposed by Xiang, Zhao and Cai (2019) for the

total and set-specific error control problems, in which it is assumed that {(θ1j, θ2j), j =

1, ...,m} are mutually independent over different j values. These procedures are de-

noted as ITO, ITD, ISO and ISD, where the first letter “I” in the notations denotes

“independent”, and the second and third letters have the same meanings as those in

the notations discussed in the previous item;

• a classification approach to analyze each sequence separately based on the related p-

values, denoted as SEP. Here, the procedure discussed in Genovese and Wasserman

(2004) is used for each sequence to control the marginal FDR. For the total error

control problem, the error levels in both sequences are set to be the same as α. For

the set-specific error control problem, the error levels in both sequences are set to be
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the same as the average of αk’s.

Several simulation settings are considered here. The first setting focuses on total marginal

error control. In this setting, the signal strengths µi’s can vary from 2.5 to 3.4, h can vary

from 0.2 to 0.4, and the nominal total mFDR α can vary from 0.05 to 0.2. The results are

presented in Figure 1. From the plots of the figure, it can be seen that the proposed oracle

and data-driven procedures TO and TD for the total error control problem can both control

the total mFDR at the nominal level in all cases considered, and the ETP values of TO is

almost the same as those of TD, indicating that the performance of TO could be attained

asymptotically by TD. In addition, the ETP values of TO and TD are significantly larger

than those of the other three methods, implying their superiority for the total error control

problem. As a comparison, although the oracle procedure of Xiang, Zhao and Cai (2019)

(i.e., ITO) can control the total mFDR at α, its data-driven version ITD cannot control

the mFDR well in the sense that its total mFDR values are a bit larger than the nominal

level. The main reason for this phenomenon is that the estimation accuracy involved in this

method would not be good when the observed data are correlated. As for the procedure SEP,

its total mFDR values are significantly larger than the nominal level, implying its invalidity

in this case. From Figure 1, we can have the following additional conclusions. First, we

can see from Figures 1(b) and 1(f) that the proposed procedures TO and TD are capable

of classifying most true signals correctly even when the signals are weak and the nominal

mFDR level is small, which represents a great breakthrough in developing effective signal

classification methods. Second, we can see from Figure 1(d) that all ETP curves decrease

as h increases, which is reasonable because the number of true signals also decreases in such

cases.

The second setting focuses on set-specific error control. Similar to the first simulation

setting, we let the signal strengths µi’s vary from 2.5 to 3.4, h vary from 0.2 to 0.4, and

the nominal set-specific mFDR values {αk, k = 1, 2, 3} be the same and their values vary

from 0.05 to 0.2. The results are presented in Figure 2. From the plots in the figure, we

see that the proposed procedures SO and SD can both control the set-specific mFDR levels

well, and have significantly larger ETP values in all cases considered, compared with their
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competitors.

In many applications, the signal strengths, state transition probabilities, and many

other settings may be more complicated than the symmetric settings considered in the

above simulation examples. So, we consider the following simulation example to investigate

the robustness of the proposed procedures. More specifically, the four-state Markov chain

{(θ1j, θ2j), j = 1, ...m} is first generated using the initial state distribution π = (1, 0, 0, 0)

and the transition matrix

A =


0.94 0.02 0.02 0.02

(h+ 0.1)/3 0.9− h (h+ 0.1)/3 (h+ 0.1)/3

h/3 h/3 1− h h/3

(h− 0.1)/3 (h− 0.1)/3 (h− 0.1)/3 1.1− h

 .

Given {(θ1j, θ2j), j = 1, ...,m}, the observations {Xij, i = 1, 2, j = 1, ...,m} are generated

from the distributions N(µi,Σ), where µi = (µi1, ..., µim)T , µ1j+0.5 = µ when θ1j = 1, µ2j−

1 = µ when θ2j = 1, µ1j = 0 when θ1j = 0, µ2j = 0 when θ2j = 0, and Σ = (0.5|j1−j2|)mj1,j2=1.

For the total error control, the nominal total mFDR level is fixed at α. For the set-specific

error control, the nominal set-specific mFDR levels are set to be α1 = 2α2 = α3/2 = α.

The results are presented in Figure 3. It can be seen that the efficacy and robustness of the

proposed methods are reasonably good in the sense that both the oracle and data-driven

procedures perform satisfactorily.

Finally, we investigate the performance of the proposed procedures in the presence of

model misspecification, specifically when the HMM assumption is invalid. To this end, we

focus on the total error control problem, and the set-specific error control problem exhibits

similar behavior based on our numerical results. More specifically, let us consider a case

when {(θ1j, θ2j), j = 1, ...,m} are assumed to be independent of each other, instead of follow-

ing an HMM. Given {(θ1j, θ2j), j = 1, ...,m}, the observations Xij, i = 1, 2, j = 1, ...,m are

generated from the multivariate normal distribution Nm(µi,Σ), where µi = (µi1, ..., µim)T

and µij = µI(θij = 1). The signal proportions are set to be (π00, π10, π01, π11) = (1 −

h, h/3, h/3, h/3), where h varies between 0.15 and 0.36. The signal strength µ varies be-

tween 2.8 and 3.4, and the nominal total mFDR α varies between 0.05 and 0.2. Figure 4
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presents the results of applying the TD procedure with two different covariance structures:

Σ = Im×m and Σ = (0.5|j1−j2|)mj1,j2=1. As a benchmark, the results of the ITO procedure

are also presented, as ITO is theoretically optimal under the independence assumption and

asymptotically optimal under short-range dependence (Xiang et al., 2019). From the plots of

the figure, we can make the following observations. (i) When there is no correlation among

the features, the performance of TD is very close to that of ITO, which demonstrates the

strong robustness and effectiveness of TD even in the absence of correlation. (ii) When

short-range dependence exists, TD still maintains good performance as long as the signal

strength µ is not too small. Based on these observations, we can conclude that the proposed

procedures are quite robust to model misspecification.

5 Application

In this section, we apply the proposed methods to study the genetic architectures of

schizophrenia (SCZ) and bipolar disorder (BD). It is well known that these two diseases

share similar genetic architectures and are affected simultaneously by some common genetic

variants. Thus, for more effective disease diagnosis, it is important to study genetic as-

sociations between SCZ and BD. For demonstration purposes, we use the single-nucleotide

polymorphisms (SNPs) dataset of SCZ and BD that was collected by two GWAS studies per-

formed by Ruderfer et al. (2014). Summary z-scores of the two studies are publicly available

at the webpage of the Psychiatric Genomics Consortium (https://www.med.unc.edu/pgc/).

After pruning the SNPs at a linkage disequilibrium r2 threshold of 0.5 obtained from the data

of the ‘1,000 genomes project’ (1,000 Genomes Project Consortium, 2015), 439,040 variants

remain for further analysis.

It is important to point out that human genome may not be entirely linear, as SNPs are

present on physically separate chromosomes. Previous studies in the literature have provided

strong evidence that when employing an HMM to capture SNP dependency, it is necessary

to treat each chromosome as an independent sequence. Furthermore, combining the testing

results from different chromosomes has been shown to yield greater efficiency (Wei et al.,
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Figure 1: Simulation results for the total mFDR control. Plots (a) and (b): h = 0.2 and

α = 0.1; plots (c) and (d): µ = 2.8 and α = 0.1; plots (e) and (f): µ = 2.8 and h = 0.2.
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Figure 2: Simulation results for the set-specific mFDR control. Plots (a), (d) and (g):

h = 0.2 and α = 0.1; plots (b), (e) and (h): µ = 2.8 and α = 0.1; plots (c), (f) and (i):

µ = 2.8 and h = 0.2.
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Figure 3: Robustness of the proposed procedures. Plots (a), (d), (g) and (j): h = 0.2 and

α = 0.1; plots (b), (e), (h) and (k): µ = 3.6 and α = 0.1; plots (c), (f), (i) and (l): µ = 3.6

and h = 0.2.
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Figure 4: Performance of TD in the presence of model misspecification. Results in plots

(a)-(f) are under Σ = Im×m, and those in plots (g)-(l) are under Σ = (0.5|j1−j2|)mj1,j2=1. Plots

(a), (d), (g) and (j): h = 0.2 and α = 0.1; plots (b), (e), (h) and (k): µ = 3.3 and α = 0.1;

plots (c), (f), (i) and (l): µ = 3.3 and h = 0.2.
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2009; Wang and Zhu, 2019). Therefore, in this study, we use the proposed procedures to

calculate the LIS statistics for each chromosome separately, and then the statistics calculated

from all the relevant chromosomes are combined to obtain the final results.

We first apply the proposed data-driven procedure TD for signal classification under

the total mFDR control problem to classify the SNPs into the sets G0 (SNPs insignificant

in either disease), G1 (SNPs significant in BD only), G2 (SNPs significant in SCZ only),

and G3 (SNPs significant in both diseases). The first row of Table 5 shows the numbers

of SNPs classified into the sets G1-G3 by using TD with α = 0.05. It can be seen that

majority significant SNPs are categorized into the class G3, which is consistent with findings

in the existing literature indicating a close genetic etiology relationship between SCZ and BD

(Huang et al., 2010). Notably, a large portion of the identified SNPs in G3 are concentrated

within certain specific genes, namely, IFI44L (on chromosome 1), ITIH4 (on chromosome 3),

ZNF184 (on chromosome 6), CACNB2 and SH3PXD2A (on chromosome 10), CACNA1C

(on chromosome 12), and PCNT (on chromosome 21), which are displayed in Figure 5.

From Figure 5, it can be seen that some features with high L̂IS
0

values are considered as

non-significant, while others with lower L̂IS
0

values are identified as signals, which supports

Remark 3.

It worths mentioning that the signal classification results of TD are consistent with

several previously reported findings. For instance, Ruderfer et al. (2014) identified genome-

wide significant SNPs in ITIH4 and CACNA1C that are associated with both BD and SCZ.

Ren et al. (2021) demonstrated that the gene ZNF184 is associated with a common factor

shared by BD, SCZ, and the major depressive disorder (MDD) at the genomic significance

level. Numata et al. (2009) illustrated the interaction between PCNT and disruption-in-

schizophrenia 1 (DISC1), a known genetic risk factor for both BD and SCZ. These findings

corroborate the signal classification results obtained from the TD procedure.

In some situations, however, SNPs in the sets G1 and G2 are more helpful than those

in G3 for differentiating patients with SCZ from those with BD. In such cases, despite all

three non-null classes remain of interest, finding SNPs in G1 and G2 is more important than

finding SNPs in G3. The proposed data-driven procedure SD for the set-specific mFDR
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Table 5: Numbers of SNPs classified by TD/SD and ITD/ISD into different sets of interest.

Method Nominal mFDR G1 G2 G3

TD α = 0.05 4 2 155

SD α1 = 0.1, α2 = 0.1, α3 = 0.01 36 18 23

ITD α = 0.05 1 2 54

ISD α1 = 0.1, α2 = 0.1, α3 = 0.01 2 4 8

Figure 5: Signal classification results by TD. The y-axis is − ln(1− L̂IS
0

j) with a larger value

indicating a larger L̂IS
0

j .
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control problem can be used to solve this problem by assigning different nominal mFDR

levels to different classes. To illustrate, the second row of Table 5 presents the numbers of

SNPs classified into the sets G1-G3 by SD with α1 = 0.1, α2 = 0.1 and α3 = 0.01. Note

that the thresholds for the sets G1 and G2 are set to be more liberal than that for the set

G3, to allow more discovered SNPs in the two former sets. It can be seen that compared

to TD, more disease-specific SNPs are indeed detected. In addition, most of the 36 SNPs

that are associated with BD are clustered within the genes KCNH7 (on chromosome 2),

HABP2 (on chromosome 10), and NFIX (on chromosome 19). These findings align with

two previous genome-wide association studies. More specifically, Kuo et al. (2014) reported

the association between KCNH7 and the risk of developing bipolar I disorder, while Ikeda

et al. (2018) identified NFIX as a susceptibility locus for BD. HABP2, also known as

FSAP, is involved in blood hemostasis and endothelial function and has been found to be

correlated with neurological deficits (Tian et al., 2022). This finding may provide a potential

explanation for BD. On the other hand, most of the 18 SNPs that are discovered specific to

SCZ are clustered in the genes CSMD1 (on chromosome 8) and NTRK3 (on chromosome

15). The former has association with variation in brain structures or risk of neuropsychiatric

disorder and plays a significant role in the etiology of SCZ (H̊avik et al., 2011), and the latter

was identified to have influence on human hippocampal function, implying a possible role in

SCZ pathology (Otnæss et al., 2009).

For comparison purposes, the dataset is also analyzed using ITD and ISD, assuming

independence among SNPs. The corresponding results are presented in the last two rows of

Table 5. Although it is challenging to validate the true mFDR level in real data analysis, we

can draw insights from the simulation results displayed in Figure 4. These simulations imply

that the proposed procedures remain valid even in the presence of model misspecification.

Here, we define a procedure as valid if it controls the mFDR at the nominal level. From

Table 5, it can be observed that TD and SD outperform ITD and ISD in terms of detecting

significant SNPs, while maintaining the same nominal mFDR levels. This indicates that the

proposed HMM-based TD and SD procedures are more effective in identifying signals than

ITD and ISD that assume independence among SNPs.
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6 Discussion

This paper focuses on the large-scale signal classification problem under a special form

of dependence (i.e., a four-state Cartesian HMM) for paired hypotheses. Under the total

and set-specific mFDR control scenarios, we have developed powerful oracle and data-driven

procedures under a generalized compound decision theoretic framework based on a general-

ized local index of significance. It has been shown both theoretically and numerically that

the proposed procedures are asymptotically valid and optimal for solving the two-sequence

signal classification problem.

Although the HMM model is helpful for describing the data dependence structure in

the two-sequence signal classification problem, it should be interesting to extend the pro-

posed procedures to cases with more general data dependence structures. In such cases, a

major challenge is that the asymptotic optimality of the data-driven procedures may not be

guaranteed since consistent estimates of the unknown model parameters may not be easy

to obtain. To the best of our knowledge, consistency of parameter estimates under other

general data dependence structures is still unknown in the literature. Thus, the optimality of

TO and SO may not be available in such cases, which deserves further research. In addition,

the proposed methods can be extended naturally to handle cases with more than two se-

quences of test statistics. For example, if there are three studies, there would be eight signal

classes. This problem can be solved by extending model (1) to have three studies instead

of two. Then, the proposed methods can be modified accordingly. However, as the number

of studies increases, the implementation of the related signal classification procedures could

be difficult. It is therefore important to develop powerful and efficient signal classification

methods for cases with a large number of studies, which will be considered in our future

research as well.

27



Supplementary Materials

Supplementary.pdf: The supplementary file contains the proofs of the theoretical results

presented in this paper.

CodeAndData.zip: Some computer codes for implementing the proposed methods and

the real data used in Section 5.

Acknowledgments

The authors want to thank the Editor, the Associate Editor, and anonymous referees

for their constructive comments and suggestions that improved the quality of the paper

significantly.

Disclosure Statement

The authors report there are no competing interests to declare.

Funding

This work was supported by the National Key R&D Program of China [2022YFA1003801;

2021YFA1000101; 2021YFA1000102], National Natural Science Foundation of China [12201382;

12071144; 71931004], Basic Research Project of Shanghai Science and Technology Commis-

sion (22JC1400800), and an NSF grant [DMS-1914639].

References

Basu, P., Cai, T. T., Das, K., and Sun, W. (2018). Weighted false discovery rate control

in large-scale multiple testing. Journal of the American Statistical Association, 113(523),

28



1172–1183.

Benjamini, Y., Heller, R., and Yekutieli, D. (2009). Selective inference in complex research.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineer-

ing Sciences, 367(1906), 4255–4271.

Bercovici, S., Meek, C., Wexler, Y., and Geiger, D. (2010). Estimating genome-wide IBD

sharing from SNP data via an efficient hidden Markov model of LD with application to

gene mapping. Bioinformatics, 26(12), i175–i182.

Bickel, P., Ritov, Y., and Rydén, T. (1998). Asymptotic normality of the maximum likelihood

estimator for general hidden Markov models. The Annals of Statistics, 26(4), 1614–1635.

Cai, T. T., Sun, W., & Xia, Y. (2021). LAWS: A locally adaptive weighting and screening

approach to spatial multiple testing. Journal of the American Statistical Association, 1–14.

Chung, D., Yang, C., Li, C., Gelernter, J., and Zhao, H. (2014). GPA: a statistical approach

to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS genetics,

10(11), e1004787.

Colella, S., Yau, C., Taylor, J. M., Mirza, G., Butler, H., Clouston, P., ... and Ragoussis, J.

(2007). QuantiSNP: an objective Bayes Hidden-Markov Model to detect and accurately

map copy number variation using SNP genotyping data. Nucleic acids research, 35(6),

2013–2025.

Efron, B. (2007). Correlation and large-scale simultaneous significance testing. Journal of

the American Statistical Association, 102(477), 93–103.

Genovese, C., and Wasserman, L. (2002). Operating characteristics and extensions of the

false discovery rate procedure. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 64(3), 499–517.

GTEx Consortium (2015). The Genotype-Tissue Expression (GTEx) pilot analysis: multi-

tissue gene regulation in humans. Science, 348(6235), 648–660.

29



H̊avik, B., Le Hellard, S., Rietschel, M., Lybæk, H., Djurovic, S., Mattheisen, M., ... and

Steen, V. M. (2011). The complement control-related genes CSMD1 and CSMD2 associate

to schizophrenia. Biological psychiatry, 70(1), 35–42.

Heller, R., and Yekutieli, D. (2014). Replicability analysis for genome-wide association stud-

ies. The Annals of Applied Statistics, 8(1), 481–498.

Huang, J., Perlis, R. H., Lee, P. H., Rush, A. J., Fava, M., Sachs, G. S., Lieberman, J.,

Hamilton, S. P., Sullivan, P., Sklar, P., Purcell, S., and Smoller, J. W. (2010). Cross-

disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. American

Journal of Psychiatry, 167(10), 1254–1263.

Ikeda, M., Takahashi, A., Kamatani, Y., Okahisa, Y., Kunugi, H., Mori, N., ... and Iwata, N.

(2018). A genome-wide association study identifies two novel susceptibility loci and trans

population polygenicity associated with bipolar disorder. Molecular psychiatry, 23(3), 639–

647.

Kuo, P. H., Chuang, L. C., Liu, J. R., Liu, C. M., Huang, M. C., Lin, S. K., ... and Lu, R.

B. (2014). Identification of novel loci for bipolar I disorder in a multi-stage genome-wide

association study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 51,

58–64.

Leroux, B. (1992) Maximum-likelihood estimation for hidden Markov models. Stochastic

processes and their applications, 40(1), 127–143.

Li, G., Jima, D., Wright, F. A., and Nobel, A. B. (2018a). HT-eQTL: integrative expression

quantitative trait loci analysis in a large number of human tissues. BMC bioinformatics,

19(1), 1–11.

Li, G., Shabalin, A. A., Rusyn, I., Wright, F. A., and Nobel, A. B. (2018b). An empirical

Bayes approach for multiple tissue eQTL analysis. Biostatistics, 19(3), 391–406.

Li, W., Xiang, D., Tsung, F., and Pu, X. (2020). A diagnostic procedure for high-dimensional

data streams via missed discovery rate control. Technometrics, 62(1), 84–100.

30



Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., ... and Moore, H. F.

(2013). The genotype-tissue expression (GTEx) project. Nature genetics, 45(6), 580–585.

Numata, S., Iga, J. I., Nakataki, M., Tayoshi, S. Y., Tanahashi, T., Itakura, M., ... and

Ohmori, T. (2009). Positive association of the pericentrin (PCNT) gene with major de-

pressive disorder in the Japanese population. Journal of Psychiatry and Neuroscience,

34(3), 195–198.

1000 Genomes Project Consortium. (2015). A global reference for human genetic variation.

Nature, 526(7571), 68.

Otnæss, M. K., Djurovic, S., Rimol, L. M., Kulle, B., Kähler, A. K., Jönsson, E. G., ... and

Andreassen, O. A. (2009). Evidence for a possible association of neurotrophin receptor

(NTRK-3) gene polymorphisms with hippocampal function and schizophrenia. Neurobiol-

ogy of disease, 34(3), 518-524.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2), 257–286.

Ren, H., Meng, Y., Zhang, Y., Wang, Q., Deng, W., Ma, X., ... and Li, T. (2021). Spatial

expression pattern of ZNF391 gene in the brains of patients with schizophrenia, bipolar

disorders or major depressive disorder identifies new cross-disorder biotypes: A trans-

diagnostic, top-down approach. Schizophrenia Bulletin, 47(5), 1351–1363.

Ruderfer, D. M., Fanous, A. H., Ripke, S., McQuillin, A., Amdur, R. L., Gejman, P. V.,

... and Kendler, K. S. (2014). Polygenic dissection of diagnosis and clinical dimensions of

bipolar disorder and schizophrenia. Molecular psychiatry, 19(9), 1017–1024.

Sun, W., and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false

discovery rate control. Journal of the American Statistical Association, 102(479), 901–

912.

Sun, W., and Cai, T. T. (2009). Large-scale multiple testing under dependence. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 71(2), 393–424.

31



Tian, D. S., Qin, C., Zhou, L. Q., Yang, S., Chen, M., Xiao, J., ... and Wang, W. (2022).

FSAP aggravated endothelial dysfunction and neurological deficits in acute ischemic stroke

due to large vessel occlusion. Signal Transduction and Targeted Therapy, 7(1), 6.

Torres, J. M., Gamazon, E. R., Parra, E. J., Below, J. E., Valladares-Salgado, A., Wacher,

N., Cruz, M., Hanis, C. L., and Cox, N. J. (2014). Cross-tissue and tissue-specific eQTLs:

partitioning the heritability of a complex trait. The American Journal of Human Genetics,

95(5), 521–534.

Urbut, S. M., Wang, G., Carbonetto, P. and Stephens, M. (2019) Flexible statistical methods

for estimating and testing effects in genomic studies with multiple conditions. Nature

genetics, 51(1), 187–195.

Wang, J., Gui, L., Su, W. J., Sabatti, C., and Owen, A. B. (2016). Detecting multiple

replicating signals using adaptive filtering procedures. arXiv preprint arXiv:1610.03330.

Wang, P., and Zhu, W. (2019). Replicability analysis in genome-wide association studies via

Cartesian hidden Markov models. BMC bioinformatics, 20(1), 1–12.

Wei, Z., Sun, W., Wang, K., and Hakonarson, H. (2009). Multiple testing in genome-wide

association studies via hidden Markov models. Bioinformatics, 25(21), 2802–2808.

Xiang, D., Qiu, P., Wang, D., and Li, W. (2022). Reliable Post-Signal Fault Diagnosis for

Correlated High-Dimensional Data Streams. Technometrics, 64(3), 323–334.

Xiang, D., Zhao, S. D., and Cai, T. T. (2019). Signal classification for the integrative analysis

of multiple sequences of multiple tests. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 81(4), 707–734.

Zhao, S. D., and Nguyen, Y. T. (2020). Nonparametric false discovery rate control for iden-

tifying simultaneous signals. Electronic Journal of Statistics, 14(1), 110–142.

32


	Introduction
	Problem Formulation
	Some definitions
	Signal classification in a hidden Markov model

	Proposed Statistical Methodology
	Oracle procedures
	Data-driven procedures

	Simulation Studies
	Application
	Discussion

