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SUMMARY

Motivated by a clinical trial of zinc nasal spray for the treatment of the common cold, we consider
the problem of comparing two crossing hazard rates. A comprehensive review of the existing methods
for dealing with the crossing hazard rates problem is provided. A new method, based on modelling the
crossing hazard rates, is proposed and implemented under the Cox proportional hazards framework. The
main advantage of the proposed method is the utilization of the Box–Cox transformation which covers a
wide range of hazard crossing patterns. Simulation studies are conducted for comparing the performance
of the existing methods and the proposed one, which show that the proposed method outperforms some
of its peers in certain cases. Applications to a kidney dialysis patients data and the zinc nasal spray
clinical trial data are discussed. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In clinical trials, the primary outcome is often de�ned as the time to occurrence of a clinically
important event. For instance, for life-threatening diseases, such as cancer, cardiovascular
diseases, and AIDS, the most relevant endpoint is often to evaluate treatment e�ects by
investigating patients’ survival times. For infectious diseases, with which patients’ full recovery
is possible, we are often interested in the time to resolution of the disease. In this kind of
survival data, some type(s) of data censoring, such as the right censoring, interval censoring,
and so forth, is often involved. See, e.g. Reference [1] for a detailed discussion.
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Figure 1. Life-table estimates of the two hazard rates of cold resolution for the treatment and
control groups in the zinc nasal spray study. Time is in unit of days.

To evaluate treatment e�ects in these cases, the logrank, Gehan–Wilcoxon, and Peto–Peto
tests, among several others, are routinely used in practice for handling censored data (cf., e.g.
Reference [1], Chapter 7). It is well known in the literature that the logrank test is optimal
when the two hazard rates of the treatment and control groups are proportional. However, the
assumption of proportional hazard rates is obviously violated when the two hazard rates cross
each other at some unknown time point. Therefore, new statistical methodologies are needed
for evaluating treatment e�ects in cases with crossing hazard rates. This problem is the focus
of the current paper.
The crossing hazard rates phenomenon is often seen when the treatment has quite di�erent

e�ects during di�erent stages of a disease. An immediate example is provided by a recent
clinical trial study for evaluating the e�ect of zinc nasal spray on curing common cold, which
was performed by a research group in Marsh�eld Clinic at Wisconsin. Since the data from
this study will be further analysed in Section 4, we provide a brief description of it here.
Interested readers can see Reference [2] for a detailed description. This study was carried out
as a randomized, double-blinded, placebo-controlled clinical trial, for investigating whether
zinc nasal spray could shorten cold duration, and/or lessen cold symptom severity. A total
of 160 patients were recruited to this study. For each patient, his or her daily cold symptom
scores were recorded, and then the cold duration was determined from them. Statistical analysis
included in Reference [2] did not �nd any signi�cant treatment e�ect regarding cold duration;
further investigation of the daily symptom scores suggested a transient reduction of symptom
severity in the early stage of the medical treatment. The life-table estimates of the two hazard
rates of cold resolution for the treatment and control groups are shown in Figure 1, from
which it can be seen that they cross each other around the sixth day. Consequently, both the
logrank and Gehan–Wilcoxon tests used by Belongia et al. [2] have little power in testing
their di�erence, because these conventional tests could not usually handle the crossing hazard
rates problem properly. Therefore, it is interesting to investigate whether the non-signi�cance
results from the conventional tests are because of the ine�ective treatment, or if they are mainly
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caused by the insensitivity of the statistical tests to the crossing pattern. In addition, in this
study, the treatment group showed somewhat lower symptom scores at baseline. Therefore, it
is also interesting to evaluate treatment e�ects after adjusting the baseline symptom scores,
which can be treated as a covariate in this study.
For the crossing hazard rates problem, people may think that it is more convenient to check

whether the two corresponding survival functions cross each other by looking at their Kaplan–
Meier estimates. Since the survival function is a monotone transformation of the cumulative
hazard function, it is easy to establish the following interesting relationship between the
crossing of survival functions and the crossing of hazard rates. If two continuous survival
functions cross each other once, then the corresponding hazard rates must cross each other
at least once. However, the reverse is not true. It is possible that two survival functions do
not cross, but their hazard rates cross very often. These results indicate that we still need to
check whether the two hazard rates cross each other, even if their survival functions do not
cross. That is, the former problem cannot be replaced by the latter one.
In the literature, there are several existing methods for testing whether two hazard rates

cross each other. We conduct a comprehensive survey of these methods in Section 2, after
the problem of crossing hazard rates is formally formulated. Then, in the same section, our
proposed method and its major features are discussed. In Section 3, the proposed method is
compared with several existing ones in some simulation examples. All the related methods
are then applied to a kidney dialysis patients data and the zinc clinical trial data in Section 4.
Finally, several remarks conclude the article in Section 5.

2. CROSSING HAZARD RATES: THE PROBLEM, EXISTING METHODS,
AND PROPOSED METHOD

In this section, we �rst formulate the crossing hazard rates problem in statistical terms
(Section 2.1), then provide a comprehensive review of existing methods that can be used
for handling this problem (Section 2.2), and �nally describe in details our proposed method
and its major features (Section 2.3).

2.1. The problem

The crossing hazard rates problem has been discussed by several authors (e.g.
References [3–6]). In the literature, people are usually interested in testing the equality of
two hazard rates against the speci�c alternative of crossing hazard rates. In this paper, we
follow this tradition. Let h0 and h1 be the hazard rates of the survival times of the subjects
in the control and treatment groups, respectively. Based on two censored samples of sizes n0
and n1 from the two groups, we want to test

H0 : h1(t)= h0(t); for all t ∈ [0; �]
vs Ha : h1 and h0 cross each other at one point �∈ [0; �] (1)

where � is the crossing time point, [0; �] is the time range of interest, and � is usually taken
to be the largest observed survival time in the data (e.g. Reference [1], Chapter 7). For the
crossing time point �, we also want to construct its con�dence interval.
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In this article, we assume that the two hazard rates are both continuous, which is a con-
vention in the survival analysis literature. This convention is also adopted by most authors in
handling the crossing hazard rates problem. See next subsection for introduction about some
existing methods on this topic. Then, the alternative hypothesis in (1) has two possibilities.
One is that h1(t)¡h0(t) when t¡�, h1(t)= h0(t) when t= �, and h1(t)¿h0(t) when t¿�. In
such cases, the treatment has bene�ts only in the early stage of the disease; it does not have
any long-term advantages. As an example, radiation and chemotherapy can usually improve
short-term patients’ survivals; but they have little or no long-term medical bene�ts. The other
possibility is that h1(t)¿h0(t) when t¡�, h1(t)= h0(t) when t= �, and h1(t)¡h0(t) when
t¿�. Treatments of this type have bene�ts in the long run; but they may increase the risk in
the early stage of the disease. Surgery is a good example of this type of medical treatments—
due to infection and other short-term risks, it may cause high mortality in a short period after
surgery. But, in the long run, most surgeries could improve patients’ health conditions.
Besides testing the hypotheses in (1) and constructing a con�dence interval for the crossing

time point �, we are also interested in these statistical inferences after adjusting the e�ect of
some confounding covariates. In the zinc clinical trial example described in Section 1, one
important confounding covariate is the baseline cold symptom score. As an aside, in the
current paper, we are not interested in the case when two hazard rates cross at two or more
places, since this situation is not common in practice.

2.2. The existing methods

The crossing hazard rates problem has received much attention from some statisticians since
1980s. Fleming et al. [7] proposed a modi�ed Kolmogorov–Smirnov statistic for comparing
two crossing hazard rates. Gill [8] suggested a supremum version of the weighted logrank
tests, which is often called the Renyi-type test in the literature. Three other tests, which are
all analogues of common non-parametric tests for uncensored data, including the Cramer–Von
Mises test, were discussed by Klein and Moeshberger ([1], Section 7.7). Recently, Lin and
Wang [9] suggested a test statistic, by measuring the squared di�erence between the treatment
and control groups, for testing whether the two hazard rates are equivalent. All these tests
mentioned above are expected to have greater sensitivity to crossings of two hazard rates,
compared to the logrank test and other conventional tests, because they avoid early di�erences
between the two hazard rates being cancelled out by late di�erences of opposite signs in the
hazard rates, which occurs when a conventional test is applied to a case with crossing hazard
rates. However, due to their omnibus nature, these tests, which are referred to as the �rst
class of methods in the remaining parts of the article, would have reduced power in testing
hypotheses with speci�c alternatives, such as the one in (1).
The second class of methods handle the crossing hazard rates problem by choosing special

weights in the weighted logrank test. The conventional weights, such as the logrank, Gehan,
Peto–Peto, and Fleming–Harrison weights (see Reference [1], Chapter 7), are all positive.
Consequently, when two hazard rates cross, the early di�erences in favour of one group
would be cancelled out by the late di�erences in favour of the other group, as mentioned
above. A natural solution to this problem is to use a weighting scheme that changes its sign
before and after the crossing point. This is the major idea behind the method proposed by
Mantel and Stablein [10]. More speci�cally, when the crossing point � is given, Mantel and
Stablein suggested using weights wi=1 when ti¡� and wi= − 1 when ti¿�. The resulting
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statistic is denoted by W�. If the crossing point � is unknown, then they suggested using the
test statistic W = sup� W�. To use this test, the null distribution of W should be determined
by simulation, since its theoretical expression and/or asymptotic results are not available yet.
An alternative weighting scheme was proposed by Moreau et al. [11], which is de�ned by
wi=1 + log(− log(Ŝi)), where Ŝi is the estimate of the survival function at ti used in the
Peto–Peto test [12]. It can be checked that, using this weighting scheme, weights are initially
negative and then become positive after the value of Ŝi falls below 0.69. It has been shown
that this weighting scheme provides an optimal test against the speci�c alternative hypothesis

Ha : �1(t)= (�0(t))b

where �0(t) and �1(t) are the cumulative hazard functions of the control and treatment
groups, respectively, and b �=1 is a positive constant. The null hypothesis corresponds to the
case when b=1. The above alternative hypothesis implies that

h1(t)= bh0(t)(�0(t))b−1

Therefore, when b¿1(¡1), it is actually assumed that the hazard ratio is below (above) 1
up to a certain time point, and then above (below) 1 beyond that time point. The two hazard
rates cross each other at the time point � satisfying the condition that b(�0(�))b−1 = 1.
The third class of methods employs the modelling approach. Anderson and Senthilselvan [3]

considered the following model:

h1(t)= h0(t) exp(�1I(t6�)− �2I(t¿�)) (2)

where �1 and �2 are two coe�cients. Model (2) assumes that the log hazard ratio equals
�1 when t6�, and changes to −�2 when t¿�. To implement this approach, they �rst esti-
mated � using the maximum-likelihood method, and then tested for �’s after replacing � by its
estimate and treating the estimate as �xed. Obviously, this procedure is only approximately
valid, because the substitution of � by its estimate would actually change the distribution
of �̂’s. The main theoretical di�culty of this problem is that � is un-identi�able under the
null hypothesis. To get rid of this di�culty, O’Quigley and Pessione [5] and O’Quigley [6]
suggested some modi�cations using resampling techniques, which will be further discussed in
the next subsection. Related research in this direction includes the general non-proportional
hazard modelling approach suggested by O’Quigley and Pessione [13], of which the crossing
hazard rates problem is a special case, and the recent procedure for testing erosion of regres-
sion e�ect suggested by O’Quigley and Natarajan [14]. An alternative modelling approach
was suggested by Breslow et al. [4]. Their model is de�ned by

h1(t)= h0(t) exp(�+ �z(t))

where z(ti)= i (i.e. rank score), or, z(ti)=
∑

j6i 1=nj (i.e. cumulative hazard score). Based on
this model, a test was suggested for testing the acceleration of the hazard function. Together
with the logrank test, this test can be used for testing the di�erence between two crossing
hazard rates.
Comparing the three classes of methods described above for handling the crossing hazard

rates problem, we would expect that the second (i.e. those by choosing special weights) and
the third (i.e. those based on models) classes of methods are more powerful for testing dif-
ferences between two crossing hazard rates, because they are designed for testing the speci�c
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crossing hazard rates alternative (i.e. the alternative in (1)), instead of some more general
alternatives considered by the �rst class of methods. Between the second and third classes of
methods, those model-based methods would have the advantage in accommodating covariates
relatively easily. However, the two existing models described above have some obvious draw-
backs. First, the assumptions required by these models might be problematic from theoretical
viewpoint. For instance, the Anderson and Senthilselvan’s model assumes that the hazard
ratio changes its value abruptly at the crossing point, which may occur only in very lim-
ited situations. In most cases, the more conventional ‘continuous hazards’ assumption might
be more appropriate (note that the hazard ratio is also continuous under this assumption). In
Breslow et al.’s model, the function z(t) is random, which may not be appropriate for describ-
ing a non-random hazard ratio. Second, both models assume very special parametric forms
for the hazard ratio; these forms may not be �exible enough to include other crossing patterns
that may be possible in applications.

2.3. The proposed method

Our method adopts the modelling approach because of its major bene�ts mentioned above,
including the �exibility in accommodating covariate e�ects which is necessary in analysing
the zinc nasal spray data. To this end, the following model is suggested for describing the
hazard ratio:

h1(t)= h0(t) exp{�[BC�(t)− BC�(�)]} (3)

where BC�(t) is a modi�ed Box–Cox transformation of t, de�ned by

BC�(t)=

{
t� if � �=0
log(t) if �=0

� and � are two coe�cients, �∈ [0; �] is the crossing time point, and [0; �] is the time range of
interest. Note that the conventional Box–Cox transformation de�nes BC�(t)= (t�−1)=� when
� �=0. In the expression �[BC�(t) − BC�(�)] of (3), the constant term −1=� of (t� − 1)=� is
cancelled out and the denominator � can be absorbed into �. Thus, the above more concise
expression is adopted here, without losing any �exibility of the model.
Depending on the values of � and �, model (3) assumes that the hazard ratio is either below

1 when t¡� and above 1 when t¿�, or the other way around. Clearly, this model allows
the hazard ratio to change continuously over time, which is an advantage over the Anderson
and Senthilselvan’s model, as discussed at the end of Section 2.2. Unlike the Breslow et al.’s
model, there are no random items used in (3). So, this model is well de�ned. In addition, this
model allows more functional forms for the hazard ratio, compared to the two existing ones.
Therefore, it can be applied to more applications. As an aside, it can be checked that model
(3) with �=0 is equivalent to the model speci�ed in the alternative hypothesis of the testing
problem considered by Moreau et al. [11] in the case when the distribution of the survival
time is Weibull.
Model (3) can be re-written as

hx(t)= h0(t) exp{�[BC�(t)− BC�(�)]x}
where x=0 or 1, and it is a group indicator with 0 denoting the control group and 1 denoting
the treatment group. This form of the model is convenient to use, especially when covariates
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need to be considered. In the case when a p-dimensional covariate vector Z is involved, for
instance, it can be easily accommodated into the model as follows:

hx(t)= h0(t) exp{�[BC�(t)− BC�(�)]x + �′Z} (4)

where � is a p× 1 coe�cient vector.
Model (3) assumes that the hazard ratio has the same functional form before and after the

crossing point. If for some reason we believe that the functional form of the hazard ratio could
be di�erent on two di�erent sides of the crossing point, then model (3) can be generalized to

h1(t)= h0(t) exp{�1[BC�1 (t)− BC�1 (�)]I(t6�) + �2[BC�2 (t)− BC�2 (�)]I(t¿�)}
where �1; �2; �1 and �2 are coe�cients. Of course, possible covariates can also be included
in this model, as in model (4). Note that the above model includes the case when the two
hazard rates are di�erent before the crossing point and equal after the crossing point (e.g. the
case when �2 = 0) and the case when they are equal before the crossing point and di�erent
after the crossing point (e.g. the case when �1 = 0).
To estimate parameters in model (3), we follow the idea proposed in Reference [15] to

�nd the maximum-likelihood estimates in two steps. First, for given �, we estimate � and �
values that maximize the likelihood, which can be accomplished by the Cox proportional haz-
ards modelling incorporated in some standard statistical software packages (e.g. the function
coxph() in S-plus or R, and PROC PHREG in SAS). In the second step we plot the maxi-
mized likelihood against � to identify the maximizer of �. To ease computer implementation,
the grid search algorithm can also be employed for �nding the grid point of � resulting in
the maximum likelihood, as the �nal estimate of �. Then, the point estimates of � and � can
be obtained simultaneously.
It can be seen that hypothesis testing of (1) is equivalent to testing of

H0 : �=0 vs Ha : � �=0 (5)

If � and � in model (3) are known, then testing for (5) can be accomplished by some standard
tests, such as the Wald test. In applications, however, � and � are usually unknown. In such
cases, we can adopt the strategy of Reference [3], by performing the Wald test for � after �
and � are replaced by their estimates. However, according to several authors, including [6],
and our own numerical experience, this approach fails to control the type I error properly,
mainly because the variability of �̂ is underestimated after � and � are replaced by their
estimates. Theoretically, the real problem is that, under H0, all parameters disappear from the
model, and thus, � and � are unidenti�able. In such cases, the likelihood ratio test cannot
be used either, because the number of constraints under H0 and the number of parameters
disappearing from the model when H0 is true are di�erent, and consequently it is hard to
�gure out the appropriate degrees of freedom for the test.
Davies [16, 17] proposed a method for handling a similar problem, by which the related

test statistic was �rst computed based on �xed values of the nuisance parameter, and then
the maximum of the test statistic values over the range of possible values of the nuisance
parameter was used for testing purposes. This method was applied to the crossing hazard
rates problem by O’Quigley and Pessione [5] when they tried to derive an appropriate testing
procedure for Anderson and Senthilselvan’s modelling approach. In addition, O’Quigley and
Pessione suggested a direct bootstrap method and showed that it was appropriate for testing
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Figure 2. Plots (a)–(c) show the bootstrap estimates of the distribution of ̂� when the
control distribution is Weibull(2:0; 1:0) and the treatment distribution is Weibull(2:0; 1:0),

Weibull(1:8; 1:0) and Weibull(1:5; 1:0), respectively.

the crossing hazard rates problem formulated by Anderson and Senthilselvan’s model. We
tried Davies’s method in our case; but, the results were not satisfactory. However, from
simulations, we found that the direct bootstrap method performed well in our case after it is
adapted to our modelling approach.
The adapted direct bootstrap method works as follows. From bootstrap samples obtained

from the original data, we can obtain a bootstrap estimate of the distribution of �̂. As
O’Quigley and Pessione [5] observed, the limit distribution of this bootstrap estimate is
bimodal and symmetric about zero when H0 is true, which is demonstrated by Figure 2.
In this �gure, plot (a) shows the density of 1000 bootstrap estimates of � when the treatment
and control populations has the same distribution Weibull(2:0; 1:0). In this case, H0 holds and
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it can be seen that the distribution of �̂ is indeed bimodal and symmetric about zero. Plots
(b) and (c) show the same results when the control distribution is Weibull(2:0; 1:0) and the
treatment distribution is Weibull(1:8; 1:0) and Weibull(1:5; 1:0), respectively. It can be seen
that, when moving away from H0, bimodality of the distribution of �̂ is still maintained;
but, the distribution becomes skewed. This �nding is the major motivation for O’Quigley and
Pessione to propose a non-parametric test of H0 based on the test statistic T = min{B∗(0);
1−B∗(0)}, where B∗(u)=

∫ u
−∞ b

∗(w) dw and b∗ is the empirical bootstrap density of �̂. It can
be easily checked that T reaches its maximum when H0 holds, and it becomes smaller when
moving away from H0. Thus, by this testing procedure, the null hypothesis is rejected when
T is small. Simulations from both O’Quigley and Pessione [5] and ours show that, under H0,
T is uniformly distributed over the range [0; 0:5]. Therefore, p-value of the direct bootstrap
procedure is simply 2t, where t is the observed value of the test statistics T . In other words,
if we resample from the treatment and control samples, respectively, for nB times, we can
compute the p-value by 2 min(n+B ; n

−
B )=nB, where n

+
B and n

−
B denote the numbers of positive

and negative values of the test statistic computed from the nB bootstrap samples.
The con�dence interval for � can also be constructed by the bootstrap method as follows.

From the given data, we draw nB bootstrap samples, as described above. Then, nB values
of the point estimate of � can be computed, from which a con�dence interval for � can be
constructed. In order to ensure that the estimate of � is non-negative, we suggest that in
constructing the con�dence interval for �, � is transformed to log(�) �rst, prior to application
of the bootstrap method.
At the end of this section, we would like to point out that, like other modelling procedures

for handling the crossing hazard rates problem, the proposed procedure only considers the null
hypothesis of equal hazard rates and the alternative hypothesis of crossing hazard rates in (5).
In other words, some realistic cases, e.g. the cases when the two hazard rates are parallel
to each other or when they are neither parallel nor crossing, are not covered by its null and
alternative hypotheses. Therefore, this procedure is appropriate to use only in cases when our
major goal is to test the existence of crossing in the two hazard rates and construct a con�dence
interval for the crossing time point when there is evidence for a crossing point based on visual
display of the two hazard rates. One such case is the zinc nasal spray example mentioned in
Section 1, in which the proposed procedure is appropriate to use, because Figure 1 suggests
that the two hazard rates may cross each other. In such cases, our procedure can be used to
test whether the crossing is real or it is caused by random variation.

3. A SIMULATION STUDY

In this section, we present some simulation results to compare the performance of the pro-
posed procedure with some existing ones. In the literature, most existing methods for compar-
ing crossing hazard rates are discussed when there is no covariate involved. For this reason,
the proposed procedure (PP) is compared to the existing methods in this setting �rst. The
existing procedures considered here include: the modi�ed Kolmogorov–Smirnov procedure
(KS), the Renyi-type test (RE), the procedure by Mantel and Stablein ([10], MS), the pro-
cedure by Lin and Wang ([9], LW), the modelling approach by Anderson and Senthilselvan
([3], AS), and the modelling approach by Breslow et al. ([4], BR). All these procedures are
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Figure 3. Plots (a)–(c) show the hazard rates in cases I–III, respectively.

described in Section 2.2; they cover all three classes of methods for handling crossing hazard
rates. Breslow et al.’s procedure has two versions, i.e. the one based on rank score and the
one based on cumulative hazard score. They are denoted by BR1 and BR2, respectively. To
see how traditional testing procedures perform when two hazard rates cross, three routinely
used ones are also included here, which are the logrank (LR), Gehan–Wilcoxon (GW) and
Peto–Peto (PE) procedures. For all the procedures mentioned above, only procedures PP, AS
and MS provide point estimates of the crossing time � explicitly.
We consider three di�erent patterns of crossing hazard rates here, which are illustrated by

Figure 3(a)–(c), respectively. In case I, the survival time has Weibull(1:5; 1:0) distribution
in the control group and Weibull(2:0; 1:0) distribution in the treatment group, and the true
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crossing point is �=0:563. In this case, the shape of the two hazard rates look similar
to that in the zinc data (cf. Figure 1). In case II, the survival time has Exponential(1:0)
distribution in the control group and the hazard of the treatment group is de�ned by model
(3) with �=2:0, �=0:2 and �=1:0. In case III, the survival time still has Exponential(1:0)
distribution in the control group; but, in the treatment group, its hazard rate is de�ned by the
Anderson and Senthilselvan’s model (2) with �1 =�2 = − 0:3 and �=1:0. These three cases
are chosen under the following considerations. The �rst case is similar to what happened in
the zinc clinical trial, which motivates the current research. The second case can be described
well by our model (3), but not the two existing models described in Section 2.2. So, this
case is favourable to the proposed procedure. The third case is speci�ed by Anderson and
Senthilselvan’s [3] model (2). Although this case may not be realistic in applications due to
a jump in hazard rate at t=1:0, it is considered here to see how the proposed procedure
performs in cases favourable to Anderson and Senthilselvan’s model.
In each case, two groups of survival data are generated as follows. Each group has 100

observations with the censoring rate chosen as either 0 per cent (i.e. no censoring) or 20
per cent. Censoring time is uniformly distributed on [0; �], where � is the maximum survival
time observed in the simulated data, and the censoring time is independent of the survival
time.
For each method, we computed its actual size (i.e. probability of type I error) and power.

For the three methods of PP, AS and MS, MSE and Bias of their point estimates of the
crossing point are also provided. Note that point estimates of procedures MS and AS can
only be presented in intervals, since these two procedures search for their point estimates at
the observed survival times only and all points in the interval of two consecutive survival
times would give the same value of the related test statistic. When we compute the MSE
and Bias values for these two procedures, middle points of the obtained intervals are used as
their point estimates. Computation of the size and power of the procedure PP is based on the
direct bootstrap method with nB=1000, as discussed at the end of Section 2.3.
Tables I–III summarize the results in cases I–III, respectively, based on 1000 replica-

tions. From Table I, we can observe that: (1) the third class methods tend to have the best
performance, followed by the second class methods, and then by the �rst class methods; (2)
the proposed procedure PP is superior to the other modelling procedures in terms of power,
MSE, and Bias for this particular case; (3) the three traditional tests LR, GW, and PE perform
noticeably worse than the other methods considered when the two hazard rates cross; and (4)
it seems that type I error is controlled well by all methods considered. Results in Table II
show similar �ndings. As expected, in case III, we can see from Table III that the proposed
procedure PP performs slightly worse than procedures AS and MS; it has similar power to
those of procedures BR1 and BR2; and it performs better than the remaining procedures.
Next, we consider the case when one binary covariate Z is included in model (4) with � as

its coe�cient. When Z =0, the two hazard rates are chosen to be those shown in Figure 3(a).
Parameter � is chosen to be log(1:5); log(2:0), or log(2:5). Please note that the two hazard
rates cross at the same position in the two cases when Z =1 and 0, because inclusion of the
covariate Z does not change the ratio of the two hazard rates. As before, the censoring rate is
chosen to be either 0 per cent or 20 per cent in this example, and the sample size n is �xed
at 100. In each group of the data, the �rst half observations are assigned the value of Z =0,
and the second half are assigned the value of Z =1. Results based on 1000 replications are
summarized in Table IV. From the table, it can be seen that both the power of the proposed
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Table I. Powers and sizes of various methods for comparing two hazard rates
in case I. For procedures PP, MS, and AS, MSEs and Biases of the point

estimates of the crossing time are also provided.

Method Censoring (%) Power Size MSE Bias

PP 0 0.937 0.053 0.017 0.003
20 0.796 0.049 0.022 0.003

KS 0 0.305 0.050
20 0.318 0.048

RE 0 0.179 0.046
20 0.156 0.051

MS 0 0.888 0.053 0.038 0.016
20 0.722 0.052 0.042 0.003

LW 0 0.612 0.045
20 0.367 0.044

AS 0 0.850 0.037 0.034 0.012
20 0.693 0.046 0.038 −0:002

BR1 0 0.904 0.054
20 0.796 0.052

BR2 0 0.806 0.049
20 0.696 0.049

LR 0 0.165 0.050
20 0.071 0.053

GW 0 0.116 0.051
20 0.202 0.050

PE 0 0.116 0.051
20 0.151 0.051

test for � and the accuracy of the point estimate of � are a�ected just slightly by the inclusion
of the covariate.

4. APPLICATIONS TO A KIDNEY DIALYSIS PATIENTS DATA
AND THE ZINC NASAL SPRAY DATA

In this section, we apply the methods for handling the crossing hazard rates problem to two
real-data examples. One is the kidney dialysis patients data described in details by Klein and
Moeschberger ([1], Section 1.4), and the other is the zinc nasal spray data as described in
Section 1.
We �rst discuss the kidney dialysis patients data which were taken from a study designed

to assess the time to �rst exit-site infection (in months) in 119 patients with renal insuf-
�ciency, among which 43 patients utilized a surgically placed catheter (Group 1) and 76
patients utilized a percutaneous placement of their catheter (Group 2). Catheter failure was
the primary reason for censoring. There are 27 censored observations in Group 1 and 65
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Table II. Powers and sizes of various methods for comparing two hazard rates
in case II. For procedures PP, MS, and AS, MSEs and Biases of the point

estimates of the crossing time are also provided.

Method Censoring (%) Power Size MSE Bias

PP 0 0.987 0.052 0.108 −0:012
20 0.804 0.050 0.122 −0:016

KS 0 0.261 0.047
20 0.205 0.047

RE 0 0.170 0.049
20 0.135 0.046

MS 0 0.727 0.050 0.194 −0:113
20 0.478 0.047 0.212 −0:133

LW 0 0.876 0.040
20 0.522 0.039

AS 0 0.631 0.038 0.182 −0:115
20 0.403 0.039 0.198 −0:128

BR1 0 0.821 0.050
20 0.552 0.045

BR2 0 0.951 0.046
20 0.761 0.046

LR 0 0.092 0.050
20 0.045 0.049

GW 0 0.136 0.051
20 0.167 0.049

PE 0 0.136 0.051
20 0.151 0.049

censored observations in Group 2. These data were also analysed by Lin and Wang [9], from
which it can be seen that the two survival functions cross at a quite early time. The methods
discussed in the previous section are then applied to this example to test for equality of the
two hazard rates. The results are presented in Table V. For methods PP, MS, and AS, point
estimates (for procedures MS and AS) or 90 per cent con�dence interval (for procedure PP)
of the crossing point � are also provided, besides p-values of the related hypothesis tests.
Point estimates of the procedures MS and AS can only be given by intervals, as pointed out
in Section 3. O’Quigley and Pessione’s [5] direct bootstrap method is used in computing the
p-value of procedure PP, as described in Section 2.3. As observed by Lin and Wang [9], the
two survival curves in this example appear to be quite di�erent. Thus, it is not surprising
to see from Table V that almost all methods, except the three traditional tests and the �rst
class method RE, yield signi�cant results at the 0.05 level. However, the proposed method
provides the smallest p-value.
We now turn to the zinc nasal spray data. The estimates of two hazards of the treatment

and control groups are presented in Figure 1, which shows that the two hazard rates cross
each other around the sixth day. Based on some conventional tests without taking the crossing
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Table III. Powers and sizes of various methods for comparing two hazard rates
in case III. For procedures PP, MS, and AS, MSEs and Biases of the point

estimates of the crossing time are also provided.

Method Censoring (%) Power Size MSE Bias

PP 0 0.697 0.052 0.122 −0:035
20 0.554 0.050 0.152 −0:055

KS 0 0.514 0.047
20 0.496 0.047

RE 0 0.349 0.049
20 0.381 0.046

MS 0 0.726 0.050 0.061 −0:004
20 0.600 0.047 0.088 −0:015

LW 0 0.145 0.040
20 0.100 0.039

AS 0 0.701 0.038 0.049 −0:004
20 0.583 0.039 0.067 −0:011

BR1 0 0.658 0.050
20 0.525 0.045

BR2 0 0.600 0.046
20 0.540 0.046

LR 0 0.083 0.050
20 0.126 0.049

GW 0 0.387 0.051
20 0.419 0.049

PE 0 0.387 0.051
20 0.403 0.049

Table IV. We consider the case when model (4) includes a binary covariate
Z with coe�cient � �xed at log(1:5); log(2:0), and log(2:5), respectively. This
table presents the power of the proposed testing procedure for �, and MSEs

and Biases of the point estimates of � and �.

� Censoring (%) Power MSE of �̂ Bias of �̂ MSE of �̂ Bias of �̂

log(1:5) 0 0.808 0.023 −0:017 0.020 0.029
20 0.689 0.025 −0:031 0.027 0.040

log(2:0) 0 0.785 0.023 −0:009 0.023 0.030
20 0.647 0.026 −0:030 0.028 0.041

log(2:5) 0 0.796 0.023 −0:011 0.024 0.025
20 0.650 0.026 −0:018 0.030 0.039
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Table V. p-values for testing crossing hazard rates, and point estimates (for
procedures MS and AS) or 90 per cent con�dence interval (for procedure PP)
of the crossing time point �, provided by various methods when they are applied

to the kidney dialysis patients data.

Method p-value Cross point estimate

PP 0.001 (1:171; 4:693)
KS 0.031
RE 0.220
MS 0.006 �̂ ∈ [2:5; 3:5]
LW 0.012
AS 0.004 �̂ ∈ [2:5; 3:5]
BR1 0.007
BR2 0.026
LR 0.112
GW 0.964
PE 0.237

Table VI. p-values for testing crossing hazard rates, and point estimates (for
procedures MS and AS) or 90 per cent con�dence interval (for procedures PP
and PP(b)) of the crossing time point �, provided by various methods when

they are applied to the zinc nasal spray data.

Method p-value Cross point estimate

PP 0.024 (4:555; 7:956)
PP(b) 0.028 (3:714; 7:611)
KS 0.948
RE 0.750
MS 0.508 �̂ ∈ [5:0; 6:0]
LW 0.206
AS 0.053 �̂ ∈ [5:0; 6:0]
BR1 0.072
BR2 0.084
LR 0.953
GW 0.534
PE 0.466

hazards into consideration, Belongia et al. [2] did not �nd any signi�cant di�erence of cold
duration between the two hazards. Here, we re-analyse these data by using various methods
developed for comparing the crossing hazards along with three traditional methods LR, GW,
and PE. The results are presented in Table VI, which also includes the p-value for hazard
comparison after adjustment of the baseline symptom score when using method PP (denoted
as PP(b)). From Table VI, we can see that method PP provides quite signi�cant results,
while method AS gives only marginally signi�cant result, and the remaining methods all fail
to detect the di�erence between the two hazard rates. Results obtained from our proposed
approach provide evidence that zinc nasal spray may have some antiviral e�ect early on,
which is consistent with the conclusions drawn from the comparison of daily symptom scores
in Belongia et al. [2]. A possible explanation of early treatment e�ect is as follows. The
common cold is mainly caused by a viral infection in the nose, and it has been shown in
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some studies that zinc has a direct antiviral e�ect. Thus, applying zinc directly to the entrance
of nose would be more e�ective in the early stage of cold when only small amount of viruses
enter the nasal area, especially when most viruses have not penetrated into host cells. After
viruses overcome the body’s defence system and penetrate into host cells, application of zinc
nasal spray would have little or no e�ect. Thus, the method proposed in this paper could help
us formulate new research hypotheses for further investigation about the potential e�ect of
zinc nasal spray on the common cold, which may be missed otherwise.

5. CONCLUDING REMARKS

We have proposed a model-based approach for testing equality of two crossing hazard rates
and for constructing a con�dence interval for the crossing point when there is evidence for
such a crossing point based on visual display of the two hazard rates. This method can
incorporate possible e�ects of covariates as well. The Box–Cox transformation embedded in
our model enables us to capture di�erent crossing patterns. On the other hand, more parameters
are included in our model, compared to some existing methods handling this problem, which
may cause some complexity in implementation and lead to a loss in power in certain situations.
The crossing hazard rates problem considered in this paper can be further explored. For

instance, the hypotheses in (1) do not cover all possible cases in applications, such as cases
when the two hazard rates are neither crossing nor equivalent within the interested time
interval, or when one hazard rate is greater than the other initially and then both become
equal. Appropriate procedures are needed to test for treatment e�ect under these situations. In
some cases, we may also be interested in testing whether the two hazard rates cross each other
more than once, which is completely excluded from the discussion of the current paper. When
the hazard rates cross more than once, the corresponding survival functions should be close
to each other, and the testing problem would become much more complex as the number of
crossings increases. In such cases, it is also unclear whether the bootstrap procedure described
in Section 2.3 is still appropriate. All these issues require much future research.
The proposed procedure still has room for improvement. For instance, although model (3)

is much more �exible than the ones used by Anderson and Senthilselvan [3] and
Breslow et al. [4], its parametric form may still exclude some possible crossing patterns
in applications. As an example, if the true log hazard ratio increases at the exponential rate
after the crossing time point, then the current model (3) is unable to capture this crossing
pattern. In such a case, Manly’s [18] exponential transformation might be preferred, compared
to the Box–Cox power transformation used in model (3). All these issues should be addressed
in the future research.
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