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Abstract

In the SHARe Framingham Heart Study of the National Heart, Lung and Blood

Institute, one major task is to monitor several health variables (e.g., blood pressure and

cholesterol level) so that their irregular longitudinal pattern can be detected as soon as

possible and some medical treatments applied in a timely manner to avoid some deadly

cardiovascular diseases (e.g., stroke). To handle this kind of applications effectively, we

propose a new statistical methodology called multivariate dynamic screening system

(MDySS) in this paper. The MDySS method combines the major strengths of the

multivariate longitudinal data analysis and the multivariate statistical process control,

and it makes decisions about the longitudinal pattern of a subject by comparing it with

other subjects cross-sectionally and by sequentially monitoring it as well. Numerical

studies show that MDySS works well in practice.

Key Words: Dynamic screening; LASSO; Multivariate longitudinal data; Process moni-

toring; Process screening; Standardization; Unequal sampling intervals.

1 Introduction

Motivational example of this research is the SHARe Framingham Heart Study of the

National Heart, Lung and Blood Institute. In the study, each of 972 patients was followed
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7 times, and some medical indices, including the systolic blood pressure (mmHg), the dias-

tolic blood pressure (mmHg), the total cholesterol level (mg/100ml), and the glucose level

(mg/100ml), were recorded during each clinic visit. Among the 972 patients, 945 did not

have any strokes during the study, and the remaining 27 patients had at least one stroke.

One major goal of the study is to identify patients with irregular longitudinal patterns of

the medical indices as early as possible, so that some medical treatments can be taken

in a timely manner. In our daily life, this kind of multivariate dynamic screening (MDS)

problem is popular. For instance, we often need to monitor the quality/performance of a

subject or product (e.g., patients, airplanes, cars, health care systems), to make sure that

it functions satisfactorily. To this end, observations of multiple variables related to its qual-

ity/performance can be collected sequentially over time for statistical analysis, and a signal

should be given, as soon as possible, once the quality/performance becomes unacceptably

poor. This paper proposes a novel statistical method to solve the MDS problem.

In the literature, there are two types of methods that are relevant to the MDS problem.

The first type belongs to the research area of longitudinal data analysis (LDA). By an LDA

method, we can construct confidence intervals for the means of the performance variables at

different time points based on an observed dataset of some well-functioning subjects. Then,

a new subject can be identified to have an irregular longitudinal pattern if its observations

fall outside the confidence intervals. There are some existing methods for constructing

such confidence intervals [1-9]. This confidence interval approach makes decisions about

a subject’s pattern at a given time point by comparing the subject with a group of well-

functioning subjects cross-sectionally at that time point. It may be inefficient for handling

the MDS problem for the following reasons. First, it does not make use of all history data of

a subject in question when making decisions about its performance at the current time point.

For instance, when we are interested in monitoring a patient’s cholesterol levels over time,

if that patient’s cholesterol levels are consistently above the mean cholesterol levels of the
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healthy people for a long time period, then that patient should still be identified as a person

who has an irregular cholesterol level pattern, even if his/her observed cholesterol level at

any given time point is within the related confidence interval. Obviously, the confidence

interval approach cannot achieve that goal. Second, in the MDS problem, it is critical that

statistical decisions are made in a dynamical manner, in the sense that a signal should be

given as soon as possible once all available observations of a subject up to the current time

point have provided enough evidence to support the decision, so that some interventions can

be given in a timely manner. The confidence interval approach does not have this dynamic

decision-making property either, because it cannot monitor a subject sequentially over time.

The second type of statistical methods relevant to the MDS problem belongs to the

research area of statistical process control (SPC). By a SPC control chart, we monitor each

subject sequentially, and a signal is given as soon as the chart detects a shift in the subject’s

longitudinal pattern from an in-control (IC) status to an out-of-control (OC) status (cf., [10-

12]). However, a conventional SPC chart cannot be applied to the MDS problem directly for

the following reasons. First, a conventional SPC chart is for monitoring a single process, and

it makes decisions about the process by comparing its observed data at the current time point

with all of its history data. In the MDS problem, if each subject is regarded as a process,

then there are many processes involved. To judge whether a specific subject follows a regular

longitudinal pattern, we need to compare him/her with a group of well-functioning subjects

over time. Second, in a typical SPC problem, the distribution of the process observations is

assumed unchanged when the process is IC. In the MDS problem, however, this distribution

often changes over time, even for well-functioning subjects (e.g., the mean total cholesterol

level of healthy people would change as they age). Therefore, there is no existing statistical

methods that can handle the MDS problem effectively.

In this paper, we propose a multivariate dynamic screening system (MDySS) for handling

the MDS problem. Our proposed MDySS method consists of three main steps. First, the reg-
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ular longitudinal pattern of the performance variables is estimated from an observed dataset

of certain well-functioning subjects, using a nonparametric multivariate LDA method. Sec-

ond, for a new subject under study, its longitudinal observations are standardized, using the

estimated regular longitudinal pattern obtained in the first step. Third, a multivariate SPC

control chart is applied to the standardized observations of the new subject for sequential

monitoring of its longitudinal pattern, and a signal is given as soon as its observed data

suggest a significant shift in its longitudinal pattern from the estimated regular longitudinal

pattern. In the next several sections, we will demonstrate that the MDySS method provides

an efficient solution to the MDS problem.

The rest part of the paper is organized as follows. In Section 2, we describe our proposed

MDySS method in detail. Some of its statistical properties are discussed in Section 3. A

simulation study is presented in Section 4 regarding its numerical performance. The MDySS

method is applied to the SHARe Framingham Heart Study in Section 5. Several remarks

conclude the paper in Section 6. Some technical details and extra numerical results are

included in a supplementary file.

2 Proposed MDySS Method

In this section, we describe our proposed MDySS method in two parts. Estimation

of the regular longitudinal pattern of the multiple performance variables from an observed

dataset of certain well-functioning subjects is discussed in Subsection 2.1. Then, sequential

monitoring of individual subjects after their observations are standardized by the estimated

regular longitudinal pattern is discussed in Subsection 2.2.
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2.1 Estimation of the regular multivariate longitudinal pattern

Let y be the vector of q performance variables that we are interested in monitoring.

Assume that there is an observed dataset, called an IC dataset hereafter, of a group of m

well-functioning subjects whose observations of y follow the model

y(tij) = µ(tij) + ε(tij), for j = 1, 2, . . . , Ji, i = 1, 2, . . . ,m, (1)

where tij is the jth observation time of the ith subject, y(tij) = (y1(tij), . . . , yq(tij))
′ is

the observed vector of y at tij, µ(tij) = (µ1(tij), . . . , µq(tij))
′ is the its mean vector, and

ε(tij) = (ε1(tij), . . . , εq(tij))
′ is the q-dimensional error term. In model (1), we assume that

observations of different subjects are independent of each other. For simplicity, we further

assume that all observation times are within [0, 1].

It should be pointed out that the definition of well-functioning subjects could be different

in different research projects. For instance, in the stroke data example discussed in Section

5, all non-stroke patients are regarded as well-functioning subjects. This is reasonable in

that example because we can estimate the longitudinal pattern of non-stroke patients from

their longitudinal observations. However, the non-stroke patients may not be regarded as

well-functioning subjects in a project concerning another disease (e.g., a digestive disease)

since they may suffer such a disease.

The regular longitudinal pattern of y is assumed to be described jointly by its mean

function µ(t) and its covariance matrix function Σ(s, t) = Cov(y(s),y(t)), for any s, t ∈ [0, 1].

In univariate cases (i.e., q = 1), nonparametric estimation of the mean and variance functions

of y has been discussed by some papers [1, 2, 4, 7]. In multivariate cases (i.e., q > 1), Xiang

et al. [8] recently proposed a nonparametric method for estimating model (1), which is

briefly described below. For j = 1, . . . , Ji and i = 1, . . . ,m, let Ki = diag{Khl
(tij − t), j =

1, . . . , Ji, l = 1, . . . , q} be a diagonal matrix, and Wi =
(
K

− 1
2

i ViK
− 1

2
i

)−1

, where Khl
(u) =

K(u/hl)/hl, K(·) is a kernel function, {hl, l = 1, . . . , q} are bandwidths, Vi = Cov(Yi) with
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Yi = (y1(ti1), . . . , y1(tiJi), . . . , yq(ti1), . . . , yq(tiJi))
′, and the inverse of a matrix in this paper is

referred to the Moore-Penrose generalized inverse that always exists. For any given t ∈ [0, 1],

µ(t) is estimated by the following pth order local polynomial kernel smoothing procedure:

min
β∈Rq(p+1)

m∑

i=1

[Yi − (Iq×q ⊗Xi)β]
′ Wi [Yi − (Iq×q ⊗Xi)β] (2)

where ⊗ denotes the Kronecker product, Iq×q is the q × q identity matrix,

β = ((β
(1)
0 , . . . , β(1)

p ), . . . , (β
(q)
0 , . . . , β(q)

p ))′,

and

Xi =




1 (ti1 − t) . . . (ti1 − t)p

...
...

. . .
...

1 (tiJi − t) . . . (tiJi − t)p




Ji×(p+1)

.

The solution of (2) is

β̂ =

[
n∑

i=1

(Iq×q ⊗Xi)
′Wi(Iq×q ⊗Xi)

]−1 [ n∑

i=1

(Iq×q ⊗Xi)
′WiYi

]
. (3)

Then, the pth order local polynomial kernel estimator of µ(t) is

µ̂(t) = β̂′ (Iq×q ⊗ e1) (4)

where e1 is the (p+1)-dimensional vector that has the value of 1 at the 1st position and 0 at

all other positions. In the above estimation procedure, K is chosen to be the Epanechnikov

kernel function, and the bandwidths {hl, l = 1, . . . , q} are determined by the conventional

cross-validation (CV) procedure [cf., 13, Chapter 2].

In practice, the quantity Vi is usually unknown and needs to be estimated. To this end,

Xiang et al. [8] suggested the following estimation method. First, the local linear kernel

smoothing procedure is used to provide an initial estimator of µ(t), denoted as µ̃(t) =

(µ̃1(t), . . . , µ̃q(t)). Then, we define residuals

ε̃ijl = yijl − µ̃l(tij), j = 1, 2, . . . , Ji, l = 1, 2, . . . , q, i = 1, 2, . . . ,m.
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Finally, the (l1, l2)-th element of Σ(s, t) = (σl1,l2(s, t)), for l1, l2 = 1, 2, . . . , q, can be estimated

by the following kernel estimator

σ̃l1,l2(s, t) =

∑m

i=1

∑Ji
j=1

∑Ji
k=1 ε̃ijl1 ε̃ikl2K

(
tij−s

gl1

)
K

(
tik−t
gl2

)

∑m

i=1

∑Ji
j=1

∑Ji
k=1 K

(
tij−s

gl1

)
K

(
tik−t
gl2

) , (5)

where {gl, l = 1, . . . , q} are bandwidths. In (5), we can still use the Epanechnikov kernel

function, and the bandwidths gl, for l = 1, . . . , q, can be chosen by the CV procedure when

estimating the variance of yl(t) from quantities {ε̃2ijl, j = 1, 2, . . . , Ji, i = 1, 2, . . . ,m} using

the local linear kernel smoothing procedure. From Σ̃(s, t) = (σ̃l1,l2(s, t)), the corresponding

estimator of Vi can be computed. The resulting estimator of µ(t) computed from (3) and (4)

is denoted as µ̂(t, Σ̃) = (µ̂1(tij, Σ̃), . . . , µ̂q(tij, Σ̃))
′. Then, the estimator of Σ(s, t) is updated

by (5), after {ε̃ijl, j = 1, 2, . . . , Ji, l = 1, 2, . . . , q, i = 1, 2, . . . ,m} are replaced by

ε̂ijl = yijl − µ̂l(tij, Σ̃), j = 1, 2, . . . , Ji, l = 1, 2, . . . , q, i = 1, 2, . . . ,m.

The resulting estimator of Σ(s, t) is denoted as Σ̂(s, t).

Model (1) and its estimation procedure described above are quite general. It does not

impose any specific structure on the random error term ε(t), and allows the error covariance

matrix Σ(s, t) to vary over s and t. As a comparison, the alternative mixed-effects modeling

approach [14] usually assumes that ε(t) consists of two independent parts: one is the random-

effects and the other is the pure measurement error, and the variance/covariance of the pure

measurement error is time-independent. So, model (1) is more general than most mixed-

effects models in the literature. In certain applications, it might be reasonable to specify the

correlation structure among observations of y(t) by a parametric model (e.g., a parametric

time series model). In such cases, the specified correlation structure can be accommodated

when estimating the covariance matrix Vi. For instance, in the SPC literature, it is often

assumed that observations of y(t) within a subject are independent of each other at different

time points. If that assumption is valid, then the covariance matrix Vi is uniquely determined
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by the variance function Σ(t, t), for t ∈ [0, 1]. Its (l1, l2)-th element σl1,l2(t, t), for l1, l2 =

1, 2, . . . , q, can be estimated by

σ̃l1,l2(t, t) =

∑m

i=1

∑Ji
j=1 ε̃ijl1 ε̃ijl2K

(
tij−t

gl1

)
K

(
tij−t

gl2

)

∑m

i=1

∑Ji
j=1 K

(
tij−t

gl1

)
K

(
tij−t

gl2

) . (6)

2.2 Dynamic screening of irregular longitudinal patterns

The estimated mean function µ̂(t; Σ̃) and the estimated covariance matrix function

Σ̂(s, t) described in the previous subsection can be used for describing the estimated regu-

lar longitudinal pattern of the q-dimensional performance vector y. In this subsection, we

describe our proposed MDySS method for sequential monitoring of each individual subject

in various different cases by using the estimated regular longitudinal pattern, such that a

signal is given as soon as possible after the subject’s longitudinal pattern becomes irregular.

Assume that observations of y of a new subject under study are obtained at times

t∗1, t
∗
2, . . . in the design interval [0, 1]. Its longitudinal pattern is called in-control (IC) if its

observations follow the model (1). Otherwise, its longitudinal pattern is called out-of-control

(OC). So, when the new subject’s longitudinal pattern is IC, its observations follow the model

y(t∗j) = µ(t∗j) + Σ
1
2 (t∗j , t

∗
j)ǫ(t

∗
j), for j = 1, 2, . . . , (7)

where Σ
1
2 (t, t)ǫ(t) equals ε(t) in model (1). Thus, ǫ(t) in model (7) has mean 0 and covari-

ance matrix Iq×q at each t. For the y observations of the new subject, let us define their

standardized values by

ǫ̂(t∗j) = Σ̂− 1
2 (t∗j , t

∗
j)
(
y(t∗j)− µ̂(t∗j ; Σ̃)

)
, for j = 1, 2, . . . . (8)

By using these standardized observations of the new subject, we have actually compared its

longitudinal pattern cross-sectionally with the estimated regular longitudinal pattern at the

time points t∗1, t
∗
2, . . .. In cases when the longitudinal pattern of the new subject is IC, the
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mean and variance of the standardized observation ǫ̂(t∗j) are roughly 0 and Iq×q, respectively,

for each j. For the moment, let us assume that we are only interested in monitoring the

mean longitudinal pattern of the new subject. In such cases, any shift in the mean of an

original observation would result in a shift in the mean of its standardized observation, and

vice versa. Therefore, to monitor the mean longitudinal pattern of the new subject, we can

simply monitor the means of the standardized observations {ǫ(t∗j), j = 1, 2, . . .}.

To detect mean shifts in the standardized observations {ǫ(t∗j), j = 1, 2, . . .} of the new

subject, there are some existing control charts in the multivariate SPC literature [14-23]. All

these methods assume that observation vectors are independent and normally distributed,

and observation times are equally spaced. In order to use these methods, let us first discuss

cases when the original observations {y(t∗j), j = 1, 2, . . .} are independent and normally dis-

tributed, and all observation times are equally spaced. In such cases, the standardized obser-

vations {ǫ̂(t∗j), j = 1, 2, . . .} are asymptotically i.i.d. with the normal distribution N(0, Iq×q)

when the longitudinal pattern of the new subject is IC. To use the method by Lowry et

al [20], let us consider the multivariate exponentially weighted moving average (MEWMA)

statistic

EM,j = λM ǫ̂(t∗j) + (1− λM)EM,j−1, for j ≥ 1,

where EM,0 = 0, and λM ∈ (0, 1] is a weighting parameter. The chart gives a signal when

E′
M,jΣ

−1
0,EM,j

EM,j > hM , (9)

where hM > 0 is a control limit, and Σ0,EM,j
is the covariance matrix of EM,j when the

longitudinal pattern of the new subject is IC. It can be checked that

Σ0,EM,j
=

λM

2− λM

[1− (1− λM)2j ]Σ0,ǫ̂(t∗j )
,

where Σ0,ǫ̂(t∗j )
≈ Iq×q is the IC covariance matrix of ǫ̂(t∗j). When j is big, [1−(1−λM )2j] ≈ 1.

So, in practice, (9) can be replaced by

2− λM

λM

E′
M,jEM,j > hM . (10)
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By using the MEWMA chart (10), we sequentially monitor the new subject and make use of

all its history data up to the current time point j, after its longitudinal pattern is compared

cross-sectionally with the estimated regular longitudinal pattern in (8). The resulting MDySS

method is denoted as MDySS-M, where the last letter “M” denotes MEWMA.

To monitor the standardized observations {ǫ̂(t∗j), j = 1, 2, . . .}, an alternative approach

is to jointly use q univariate EWMA charts for monitoring q individual components of the

observed data. More specifically, let ǫ̂l(t
∗
j) be the lth component of ǫ̂(t∗j), and

EC,j,l = λC,lǫ̂l(t
∗
j) + (1− λC,l)EC,j−1,l, for l = 1, 2, . . . , q, j ≥ 1,

where EC,0,l = 0, and λC,l ∈ (0, 1] are weighting parameters. Then, the joint monitoring

scheme gives a signal at j when there is at least one 1 ≤ l ≤ q such that

√
2− λC,l

λC,l

EC,j,l > hC,l, (11)

where hC,l > 0 is a control limit. In (11), because all components of ǫ̂(t∗j) have asymptotic

mean 0 and asymptotic variance 1, it is reasonable to choose all λC,l to be the same as λC ,

and all hC,l to be the same as hC . The resulting MDySS method is denoted as MDySS-C,

where the last letter “C” denotes the combination of multiple univariate EWMA charts.

Recently, Zou and Qiu [24] suggested integrating the variable selection method LASSO

[25, 26] into a MEWMA chart for solving the conventional SPC problem. They demonstrated

that the resulting LASSO-based MEWMA chart can effectively detect shifts of various sizes

and directions. Next, we adapt this method to solve the current MDySS problem. Let us

first define the MEWMA statistic

Uj = λLǫ̂(t
∗
j) + (1− λL)Uj−1, for j = 1, 2, . . . , (12)

where U0 = 0, and λL ∈ (0, 1] is a weighting parameter. Then, for each Uj, we compute q

LASSO estimators of its mean vector, denoted as {α̂j,γ̃k , k = 1, 2, . . . , q}, from the following
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minimization procedure

min
α∈Rq

(Uj −α)′ (Uj −α) + γ̃k

q∑

l=1

αl

|Ujl|
,

where α = (α1, α2, . . . , αq)
′, Uj = (Uj1, Uj2, . . . , Ujq)

′, and {γ̃k, k = 1, 2, . . . , q} are q values

determined from a set of “transition points” by the LARS algorithm of Efron et al. [27].

Then, the LASSO-based MEWMA chart gives a signal at j if

Qj = max
k=1,...,q

Wj,γ̃k − E(Wj,γ̃k)√
Var(Wj,γ̃k)

> hL, (13)

where Wj,γ̃k =
(
U ′

jα̂j,γ̃k

)2
/(α̂′

j,γ̃k
α̂j,γ̃k), and hL is a control limit. In (13), the quantities

E(Wj,γ̃k) and Var(Wj,γ̃k) can be approximated by simulation, after using their property that

they do not depend on λL and j when the process is IC [cf., 24, Proposition 3]. For instance,

if λL is chosen 1, then Uj = ǫ̂(t∗j). In such cases, if we randomly generate M vectors of ǫ̂(t∗j)

from the N(0, Iq×q) distribution, and compute the M corresponding LASSO estimators α̂j,γ̃k

and the M corresponding values of Wj,γ̃k , for each k. Then, E(Wj,γ̃k) and Var(Wj,γ̃k) can be

approximated by the sample mean and the sample variance of the M values of Wj,γ̃k . The

MDySS method based on the chart (13) is denoted as MDySS-L, where the last letter “L”

denotes LASSO.

In the SPC literature, to evaluate the performance of a control chart, we usually use the

IC average run length (ARL), denoted as ARL0, and the OC ARL, denoted as ARL1. ARL0

is defined to be the average number of time points from the beginning of process monitoring

to the signal time when the process is IC, and ARL1 is defined to be the average number of

time points from the occurrence of a shift to the signal time after the process becomes OC.

In a MEWMA chart (e.g., the chart (12)-(13)), usually the weighting parameter (e.g., λL)

is specified beforehand. It has been well demonstrated in the literature that large values of

the weighting parameter are good for detecting large shifts, and small values are good for

detecting small shifts. Commonly used values of the weighting parameter include 0.05, 0.1

and 0.2. The control limit (e.g., hL in (13)) is then chosen to reach a pre-specified ARL0

11



value. The chart performs better for detecting a given shift if its ARL1 value is smaller. In

practice, however, the observation times {t∗j , j = 1, 2, . . .} may not be equally spaced, as in

the SHARe Framingham Heart Study discussed in Section 5. In such cases, ARL0 and ARL1

are obviously inappropriate any more for measuring the performance of a control chart, and

we need to define new performance measures. To this end, let ω > 0 be a basic time unit

in a given application, which is the largest time unit that all unequally spaced observation

times are its integer multiples (e.g., the basic time unit for clinic visit times could be one

day). Define

n∗
j = t∗j/ω, for j = 0, 1, 2, . . . (14)

where n∗
0 = t∗0 = 0. Then, t∗j = n∗

jω, for all j, and n∗
j is the jth observation time in the

basic time unit. In cases when the new subject is IC and a control chart (e.g., the chart

(12)-(13)) gives a signal at the sth observation time, then n∗
s is a random variable measuring

the time to a false signal. Its mean E(n∗
s) measures the IC average time to the signal (ATS),

denoted as ATS0. If the longitudinal pattern of the new subject starts to shift from the

regular longitudinal pattern at the τth observation time and the control chart gives a signal

at the sth time point with s ≥ τ , then the mean of n∗
s − n∗

τ is called the OC ATS, denoted

as ATS1. Then, to measure the performance of the control chart, its ATS0 value can be

fixed at a certain level beforehand, and the chart performs better if its ATS1 value is smaller

when detecting a shift of a given size. It is obvious that the values of ATS0 and ATS1 are

just constant multiples of the corresponding values of ARL0 and ARL1 in cases when the

observation times are equally spaced. In such cases, the two sets of measures are equivalent.

In the SPC literature, the concept of ATS has been proposed for measuring the performance

of a control chart with variable sampling intervals (VSI) [28, 29, 30]. However, the VSI

problem in SPC is completely different from the MDySS problem discussed here. In the VSI

problem, the next observation time is determined by the current and all past observations

of the process; the next observation is collected sooner if there is more evidence of a shift
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based on all available process observations, and later otherwise. Therefore, the VSI scheme

is an integrated part of process monitoring, and it is designed by quality engineers. As a

comparison, in the proposed MDySS method, observation times are often pre-specified.

Next, we discuss calculation of the control limit hL of the chart (12)-(13). Calculation of

the control limits of the charts (10) and (11) can be discussed similarly. In cases when the

IC mean function µ(t) and the IC covariance matrix function Σ(t, t) are both known, ǫ̂(t∗j)

in (12) can be replaced by ǫ(t∗j) which has the IC distribution N(0, Iq×q). In such cases,

for a given ATS0 value, hL can be determined by a numerical searching algorithm [31], in

which random vectors generated from N(0, Iq×q) can be used in place of ǫ(t∗j). For instance,

when the sampling rate is fixed at d, which is defined to be the number of observation times

every 10 basic time units in this paper, the computed hL values based on 50,000 simulations

are presented in Table 1, in cases when q = 5, ω = 0.001, ATS0 = 25, 50, 75, 100, 125, 150,

λL = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and d = 2, 5, 10. From the table, it can be seen that hL

increases with ATS0, d and λL. In cases when µ(t) and Σ(t, t) are both unknown and they

need to be estimated from an observed dataset of a group of m well-functioning subjects

(cf., Section 2.1), hL can still be computed in the way just described, as long as m is not too

small, which will be justified in Section 4.

In the above discussion, we assume that the original observations {y(t∗j), j = 1, 2, . . .}

of a new subject under study are independent and normally distributed. In practice, both

the normality and the independence assumptions are usually violated. In cases when these

assumptions are violated, control limit values computed based on these assumptions are

usually inappropriate to use, because the actual ATS0 values could be substantially different

from the assumed ATS0 values [31, 32]. Next, we propose a numerical approach to compute

the control limit hL of the chart (12)-(13) in such cases from an IC dataset. Computation

of the control limits of the charts (10) and (11) can be discussed similarly. Assume that

there is an observed dataset of a group of m well-functioning subjects whose observations of
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Table 1: Computed hL values used in the LASSO-based MEWMA chart (13) in cases
when q = 5, ǫ(t∗j) ∼ N(0, Iq×q), the IC mean function µ(t) and the IC covariance
matrix function Σ(t, t) are both known, ω = 0.001, ATS0 = 25, 50, 75, 100, 125, 150,
λ = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and d = 2, 5, 10.

ATS0

d λ 25 50 75 100 125 150
0.05 -0.815 -0.321 0.026 0.330 0.577 0.798
0.1 -0.353 0.276 0.717 1.045 1.314 1.533

2 0.2 0.225 0.935 1.375 1.692 1.951 2.154
0.3 0.575 1.269 1.700 2.000 2.225 2.410
0.4 0.806 1.495 1.875 2.156 2.393 2.599
0.5 0.962 1.618 2.006 2.255 2.481 2.635
0.05 -0.143 0.594 1.075 1.425 1.713 1.944
0.1 0.500 1.306 1.801 2.250 2.381 2.587

5 0.2 1.134 1.944 2.388 2.712 2.945 3.140
0.3 1.500 2.231 2.656 2.924 3.163 3.368
0.4 1.712 2.381 2.812 3.067 3.301 3.457
0.5 1.869 2.478 2.853 3.153 3.365 3.534
0.05 0.575 1.425 1.916 2.281 2.559 2.796
0.1 1.366 2.131 2.622 2.955 3.173 3.394

10 0.2 1.993 2.681 3.120 3.431 3.639 3.837
0.3 2.213 2.991 3.344 3.635 3.858 4.051
0.4 2.387 3.056 3.463 3.739 3.944 4.138
0.5 2.500 3.151 3.519 3.805 4.022 4.185

y follow the model (1). The data of the first m1 subjects are used for obtaining estimators

µ̂(t; Σ̃) and Σ̂(s, t), as discussed in Subsection 2.1. Then, the control limit hL is computed

from the remaining m2 = m−m1 subjects using a block bootstrap procedure [33] described

below. (i) Compute the standardized observations of the m2 well-functioning subjects by

ǫ̂(tij) = Σ̂− 1
2 (tij, tij)

(
y(tij)− µ̂(tij; Σ̃)

)
, for j = 1, 2, . . . , Ji, i = m1 + 1,m1 + 2, . . . ,m.

(ii) It has been justified numerically that both E(Wj,γ̃k) and Var(Wj,γ̃k) do not depend on

λL and j, as in cases when the original observations of the subjects are independent and

normally distributed. Then, for the ith subject and for each k = 1, 2, . . . , q, we can compute

{Wj,γ̃k , j = 1, 2, . . . , Ji}. For each k, the quantities E(Wj,γ̃k) and Var(Wj,γ̃k) can be estimated

by the sample mean and sample variance of {Wj,γ̃k , j = 1, 2, . . . , Ji, i = m1+1,m1+2, . . . ,m}.
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(iii) Randomly select B subjects with replacement from the m2 well-functioning subjects,

and use their standardized observations to compute the value of hL by a numerical searching

algorithm such that a given ATS0 level is reached. In all numerical examples presented in

Sections 4 and 5, we choose m1 = m/5.

3 Statistical Properties

In cases when the covariance matrix function Σ(s, t) is assumed known, Xiang et al. [8]

proved that the estimated mean function µ̂(t) is pointwise L2 consistent at each t ∈ [0, 1]. In

this paper, both the estimated mean function µ̂(t; Σ̃) and the estimated covariance matrix

function Σ̂(s, t) are used for describing the estimated regular longitudinal pattern of y(t) in

cases when Σ(s, t) is unknown. To justify the legitimacy of this description, we give some

new statistical properties of µ̂(t; Σ̃) and Σ̂(s, t) in this section. To present our major theo-

retical results, the following regularity conditions are needed.

(C1) The probability density f of the design points {tij} has two continuous derivatives

and is bounded away from 0 in the design space [0, 1].

(C2) For any 1 ≤ l1, l2 ≤ q, there exists a constant δ ∈ [0, 1) such that supt E|yl1(t)yl2(t)|
2+δ <

∞.

(C3) All q components of µ(t) have (p+ 1)-th continuous derivatives in [0, 1].

(C4) For any k1, k2, k3, k4 ∈ {0, 1}, E{yk1l1 (t)y
k2
l2
(t)yk3l3 (t)y

k4
l4
(t)} has two continuous deriva-

tives in [0, 1].

(C5) For l = 1, 2, . . . , q, hl/hmax → c1l and JSh
5
l → c2l, where hmax = max{h1, . . . , hq},

JS =
∑m

i=1 Ji, c1l and c2l are two positive constants, and “→” denotes convergence when JS

increases.

(C6) For l = 1, 2, . . . , q, gl/gmax → c3l and JSg
5
l → c4l, where gmax = max{g1, . . . , gq}, and

c3l and c4l are two positive constants.
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First, in cases when the covariance matrix function Σ(s, t) is assumed known, the esti-

mated mean function µ̂(t) defined in (4) has the following uniform consistency result.

Theorem 3.1 Under (C1)-(C5), for any l = 1, 2, . . . , q, we have

sup
t∈[0,1]

|µ̂l(t)− µl(t)| = OP

(
hp+1
max + 1/(JShmax)

1
2

)
. (15)

In cases when Σ(s, t) is unknown, it is estimated by Σ̃(s, t) defined in (5). Regarding

Σ̃(s, t), we have the following result.

Theorem 3.2 Under (C1)-(C6), for any l1, l2 = 1, . . . , q, we have

sup
s,t∈[0,1],s 6=t

|σ̃l1,l2(s, t)− σl1,l2(s, t)| = OP

(
g2max + 1/(J

1
2
SSgmax)

)
, (16)

sup
t∈[0,1]

|σ̃l1l2(t, t)− σl1l2(t, t)| = OP (g
2
max + 1/(JSgmax)

1
2 ), (17)

where JSS =
∑m

i=1 Ji(Ji − 1).

In cases when Σ(s, t) is unknown, our final estimator of the mean function µ(t) is µ̂(t; Σ̃)

which is proved to be uniformly consistent in the design interval [0, 1] in the following theo-

rem.

Theorem 3.3 Under (C1)-(C6), for any l = 1, 2, . . . , q, we have

sup
t∈[0,1]

∣∣∣µ̂l(t, Σ̃)− µl(t)
∣∣∣ = OP

(
hp+1
max + 1/(JShmax)

1
2

)
. (18)

In cases when Σ(s, t) is unknown, our final estimator of Σ(s, t) is Σ̂(s, t) = (σ̂l1,l2(s, t)),

where σ̂l1,l2(s, t) is its (l1, l2)-th element, for l1, l2 = 1, . . . , q. For Σ̂(s, t), we have the following

result.

Theorem 3.4 Under (C1)-(C6), for any l1, l2 = 1, . . . , q, we have

sup
s,t∈[0,1],s 6=t

|σ̂l1,l2(s, t)− σl1,l2(s, t)| = OP

(
g2max + 1/(JSSgmax)

)
, (19)
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sup
t∈[0,1]

|σ̂l1,l2(t, t)− σl1,l2(t, t)| = OP

(
g2max + 1/(JSgmax)

1
2

)
. (20)

The proofs of these four theorems are given in a supplementary file.

4 Numerical Study

In this section, we present some simulation results to investigate the numerical perfor-

mance of the proposed MDySS procedures described earlier. In estimating the mean function

µ(t) and the covariance matrix function Σ(s, t), p is fixed at 1, the kernel function is chosen

to be the Epanechnikov kernel K(u) = 0.75(1−u2)I(|u| ≤ 1), and all bandwidths are chosen

by the CV procedure. In all examples, q is fixed at 5.

First, we consider cases when observation vectors within a subject are independent and

normally distributed, the IC mean function µ(t) and the IC covariance matrix function

Σ(t, t) are assumed known to be

µ(t) = (0, t, 1 + 0.2t+ 0.3t2, 1− exp(−10t), cos(t))′, t ∈ [0, 1],

Σ(t, t) = diag{1, exp(t),
1

1 + t
, 2, log(t+ 5)} ×




1 0.8 0.82 0.83 0.84

0.8 1 0.8 0.82 0.83

0.82 0.8 1 0.8 0.82

0.83 0.82 0.8 1 0.8

0.84 0.83 0.82 0.8 1




× diag{1, exp(t),
1

1 + t
, 2, log(t+ 5)}, t ∈ [0, 1].

Note that different components of the above IC mean function µ(t) change over time in

different patterns; so do the components of the IC covariance matrix function Σ(t, t). In

such cases, the standardized observations of a new subject to monitor can be computed by

ǫ(t∗j) = Σ− 1
2 (t∗j , t

∗
j)(y(t

∗
j)−µ(t∗j)), for j = 1, 2, . . ., and the control limits of the LASSO-based
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MEWMA chart (13) presented in Table 1 can be used for the MDySS-L procedure. The

control limits of the MEWMA charts (10) and (11) can be computed easily by a numerical

algorithm in the same way as we compute the control limit of the chart (13). Now, let us

consider a mean shift occurring at the initial time point from µ(t) to

µ1(t) = µ(t) + Σ(t, t)δ, for t ∈ [0, 1],

where δ = (δ1, δ2, δ3, δ4, δ5)
′ denotes the standardized shift size. Next, we consider 20 stan-

dardized shift sizes listed in Table 2, labeled from 1 to 20. The non-shift case (i.e., δ = 0)

is included in the table as well, labeled by 0, for investigating the IC performance of the

related procedures. These shift sizes contain many different cases with different numbers of

shifted components. The basic time unit in this example is ω = 0.001, and the sampling rate

d is chosen to be 2, 5 or 10. The observation times are generated by randomly choosing d

times without replacement from every 10 basic time points. We first consider the MDySS-L

procedure, in which the ATS0 value is fixed at 100 and the weighting parameter λL is chosen

to be 0.05, 0.1 or 0.2 in the chart (13). The corresponding hL values can be found from

Table 1. The ATS0 and ATS1 values of the chart computed based on 10,000 replicated

simulations are shown in Figure 1. From the figure, it can be seen that: (i) the chart with

relatively small λL values performs better for detecting small shifts, and it performs better

for detecting large shifts when λL is chosen relatively large, and (ii) the ATS1 values tend to

be smaller when d is larger. The first result is generally true for the LASSO-based MEWMA

charts as discussed in [24], and the second result is intuitively reasonable because more ob-

servations are available for process monitoring when d is larger and consequently a shift can

be detected faster.

Next, we consider a more realistic situation when the IC mean function µ(t) and the IC

covariance matrix function Σ(s, t) are both unknown and they need to be estimated from an

IC dataset of a group of m well-functioning subjects. For each subject, it is still assumed

that the sampling rate is d, and the basic time unit is ω = 0.001. After µ(t) and Σ(s, t)
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Table 2: Twenty shift sizes δ = (δ1, δ2, δ3, δ4, δ5)
′ considered in the numerical study.

δ δ1 δ2 δ3 δ4 δ5
0 0.00 0.00 0.00 0.00 0.00
1 0.00 0.25 0.00 0.00 0.00
2 0.00 0.00 0.50 0.00 0.00
3 0.00 0.00 0.00 0.75 0.00
4 0.00 0.00 0.00 0.00 1.00
5 0.25 0.00 0.25 0.00 0.00
6 0.00 0.25 0.50 0.00 0.00
7 0.00 0.25 0.00 0.75 0.00
8 0.00 0.50 0.00 0.00 0.50
9 0.50 0.00 0.00 1.00 0.00
10 0.75 0.75 0.00 0.00 0.00
11 1.00 0.00 0.00 0.00 1.00
12 0.25 0.25 0.25 0.00 0.00
13 0.25 0.00 0.50 0.00 1.00
14 0.50 0.00 0.00 0.50 0.50
15 0.50 0.00 1.00 0.50 0.00
16 1.00 0.00 1.00 0.00 1.00
17 0.50 0.50 0.50 0.50 0.50
18 0.25 0.25 0.50 0.75 1.00
19 0.25 0.25 0.75 0.50 0.50
20 0.75 1.00 0.50 1.00 0.75

are estimated from the IC dataset, observations of a new subject can be standardized by (8)

for online monitoring. The standardized observations {ǫ̂(t∗j)} are asymptotically i.i.d. with

the common distribution N(0, Iq×q) when the new subject is IC. The control limit hL is still

chosen to be those in Table 1. Therefore, the performance the chart (13) should depend on

the IC sample size m. When m gets larger, its performance should be more reliable. For

each generated IC dataset, the ATS0 or ATS1 value of the chart (13) is computed based on

10,000 replicated simulations. Then, the entire process, starting from the generalization of

the IC dataset to the computation of the actual ATS0 or ATS1 value, is repeated 100 times.

The averaged actual ATS0 and ATS1 values, are presented in Figure 2, in cases when the

nominal ATS0 is chosen 100, λL= 0.2, d= 2, 5 or 10, and m=30, 50 or 70. From the figure,

it can be seen that: (i) the actual ATS0 values are all within 10% of the nominal ATS0 value
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Figure 1: Actual ATS values of the chart (13) for detecting step mean shifts of size δ

occurring at the initial time point, in cases when observation vectors within a subject are
independent and normally distributed, the IC mean function µ(t) and the IC covariance
matrix function Σ(s, t) are assumed known, d = 2 (plot (a)), 5 (plot (b)) or 10 (plot (c)),
ω = 0.001, λL = 0.05, 0.1 or 0.2, and the nominal ATS0 is 100.

of 100, except the case when m = 30 and d = 10, (ii) the ATS1 values are generally smaller

if the shift size δ is larger or d is larger, and (iii) the ATS1 values do not depend on the value

of m much, especially when δ and d are large. The corresponding cases when λL= 0.05 or

0.1 and the covariance matrix Σ(s, t) is unexchangeable are discussed in the supplementary

file. The results show that similar conclusions can be made.

Next, we compare the three procedures MDySS-M, MDySS-C, and MDySS-L in the

setup of the above example when m is fixed at 70. In the three procedures, the weighting

parameters λM , λC , and λL are all chosen to be 0.2, and the nominal ATS0 is fixed at 100.

The other parameters are kept to be the same as those in the above example. The computed

actual ATS0 and ATS1 values of the three procedures are presented in Figure 3. From this

figure and Table 2, we can have the following conclusions. First, the MDySS-L performs well

in cases when the shift in one component is much larger than the shifts in the remaining
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Figure 2: Actual ATS values of the chart (13), for detecting step mean shifts of the size
δ occurring at the initial time point, in cases when the IC mean function µ(t) and the IC
covariance matrix function Σ(s, t) are estimated from an IC dataset with m subjects, d = 2
(plot (a)), 5 (plot (b)) or 10 (plot (c)), m = 30, 50 or 70, ω = 0.001, λL = 0.2, and the
nominal ATS0 value is 100.

components. Second, the MDySS-C procedure performs well in cases when all components

have shifts and the componentwise shifts are all quite large. Third, the performance of the

procedure MDySS-M is generally between the performance of the other two procedures. So,

if we know in advance that the potential mean shift occurs in most components and the shift

sizes are quite large, then we can consider using the MDySS-C procedure. If the potential

mean shift can only affect a small number of components, then we can consider using the

MDySS-L procedure. If there is no such prior information about the potential mean shift,

then the MDySS-M procedure can be considered. We also performed simulations in cases

when λM = λC = λL =0.05 or 0.1, and the results are given in the supplementary file. Similar

conclusions can be made. Results in a case when the covariance structure is not exchangeable

are given in the supplementary file as well. The three procedures have a reasonably good

performance in that case too.
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Figure 3: Actual ATS values of the procedures MDySS-M, MDySS-C, and MDySS-L, for
detecting step mean shifts of the size δ occurring at the initial time point, in cases when the
IC mean function µ(t) and the IC covariance matrix function Σ(s, t) are estimated from an
IC dataset with m subjects, m = 70, d = 2 (plot (a)), 5 (plot (b)) or 10 (plot (c)), ω = 0.001,
λM = λC = λL = 0.2, and the nominal ATS0 is 100.

Next, we consider an example in which q = 5, and the within-subject observation vectors

are neither independent nor normally distributed. More specifically, it is assumed that the

IC mean function µ(t) is the same as that in the above example. The error term ε(tij) in

model (1) follows the time series model

ε(tij) = 0.5ε(ti,j−1) + e(tij), for any i, j,

where e(tij)’s are independent and identically distributed random vectors having the common
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multivariate t distribution with mean 0, degrees of freedom 4, and the covariance matrix

Σt =




1 0.8 0.82 0.83 0.84

0.8 1 0.8 0.82 0.83

0.82 0.8 1 0.8 0.82

0.83 0.82 0.8 1 0.8

0.84 0.83 0.82 0.8 1




.

In such cases, it can be checked that the IC covariance matrix function of model (1) is

Σ(s, t) =





8
3
Σt, when s = t

4
3
Σt, when s 6= t.

Now assume that there is an IC dataset with observations from m well-functioning subjects.

Part of the IC dataset is used for obtaining estimators µ̂(t; Σ̃) and Σ̂(s, t) of the IC mean

and covariance matrix functions, as discussed in Subsection 2.1, and the remaining part is

used for computing the control limits of the three control charts by the block bootstrap

procedure with B = 10, 000, as discussed at the end of Section 2. Let us first consider the

procedure MDySS-L in cases when ω = 0.001, d = 2, m1 = m/5 =30, 50 or 70, λL = 0.2,

and the 20 shifts presented in Table 2 are considered, which are assumed to occur at the

initial time point. For each simulated IC dataset, the actual ATS0 and ATS1 of the chart

are first computed based on 10,000 replicated simulations of online monitoring. Then, the

entire process, including the generation of the IC data and the computation of the actual

ATS values, are repeated 100 times. The averaged actual ATS0 and ATS1 values and the

corresponding standard errors are presented in Figure 4. From the figure, it can be seen that:

(i) the actual ATS0 values are within about 10% of the nominal ATS0 value of 100 in cases

when m1 ≥ 50, (ii) the ATS1 values do not depend on the m1 value much when m1 ≥ 50,

and (iii) the procedure MDySS-L performs worse in the current situation, compared to its

performance in cases when the within-subject observations are assumed independent and

normally distributed (cf., plot (a) in Figure 2).
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Figure 4: Actual ATS values of the chart (13), for detecting step mean shifts of the size
δ occurring at the initial time point, in cases when the IC mean function µ(t) and the
IC covariance matrix function Σ(s, t) are estimated from an IC dataset with m1 subjects,
m1 = 30, 50 or 70, d = 2, ω = 0.001, λL = 0.2, and the nominal ATS0 is 100.

Next, we compare the three procedures MDySS-M, MDySS-C, and MDySS-L in the

setup of the above example when m1 is fixed at 70. In the three procedures, the weighting

parameters λM , λC , and λL are all chosen to be 0.2, and the nominal ATS0 is fixed at 100.

The other parameters are kept to be the same as those in the above example. The computed

actual ATS0 and ATS1 values of the three procedures are presented in Table 3. From the

table, it can be seen that similar conclusions to those from Figure 3 can be made here, and all

procedures perform worse in the current situation, compared to their performance in cases

when the within-subject observations are assumed independent and normally distributed

(cf., plot (a) in Figure 3).

At the end of this section, we would like to point out that the computation involved in

the proposed MDySS procedure is actually quite easy because the mean function µ(t) and

the covariance function Σ(s, t) are estimated by local smoothing procedures. For instance,
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Table 3: Actual ATS0 (in the first row) and ATS1 values of the procedures MDySS-M,
MDySS-C, and MDySS-L, along with their standard errors (in parentheses), for detecting
step mean shifts of the size δ occurring at the initial time point, in cases when the IC mean
function µ(t) and the IC covariance matrix function Σ(s, t) are estimated from an IC dataset
with m1 subjects, m1 = 70, d = 2, ω = 0.001, λM = λC = λL = 0.2, and the nominal ATS0

is 100.

δ MDySS-C MDySS-M MDySS-L
0 101.53(0.58) 101.62(0.67) 98.23(0.58)
1 96.35(0.62) 94.45(0.58) 88.41(0.50)
2 74.19(0.49) 67.19(0.39) 62.30(0.41)
3 51.02(0.35) 45.61(0.43) 41.11(0.42)
4 32.49(0.16) 34.21(0.19) 30.80(0.18)
5 80.85(0.56) 81.69(0.52) 76.40(0.47)
6 60.84(0.40) 62.91(0.40) 58.83(0.37)
7 44.63(0.34) 43.51(0.40) 39.54(0.39)
8 50.50(0.29) 52.38(0.31) 49.91(0.28)
9 28.37(0.20) 26.64(0.25) 24.65(0.24)
10 27.59(0.14) 31.09(0.15) 29.92(0.14)
11 20.16(0.10) 20.54(0.10) 19.84(0.09)
12 68.45(0.42) 74.90(0.47) 71.29(0.40)
13 25.09(0.12) 28.14(0.17) 26.82(0.16)
14 35.06(0.17) 39.03(0.24) 37.95(0.24)
15 22.91(0.10) 24.23(0.12) 23.54(0.11)
16 14.12(0.06) 15.23(0.08) 15.30(0.08)
17 26.32(0.09) 28.43(0.13) 28.50(0.14)
18 18.80(0.07) 20.59(0.09) 20.36(0.09)
19 26.87(0.10) 29.25(0.15) 28.77(0.14)
20 11.78(0.04) 13.51(0.06) 13.85(0.06)

in the example of Figure 1 when d = 10, q = 5 and ω = 0.001, it takes about 30 minutes to

compute the estimators of µ(t) and Σ(s, t) using an Intel CORE i5-4210U 2.4-GHz CPU. The

computation time for finding each control limit of the charts (10)-(12) is about 20 minutes

in the set up of that example. Because all these computations are required for only once,

before the Phase II online process monitoring, this computation cost is regarded as small. For

Phase II online process monitoring, the proposed MDySS procedure is as computationally

efficient as most existing multivariate control charts. For instance, in the set up of Figure 1,

the averaged computing time of each online run using the chart (12) is about 0.003 seconds.

This speed is acceptable for most applications. MatLab codes for implementing the proposed
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procedure are available from the authors upon request.

5 Analysis of the Stroke Data

In this section, we apply our proposed MDySS method to the stroke data of the SHARe

Framingham Heart Study. As described in Section 1, there were 945 patients who did not

experience any strokes in the study (i.e. m = 945), and 27 patients experienced at least

one stroke. Each patient was followed 7 times (i.e., Ji = 7 for each i), and four medical

indices (i.e., q = 4), including the systolic blood pressure (mmHg), diastolic blood pressure

(mmHg), total cholesterol level (mg/100ml), and glucose level (mg/100ml), were recorded at

each time. For a more complete description of this data, see [34]. Because these four medical

indices, denoted as y, are important risk factors of stroke, it is important to detect their

irregular longitudinal patterns so that some medical interventions can be made in a timely

manner to avoid strokes.

To apply the proposed MDySS method, the 945 non-stroke patients are used as the IC

data. The analysis in [8] confirmed that within-subject observations were correlated and

not normally distributed. Therefore, the IC data will be used for estimating the regular

longitudinal pattern of y and for designing the MDySS procedure as well. In this example,

because we expect a small number of the four medical indices would shift from their regular

longitudinal patterns at the initial stage of a vascular disease, the MDySS-L procedure is

considered. Then, the first 514 patients in the IC dataset are used for estimating the IC

mean function µ(t) and the IC covariance matrix function Σ(s, t), and the remaining 431

patients are used for designing the MDySS-L procedure, as discussed at the end of Section

2. In this dataset, all observation times range from 16 to 83 years old, and the natural basic

time unit is 1 year old. In the MDySS-L procedure, we choose λL = 0.2 and ATS0 = 20.

Then, the control limit hL is computed to be 1.19. The LASSO-based MEWMA chart (13)
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is shown in Figure 1, after it is applied to the 27 stroke patients to monitor their longitudinal

patterns of y. From the figure, it can be seen that it gives signals for 26 out of the 27 stroke

patients. The signal times, defined as the differences between patients’ ages when signaling

and their ages at the beginning of process monitoring, are listed in Table 4. The average

signal time, computed from the 26 stroke patients who get signals, is 11.84.

Table 4: Signal times (STs) of the 27 stroke patients by the LASSO-based MEWMA chart
(13). The symbol “-” denotes no-signal.

ID ST ID ST ID ST
1 20 10 8 19 12
2 12 11 0 20 19
3 0 12 12 21 20
4 15 13 12 22 13
5 7 14 8 23 7
6 15 15 13 24 12
7 8 16 16 25 -
8 7 17 8 26 12
9 12 18 15 27 25

6 Concluding Remarks

We have described a multivariate dynamic screening system for identifying irregular

multivariate longitudinal patterns. This method combines the strengths of multivariate

longitudinal data analysis and multivariate SPC. It makes decisions about the longitudinal

pattern of a subject by comparing it with other subjects cross-sectionally and by sequentially

monitoring it as well. Numerical examples presented in the previous two sections have shown

that it is effective in various cases.

There are still some issues that need to be addressed in our future research. For instance,

when the within-subject observations are correlated, some parametric time series models

might be appropriate in some cases, although time series modeling is generally challenging

in cases with irregularly spaced observation times. If a parametric time series model is
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Figure 5: The LASSO-based MEWMA chart (13) when it is applied to the 27 stroke patients
to monitor their longitudinal patterns of y in cases when we choose λL = 0.2 and ATS0 = 20.
The dashed horizontal line in each plot denotes the control limit.
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confirmed to be appropriate in a given application, then our MDySS method should be more

effective after accommodating such a parametric time series model. In the current version

of the MDySS method, such parametric time series modeling is ignored completely. Also,

when the observation vectors are not normally distributed, some nonparametric multivariate

SPC charts might be more appropriate to use [31, 35, 36], compared to the MEWMA charts

(10), (11) and (13) considered in the paper.
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