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Abstract

Recently, multivariate dynamic screening system (MDySS) has been proposed in the litera-

ture for monitoring processes whose in-control distributions change over time. MDySS has broad

applications, ranging from monitoring of dynamic engineering systems, such as nuclear reactors,

airplanes and other durable goods, to early disease detection. Conventional construction of

MDySS is appropriate only in cases when sampling rate of observations is the same in Phase-I

and Phase-II process monitoring, and the process observations are independent. In practice,

these assumptions are rarely valid. In this paper, we propose a new construction of the MDySS

method, which is shown to be more reliable than the conventional construction in various cases.

The new construction is demonstrated using a real-data from the SHARe Framingham Heart

Study of the National Heart, Lung and Blood Institute.

Key Words: Correlation; Dynamic screening; Efficiency; Multivariate distribution; Nonpara-

metric procedures; Unequal sampling intervals.

1 Introduction

Statistical process control (SPC) charts provide a major tool for monitoring production processes.1−3

A basic assumption to use conventional SPC charts is that the process distribution is unchanged

when the process is in-control (IC). This assumption is often invalid when monitoring dynamic

systems, such as nuclear reactors, airplanes and other durable goods, in which distributions of the

quality variables would change over time even when they are IC. This paper aims to develop an

effective method for process monitoring of such dynamic systems.

In the SPC literature, four types of control charts have been proposed, including the Shewhart,4

CUSUM,5 EWMA,6 and change-point detection7 charts. Numerous generalizations and modifica-

tions of these four types of control charts have been suggested (see, for example, Chapters 3-7
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of Qiu3). Most of these charts and their variants are constructed based on the assumption that

the process observations are independently and identically distributed as a normal distribution.

There are some existing methods in the area of nonparametric (or distribution-free) SPC to ad-

dress cases when the normality assumption is invalid.8−14 There are also some methods to address

cases when process observations are correlated and follow some parametric time series models.15−17

The assumption about identical distribution was addressed recently by Qiu and Xiang18 where

we proposed a so-called dynamic screen system (DySS) to handle cases when the IC process dis-

tribution changes over time. Its multivariate version was discussed in Qiu and Xiang19 and the

related control scheme was called multivariate DySS (MDySS). However, both DySS and MDySS

are mainly designed for cases when the process observations are independent and the sampling

rates in Phase I and Phase II SPC are the same. In cases when these assumptions are invalid, these

approaches may not be reliable.

In this paper, we propose a novel construction of the MDySS method to handle cases when

the process observations are not independent and identically normally distributed. The new con-

struction decorrelates the observed data and makes their IC distribution closer to normal as well

before process monitoring. As such, the modified MDySS method would be more efficient than the

original one, especially when the true process distribution is very skewed and process observations

are highly correlated. The modified method will be described in detail in Section 2. Some numerical

results are presented in Section 3. A real-data application is discussed in Section 4. Some remarks

conclude the article in Section 5.

2 Methodology

Similar to many SPC procedures, our proposed MDySS method consists of two steps. In the

first step, a flexible multivariate nonparametric model is used to estimate the regular multivariate

longitudinal pattern from an IC dataset. To this end, the recent model fitting procedure proposed

by Xiang, Qiu and Pu20 is used, and it is briefly described in Subsection 2.1. Based on the fitted

multivariate nonparametric model, we develop a new MDySS procedure for online monitoring of
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the multivariate longitudinal pattern of a new subject, which is described in detail in Subsection

2.2.

2.1 Estimation of regular multivariate longitudinal pattern

Assume that we have m well-functioning subjects in an IC dataset. For each subject, q per-

formance variables that we are interested in monitoring are measured over time. Let yi(tij) =

(yi1(tij), yi2(tij), . . . , yiq(tij))
T denote the q-dimensional observation collected from the i-th subject

at the j-th time point tij ∈ [0, T ]. We use the following multivariate nonparametric longitudinal

model to describe such data:

yi(tij) = µ(tij) + ǫi(tij), i = 1, . . . ,m, j = 1, . . . , ni, (1)

where µ(tij) = (µ1(tij), µ2(tij), . . . , µq(tij))
T is the population mean vector of yi(tij), and ǫi(tij) =

(ǫi1(tij), ǫi2(tij), . . . , ǫiq(tij))
T is the q-dimensional error term with the covariance matrix function

Σ(s, t) = Cov(ǫi(s), ǫi(t)) for any s, t ∈ [0, T ]. By the estimation procedure in Xiang, Qiu and

Pu,20 we can obtain estimates of µ(t) and Σ(s, t) by the algorithm below.

Step 1. Use the local linear kernel smoothing procedure to obtain an initial estimate of µk(·)

(k = 1, .., q). More specifically, define

Xi =




1 (ti1 − t)

...
...

1 (tini
− t)




ni×2

,

and Kih = diag(K((ti1 − t)/h), . . . ,K((tini
− t)/h))/h, where K(·) is a kernel function and

h > 0 is a bandwidth. Let Ji = diag(I{|ti1−t|≤h}, . . . , I{|tini
−t|≤h}), where I{A} is the indicator

function and takes the value of 1 if A is true and 0 otherwise. Then the initial local linear
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kernel estimator of µk(t), k = 1, . . . , q, is given by

µ̃k(t) = eT1

(
m∑

i=1

XT
i WiXi

)−1( m∑

i=1

XT
i Wiyik

)
,

where e1 = (1, 0)T , Wi = K
1/2
ih (JiIni

Ji)
−1K

1/2
ih , Ini

is the ni-dimensional identity matrix, and

yik = (yik(ti1), yik(ti2), . . . , yik(tini
))T .

Step 2. Based on the initial estimate µ̃k(t), calculate the residuals

ǫ̃ik(tij) = yik(tij)− µ̃k(tij), i = 1, . . . ,m, j = 1, . . . , ni, k = 1, . . . , q.

Let ǫ̃i(tij) = (ǫ̃i1(tij), ǫ̃i2(tij), . . . , ǫ̃iq(tij))
T . An initial estimator of Σ(s, t) for s ≤ t is obtained

by using the following kernel estimator,

Σ̃(s, t) =

∑m
i=1

∑
j1,j2=1,...,ni,j1≤j2

ǫ̃i(tij1)ǫ̃i(tij2)
T I{tij2−tij1=t−s}K(

tij1−s

h )
∑m

i=1

∑
j1,j2=1,...,ni,j1≤j2

I{tij2−tij1=t−s}K(
tij1−s

h )
.

Since Σ(s, t) = Σ(t, s)T , estimates of Σ(s, t) for s > t can be defined accordingly.

Step 3. Based on Σ̃(s, t) from Step 2, we obtain an updated estimator of µ(·). More specifically,

denote a diagonal matrix with the [j+(k−1)J ]-th diagonal element being ajk by diag{ajk, j =

1, . . . , J, k = 1, . . . , q}. Let H = (h1, . . . , hq)
T be the bandwidth vector with hk being the

bandwidth for the k-th component (k = 1, . . . , q). Then, define

KiH = diag{K((tij − t)/hk), j = 1, . . . , ni, k = 1, . . . , q},

JiH = diag{I{|tij−t|≤hk}, j = 1, . . . , ni, k = 1, . . . , q}.

Let Yi = (yi1(ti1), . . . , yi1(tini
), yi2(ti1), . . . , yi2(tini

), . . . , yiq(ti1), . . . , yiq(tini
))T and Vi = Cov(Yi).
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The estimator of Vi can then be obtained from Σ̃(s, t) as

V̂i =




σ̃11(ti1, ti1) · · · σ̃11(ti1, tini
) · · · σ̃1q(ti1, ti1) · · · σ̃1q(ti1, tini

)

...
. . .

...
. . .

...
. . .

...

σ̃11(tini
, ti1) · · · σ̃11(tini

, tini
) · · · σ̃1q(tini

, ti1) · · · σ̃1q(tini
, tini

)

σ̃21(ti1, ti1) · · · σ̃21(ti1, tini
) · · · σ̃2q(ti1, ti1) · · · σ̃2q(ti1, tini

)

...
. . .

...
. . .

...
. . .

...

σ̃21(tini
, ti1) · · · σ̃21(tini

, tini
) · · · σ̃2q(tini

, ti1) · · · σ̃2q(tini
, tini

)

...
. . .

...
. . .

...
. . .

...

σ̃q1(ti1, ti1) · · · σ̃q1(ti1, tini
) · · · σ̃qq(ti1, ti1) · · · σ̃qq(ti1, tini

)

...
. . .

...
. . .

...
. . .

...

σ̃q1(tini
, ti1) · · · σ̃q1(tini

, tini
) · · · σ̃qq(tini

, ti1) · · · σ̃qq(tini
, tini

)




where σ̃l1,l2(s, t) is the (l1, l2)-th element of Σ̃(s, t). Define

WiH = K
1/2
iH (JiH V̂iJiH)−1K

1/2
iH .

Then, the updated and final estimate of µ(t) is

µ̂(t) =





[
m∑

i=1

(Iq ⊗Xi)
TWiH(Iq ⊗Xi)

]−1 [ m∑

i=1

(Iq ⊗Xi)
TWiHYi

]


T

(Iq ⊗ e1), (2)

where Iq is the q-dimensional identity matrix, and ⊗ denotes the Kronecker product.

Step 4. Based on the updated estimate of µ(·) from Step 3, we can update the residuals by

ǫ̂ik(tij) = yik(tij)− µ̂k(tij), i = 1, . . . ,m, j = 1, . . . , ni, k = 1, . . . , q,

and obtain the updated estimate of Σ(s, t) as

Σ̂(s, t) =

∑m
i=1

∑
j1,j2=1,...,ni,j1≤j2

ǫ̂i(tij1)ǫ̂i(tij2)
T I{tij2−tij1=t−s}K(

tij1−s

h )
∑m

i=1

∑
j1,j2=1,...,ni,j1≤j2

I{tij2−tij1=t−s}K(
tij1−s

h )
,
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where ǫ̂i(tij) = (ǫ̂i1(tij), ǫ̂i2(tij), . . . , ǫ̂iq(tij))
T .

In all our numerical examples presented later, we use K(t) = 0.75(1 − t2)I{|t|≤1}, and all

bandwidths are selected separately by the conventional cross-validation method.

2.2 Online monitoring of multivariate longitudinal data

Now, we want to online monitor the performance of a new subject. Assume that her/his perfor-

mance variables are observed at {t∗j , j = 1, 2, . . .} and the observations are {y(t∗j ), j = 1, 2, . . .}.

Our major goal is to decide at each time point t∗j whether the new subject’s observations fol-

low the regular multivariate longitudinal pattern, based on all available observations collected so

far. If not, then a signal should be given as early as possible. So, when the new subject is IC,

{y(t∗j ), j = 1, 2, . . .} should follow model (1), namely,

y(t∗j ) = µ(t∗j ) + ǫ(t∗j ), j = 1, 2, . . . . (3)

There are many multivariate SPC procedures in the existing literature21. However, most of

these SPC procedures require that the observations are uncorrelated over time. Therefore, they

cannot be applied directly to the current problem because longitudinal association is allowed in (3).

The MDySS method in Qiu and Xiang19 ignores the longitudinal association in its construction. In

this paper, we try to sequentially decorrelate the observed data {y(t∗j )} first each time when a new

observation is obtained, and then apply a standard multivariate SPC procedure to the decorrelated

data. The sequential data decorrelation procedure is described below.

2.2.1 Sequential decorrelation procedure

To facilitate the exposition, we treat µ(t) and Σ(s, t) as known. In reality, they should be replaced

by their respective estimates µ̂(t) and Σ̂(s, t) described in the previous section. We start from the

first observation y(t∗1). We first compute ǫ(t∗1) = y(t∗1) − µ(t∗1). Then, the covariance matrix of
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ǫ(t∗1) is A11 = Σ11 = Σ(t∗1, t
∗
1). Therefore, we can define its standardized vector by

e∗(t∗1) = Σ
−1/2
11 ǫ(t∗1).

For the second observation y(t∗2), we can also calculate ǫ(t∗2) = y(t∗2) − µ(t∗2). Now, ǫ(t∗2)

is correlated with ǫ(t∗1), and the covariance matrix of ǫ2 = (ǫ(t∗1)
T , ǫ(t∗2)

T )T is given by A22 =

Σ11 Σ12

ΣT
12 Σ22


, where Σ12 = Σ(t∗1, t

∗
2), Σ22 = Σ(t∗2, t

∗
2). If we define Φ2 =




Iq 0

−ΣT
12Σ

−1
11 Iq


 and

D2 =



Σ11 0

0 Σ22·1


 = diag{Σ11,Σ22·1}, where Σ22·1 = Σ22 − ΣT

12Σ
−1
11 Σ12, we have

Φ2A22Φ
T
2 = D2.

This motivates us to define e2 = Φ2ǫ2 = (e(t∗1)
T , e(t∗2)

T )T , where

e(t∗1) = ǫ(t∗1),

e(t∗2) = −ΣT
12Σ

−1
11 ǫ(t

∗
1) + ǫ(t∗2).

Since Cov(e2) = D2, e(t
∗
1) and e(t∗2) are uncorrelated. Noticing that the standardized vector defined

at the first observation time is e∗(t∗1) = Σ
−1/2
11 e(t∗1), we can define the standardized vector of the

second observation by

e∗(t∗2) = Σ
−1/2
22·1 e(t∗2) = Σ

−1/2
22·1

(
−ΣT

12Σ
−1
11 ǫ(t

∗
1) + ǫ(t∗2)

)
.

Then e∗(t∗1) and e∗(t∗2) are uncorrelated and both have covariance matrices equal to Iq.

Similarly, for the third observation y(t∗3), we calculate ǫ(t∗3) = y(t∗3) − µ(t∗3). The covariance

matrix of ǫ3 = (ǫT2 , ǫ(t
∗
3)

T )T is given by A33 =



A22 Σ23

ΣT
23 Σ33


, where Σ23 = Cov(ǫ2, ǫ(t

∗
3)) =
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(Σ(t∗1, t
∗
3)

T ,Σ(t∗2, t
∗
3)

T )T , Σ33 = Cov(ǫ(t∗3)) = Σ(t∗3, t
∗
3). It can be shown that

Φ3A33Φ
T
3 = D3,

where Φ3 =




Φ2 0

−ΣT
23A

−1
22 Iq


, and D3 = diag{Σ11,Σ22·1,Σ33·2}, Σ33·2 = Σ33 −ΣT

23A
−1
22 Σ23. There-

fore, if we define

e(t∗3) = −ΣT
23A

−1
22 ǫ2 + ǫ(t∗3),

then e3 = (eT2 , e(t
∗
3)

T )T = Φ3ǫ3 and Cov(e3) = D3, which implies that e(t∗3) is uncorrelated with

e(t∗1) and e(t∗2). The standardized vector of the third observation is then defined as

e∗(t∗3) = Σ
−1/2
33·2 e(t∗3) = Σ

−1/2
33·2

(
−ΣT

23A
−1
22 ǫ2 + ǫ(t∗3)

)
,

which is uncorrelated with e∗(t∗1) and e∗(t∗2) and has covariance matrix equal to Iq.

Following the same procedure we can define the standardized vector sequentially after a new

observation is collected for the new subject. More specifically, at the j-th observation time,

we calculate ǫ(t∗j ) = y(t∗j ) − µ(t∗j ). Then, the covariance matrix of ǫj = (ǫTj−1, ǫ(t
∗
j )

T )T is

Ajj =



Aj−1,j−1 Σj−1,j

ΣT
j−1,j Σjj


, where ǫj−1 is the residual vector from the first (j − 1)-th observa-

tions, Aj−1,j−1 = Cov(ǫj−1), Σj−1,j = Cov(ǫj−1, ǫ(t
∗
j )) = (Σ(t∗1, t

∗
j )

T , . . . ,Σ(t∗j−1, t
∗
j )

T )T , Σjj =

Cov(ǫ(t∗j )) = Σ(t∗j , t
∗
j ). It can be shown that

ΦjAjjΦ
T
j = Dj ,

where Φj =




Φj−1 0

−ΣT
j−1,jA

−1
j−1,j−1 Iq


, Dj = diag{Σ11,Σ22·1, . . . ,Σjj·j−1} with Σjj·j−1 = Σjj −

ΣT
j−1,jA

−1
j−1,j−1Σj−1,j . Therefore, if we define

e(t∗j ) = −ΣT
j−1,jA

−1
j−1,j−1ǫj−1 + ǫ(t∗j ),
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ej = (e(t∗1)
T , . . . , e(t∗j )

T )T = (eTj−1, e(t
∗
j ))

T =




Φj−1 0

−ΣT
j−1,jA

−1
j−1,j−1 Iq






ǫj−1

ǫ(t∗j )


 = Φjǫj and Cov(ej) =

Dj . This implies that, if we define the standardized vector of the j-th observation by

e∗(t∗j ) = Σ
−1/2
jj·j−1e(t

∗
j ) = Σ

−1/2
jj·j−1

(
−ΣT

j−1,jA
−1
j−1,j−1ǫj−1 + ǫ(t∗j )

)
,

e∗(t∗j ) is uncorrelated with e∗(t∗1), . . . , e
∗(t∗j−1) and has covariance matrix equal to Iq. So, by the

above sequential data transformation, we transform the original data {y(t∗1), . . . ,y(t
∗
j )}, which are

longitudinally correlated, to the sequence of uncorrelated data {e∗(t∗1), . . . , e
∗(t∗j )}, and each vector

e(t∗j′), for j
′ = 1, . . . , j, has mean 0 and covariance matrix Iq.

Remark 1 In the above sequential decorrelation procedure, at the (j + 1)-th observation, we need

to calculate A−1
jj . To avoid the difficulty associated with finding the inverse of high-dimensional

matrices, we can use the following recursive formula:

A−1
jj =



A−1

j−1,j−1 +A−1
j−1,j−1Σj−1,jΣ

−1
jj·j−1Σ

T
j−1,jA

−1
j−1,j−1, −A−1

j−1,j−1Σj−1,jΣ
−1
jj·j−1

−Σ−1
jj·j−1Σ

T
j−1,jA

−1
j−1,j−1, Σ−1

jj·j−1


 .

This result simplifies the computation greatly.

2.2.2 Online monitoring procedure

Because e∗(t∗j ) is a linear combination of observations y(t∗1),y(t
∗
2), . . . ,y(t

∗
j ), its distribution would

be asymptotically normal. Therefore, the series {e∗(t∗j ), j = 1, 2, . . .} would be asymptotically i.i.d.

with the common distribution to be the standard multivariate normal distribution Np(0, Iq). In

such cases, many standard multivariate control charts can be applied. As an example, in this paper

we use the multivariate EWMA chart proposed by Lowry et al.22 to demonstrate our proposed

MDySS method. More specifically, we define the charting statistic to be

Sj = λe∗(t∗j ) + (1− λ)Sj−1, for j ≥ 1, (4)
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where S0 = 0 and λ ∈ (0, 1] is a weighting parameter, and the chart gives an signal when

2− λ

λ
ST
j Sj > l,

where l > 0 is a control limit.

2.2.3 Determining the control limit

Because the observation times may not be equally spaced in most longitudinal data studies, follow-

ing Qiu and Xiang18, we use average time to the signal (ATS) when evaluating the performance of

control charts in this paper. In particular, when calculating ATS, the time to signal is expressed in

terms of the basic time unit ω, where ω is the largest time unit that all unequally spaced observa-

tion times are its integer multiples. We also note that the IC data usually have a fixed time frame.

Without loss of generosity, we assume that the domain of the observation times {tij} for the IC

data is [0, 1]. Therefore, the mean vector function and the covariance matrix function estimated

from the IC data are only appropriate for use within the domain [0, 1]. As a consequence, when

using these estimates in our proposed MDySS procedure to monitor the observations from a new

subject, even if our MDySS procedure has not signaled when we reach the last observation of the

individual within the domain [0, 1], we cannot continue to monitor. When this happens, we can

only know that the actual time to the signal is greater than 1/ω, and we would not know the exact

time to the signal. To make the calculation of ATS still feasible in this situation, we let the time

to the signal to be 1/ω when our MDySS procedure has not signaled at the last observation of the

individual subject within the domain [0, 1]. In other words, the time to the signal is right truncated

at 1/ω.

Based on the above method to calculate ATS, we next describe how to determine the control

limit l such that the IC ATS (denoted by ATS0) of our MDySS procedure in (4) is controlled at a

desired level. From Section 2.2.1, we know that {e∗(t∗j ), j = 1, 2, . . .} in (4) are uncorrelated. If it is

reasonable to assume that the error term ǫ(·) in (1) follows a normal distribution, then {e∗(t∗j ), j =

1, 2, . . .} are a sequence of i.i.d. standard multivariate normal random variables if the observations
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are IC. Therefore, determining the control limit l in our proposed MDySS procedure can be achieved

by generating data from the standard multivariate normal distribution as {e∗(t∗j ), j = 1, 2, . . .} and

finding l to obtain the desired ATS0 for any given λ through a bi-section search. The bi-section

search algorithm is given below:

Step 1. For a given control limit l, we simulate 10,000 IC sample paths. In each of the IC sample

paths, {e∗(t∗j ), j = 1, 2, . . .} are generated from the standard multivariate normal distribution.

The corresponding ATSl
0 for the given l is determined by averaging out the time to a signal

in the basic time unit ω from these 10,000 sample paths. Based on this approach, we first

find l1 such that ATSl1
0 < ATS0, and l2 such that ATSl2

0 > ATS0, where we use the notation

ATSl
0 to denote the ATS0 value when the control limit l is used.

Step 2. Find ATSl3
0 where l3 is the midpoint of l1 and l2.

Step 3. If ATSl3
0 < ATS0, assign l1 = l3. If ATS

l3
0 > ATS0, assign l2 = l3;

Step 4. Repeat Steps 2 and 3 until ATSl3
0 is sufficiently close to ATS0;

Step 5. Use l3 as the control limit.

As mentioned earlier, the observation times in most longitudinal data studies may not be equally

spaced. We specify the distribution of the observation times by the sampling rate d, which is defined

to be the number of observation times every 10 basic time units here. The calculated control limits

l using the above bi-section search algorithm for various values of d and λ in our proposed MDySS

procedure (4) with ATS0 = 20 or 50 are given in Table 1.

Table 1: Control limits l for different d and λ values when observations are normally distributed.

ATS0 = 20 ATS0 = 50
λ d = 2 d = 5 d = 2 d = 5

0.05 1.368 3.061 3.239 6.100
0.1 2.415 4.786 5.088 8.300
0.2 3.899 6.644 7.116 10.150

If the distribution of the error term ǫ(t) in (1) is unknown but the number of observations for
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each subject is large, we can still use the above method to determine the control limit, since e∗(t∗j )

is simply a linear combination of observations and its distribution is asymptotically normal. If the

distribution of the error term ǫ(t) is unknown and the number of observations for each subject is

small, e∗(t∗j ) might not be asymptotically normally distributed. In this case, we can use a bootstrap

procedure to determine the control limit as follows. Among the m well-functioning subjects in

the IC dataset, we first use the observations from m1 (m1 < m) subjects to fit the multivariate

nonparametric model (1) and obtain the estimates of µ̂(t) and Σ̂(s, t), as discussed in Section

2.1. Based on these µ̂(t) and Σ̂(s, t), we apply the sequential decorrelation procedure described

in Section 2.2.1 to the remaining m − m1 subjects in the IC dataset and obtain the decorrelated

residuals {e∗(tij), i = m1 + 1,m1 + 2, . . . ,m, j = 1, . . . , ni}. Those residuals are asymptotically

uncorrelated and can be used to approximate the distribution of e∗(t∗j ) in our proposed MDySS

procedure in (4). To determine the control limit l to achieve the desired ATS0 for any given λ

and d, we can then follow the same bi-section search algorithm as described above except that, in

each of the IC sample paths, {e∗(t∗j ), j = 1, 2, . . .} are now drawn randomly with replacement from

{e∗(tij), i = m1 + 1,m1 + 2, . . . ,m, j = 1, . . . , ni}.

As a summary, our proposed sequential decorrelation procedure transforms the original data

{y(t∗j ), j = 1, 2, ...}, which might be longitudinally correlated, to the sequence of uncorrelated

data {e∗(t∗j ), j = 1, 2, ...}. The distribution of the transformed observations should be close to

normal in many cases because each of them is a linear combination of the original data. So, the

EWMA chart (4) should be effective in such cases. In some special cases, the distribution of the

transformed observations could be quite different from a normal distribution. In such cases, we have

suggested a bootstrap procedure to determine the control limit of the chart (4). So, the chart should

still be reliable. A potential improvement in the latter cases is to consider using a multivariate

nonparametric control chart (cf., Chapter 9 of Qiu3), instead of the multivariate EWMA chart (4),

for monitoring e∗(t∗j ). We leave this issue to our future research.
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3 Numerical Study

In this section, we report some simulation results to demonstrate the performance of our proposed

MDySS procedure. In our simulations, we follow Qiu and Xiang19 and choose the IC mean function

µ(t) to be

µ(t) = (0, t, 1 + 0.2t+ 0.3t2, 1− exp(−10t), cos(t))T , t ∈ [0, 1],

and the error term ǫ(t) to be ǫ(t) = B(t)ǫ∗(t), for t ∈ [0, 1], where B(t) = diag(1, exp(t), 1/(1 +

t), 2, log(t+ 5)), and ǫ∗(t) is generated from the following 5-dimensional AR(1) model

ǫ∗(t) = 0.5ǫ∗(t− ω) + e(t).

In the above multivariate AR(1) model, ω is the basic time unit, and e(t) is a white noise process

with mean 0 and covariance matrix

Σ0 =




1 0.8 0.82 0.83 0.84

0.8 1 0.8 0.82 0.83

0.82 0.8 1 0.8 0.82

0.83 0.82 0.8 1 0.8

0.84 0.83 0.82 0.8 1




.

The corresponding IC covariance matrix function Σ(s, t) is

Σ(s, t) =
4

3
× 0.5(s−t)/ω × diag(1, exp(s), 1/(1 + s), 2, log(s+ 5))

× Σ0 × diag(1, exp(t), 1/(1 + t), 2, log(t+ 5)), t ∈ [0, 1].

As described earlier, the observation times for each new subject is specified by the sampling

rate d. Throughout all the simulation studies presented in this section we choose the basic time

unit ω to be 0.01, and d to be 2 or 5. For our proposed MDySS procedure (4) to a new subject’s

observations, we set the nominal ATS0 value at 20 or 50, and the weighting parameter λ at 0.05,
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0.1 or 0.2.

We first study the IC performance of the proposed method in cases when the IC mean vector

function µ(t) and the IC covariance matrix function Σ(s, t) are both known. Using the control limits

reported in Table 1, we apply our proposed MDySS procedure (4) to a new subject’s observations

generated from the above IC model and obtain the IC ATS value. This is repeated 1,000 times,

and the average of the 1,000 IC ATS values is computed as the simulated ATS0 value of our

proposed MDySS procedure. We repeat this simulation 100 times. Table 2 shows the means of the

simulated ATS0 values along with their corresponding standard errors (in the parentheses) under

different settings. From the table, it can be seen that the simulated ATS0 values are close to the

nominal levels in all cases considered, which indicates that our sequential decorrelation procedure

can successfully decorrelate the observed data because the control limits used are based on the

assumption that observations are longitudinally uncorrelated.

Table 2: Simulated ATS0 for different d and λ values when µ(t) and Σ(s, t) are both assumed
known.

ATS0 = 20 ATS0 = 50
λ d = 2 d = 5 d = 2 d = 5

0.05 19.972(0.038) 19.990(0.040) 49.941(0.095) 50.099(0.096)
0.1 19.937(0.043) 19.908(0.042) 49.957(0.089) 50.228(0.106)
0.2 20.043(0.044) 19.890(0.043) 50.090(0.088) 49.848(0.104)

We next study the OC performance of the proposed MDySS procedure, and apply it to the

simulated data of 1,000 new subjects whose mean vector function shifts to µ1(t) = µ(t) + δ ·

(1, 1, 1, 1, 1)T , which represents a step shift of size δ in all 5 components at the initial observation

time. We choose δ to be 0.25, 0.5, 0.75, or 1. The simulated ATS1 values of our proposed MDySS

procedure under different settings are presented in Table 3 along with their standard errors (in

parentheses), based on 100 replications. As can be seen from the table, our MDySS procedure has

a decent detection power.

As a comparison, we also apply the procedure proposed by Qiu and Xiang19 to this example.

That procedure uses the same MEWMA statistic as in (4), except that the e∗(t∗j ) are simply the

residuals standardized by the estimated covariance matrices. When the original data are correlated,
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Table 3: Simulated ATS1 for different d and λ values when µ(t) and Σ(s, t) are both known.

d ATS0 λ δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

20 0.05 18.882(0.035) 16.728(0.028) 14.510(0.021) 12.556(0.019)
0.1 18.781(0.033) 16.508(0.029) 15.978(0.025) 12.229(0.020)
0.2 18.680(0.035) 16.234(0.034) 15.516(0.025) 11.736(0.021)

2 50 0.05 43.070(0.063) 33.488(0.044) 29.286(0.033) 22.151(0.023)
0.1 42.753(0.071) 32.630(0.048) 28.160(0.033) 21.032(0.024)
0.2 42.934(0.079) 32.153(0.053) 27.077(0.037) 19.871(0.029)

20 0.05 18.330(0.033) 15.322(0.025) 12.645(0.018) 10.571(0.015)
0.1 18.167(0.037) 14.986(0.027) 13.349(0.021) 10.108(0.017)
0.2 18.064(0.040) 14.755(0.028) 12.893(0.021) 9.643(0.018)

5 50 0.05 39.802(0.067) 28.417(0.039) 22.993(0.027) 17.245(0.021)
0.1 39.910(0.079) 27.771(0.046) 21.911(0.030) 16.076(0.021)
0.2 40.784(0.092) 28.247(0.059) 21.586(0.037) 15.417(0.024)

e∗(t∗j ) are still correlated. If we ignore such autocorrelation and pretend the transformed data e∗(t∗j )

to be independent, then the actual ATS0 values of that procedure in cases considered in the above

example are presented in Table 4. From the table, it can be seen that the simulated ATS0 values

are quite far away from the nominal ATS0 values, indicating that the procedure is unreliable in this

scenario. To overcome this limitation, Qiu and Xiang also proposed a block bootstrap procedure to

determine the control limit of the MEWMA chart so that the underlying data autocorrelation can

be accommodated. The results corresponding to Tables 2 and 3 are presented in Table 5, where the

Table 4: Simulated ATS0 of the procedure proposed by Qiu and Xiang19 when the autocorrelation
in the observed data is ignored.

ATS0 = 20 ATS0 = 50
λ d = 2 d = 5 d = 2 d = 5

0.05 17.207(0.031) 11.970(0.024) 41.224(0.066) 25.041(0.049)
0.1 17.050(0.032) 11.332(0.024) 40.314(0.072) 22.466(0.051)
0.2 16.930(0.034) 10.704(0.025) 39.435(0.084) 20.389(0.052)

column labeled by “δ = 0” gives the IC results and the remaining columns give OC results. From

the table, it can be seen that the chart is quite reliable in this scenario because the simulated ATS0

values are quite close to the nominal values. By comparing results in this table and those in Table

3, we can also see that the method by Qiu and Xiang19 using the block bootstrap procedure has
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similar shift detection power. However, if we compare the standard errors presented in parentheses

in the two tables, we can see that the ones in Table 5 are about 2-3 times larger than the ones in

Table 3. Because the results in these tables are based on 100 replicated simulations, the standard

deviations of the related methods are 10 times the standard errors presented in the tables. So, for

instance, in the case when d = 2, ATS0 = 20, λ = 0.05 and δ = 0.25, the simulated ATS0 values of

the method by Qiu and Xiang19 can vary in the interval (17.041, 21.001) (i.e., (x̄−2s, x̄+2s)), while

the simulated ATS0 values of the current method can only vary in the interval (18.182, 19.582). In

this sense, the current method is much more reliable.

Table 5: Simulated ATS for different d and λ values for Qiu and Xiang’s block bootstrap EWMA
procedure.

d ATS0 λ δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

20 0.05 20.062(0.114) 19.021(0.099) 16.805(0.074) 14.555(0.058) 12.625(0.045)
0.1 20.043(0.109) 18.913(0.095) 16.603(0.072) 15.880(0.059) 12.315(0.041)
0.2 19.990(0.127) 18.736(0.110) 16.267(0.082) 15.353(0.067) 11.791(0.045)

2 50 0.05 50.431(0.231) 43.552(0.179) 33.733(0.112) 29.198(0.081) 22.267(0.064)
0.1 50.424(0.236) 43.213(0.186) 32.869(0.110) 28.057(0.078) 21.111(0.059)
0.2 50.526(0.237) 43.263(0.203) 32.264(0.125) 26.854(0.084) 19.813(0.061)

20 0.05 20.063(0.111) 18.374(0.090) 15.377(0.063) 12.715(0.047) 10.654(0.036)
0.1 20.083(0.114) 18.264(0.094) 15.054(0.066) 13.100(0.047) 10.169(0.034)
0.2 20.081(0.128) 18.169(0.104) 14.802(0.072) 12.617(0.052) 9.668(0.037)

5 50 0.05 50.240(0.223) 39.952(0.159) 28.520(0.092) 22.709(0.060) 17.372(0.046)
0.1 49.940(0.264) 39.774(0.192) 27.723(0.108) 21.493(0.068) 16.074(0.052)
0.2 49.636(0.268) 40.643(0.229) 28.057(0.124) 21.035(0.077) 15.295(0.056)

It should also be pointed out that the method by Qiu and Xiang19 is more computationally

intensive, compared to the current procedure, because the former needs to use the block bootstrap

procedure to determine its control limit. Furthermore, Qiu and Xiang’s procedure requires that

the sampling scheme in the IC data collected at the end of Phase I SPC should be exactly the same

as the sampling scheme in the Phase II data. To show the importance of this sampling scheme

requirement for Qiu and Xiang’s procedure, we carry out a simulation using different sampling

schemes for IC data and Phase II data. The sampling rate d for the IC data and the Phase II

data are denoted by d1 and d2, respectively. The simulated ATS0 values for Qiu and Xiang’s

procedure for different d1 and d2 are shown in Table 6. As we can see from the table, even when
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d1 and d2 are slightly different, the simulated ATS0 values can be quite off from the nominal

levels. In contrast, our proposed method does not have this sampling scheme requirement, because

the transformed data {e∗(t∗j )} used in (4) are uncorrelated and thus we can always adopt the

same sampling scheme as that in the Phase II data when designing the control chart. See Section

2.2.2 about the details of control chart design. This property makes our method potentially more

applicable in real applications, since the IC data collected at the end of Phase I SPC and the

Phase-II data could have different sampling schemes in many situations. Our real-data application

discussed in Section 4 presents one such example.

Table 6: Simulated ATS0 for different d1 and d2 values for Qiu and Xiang’s block-bootstrap
MEWMA procedure.

ATS0 = 20 ATS0 = 50
λ d1 = 2, d2 = 3 d1 = 5, d2 = 6 d1 = 2, d2 = 3 d1 = 5, d2 = 6

0.05 12.311(0.034) 15.384(0.053) 30.605(0.090) 38.570(0.145)
0.1 12.244(0.042) 15.263(0.057) 30.452(0.100) 38.170(0.171)
0.2 12.265(0.044) 15.262(0.058) 30.459(0.122) 38.279(0.182)

Next, we consider cases when the IC mean vector function µ(t) and the IC covariance matrix

function Σ(s, t) are both unknown and they need to be estimated from an IC data. We assume

that we have m = 1, 000 subjects in the IC data, their observations are generated from the IC

mean vector function µ(t) and the IC covariance matrix function Σ(s, t) described at the beginning

of the section. We apply the estimation procedure described in Section 2.1 to the IC data, and

obtain the estimated IC mean vector function and IC covariance matrix function, µ̂(t) and Σ̂(s, t).

By using those µ̂(t) and Σ̂(s, t), we apply the proposed MDySS procedure (4) to the 1,000 new

subjects generated from the mean vector function µ1(t) = µ(t)+δ ·(1, 1, 1, 1, 1)T , as in the previous

simulation example. The average time to signal from these 1,000 new subjects is the simulated ATS

value from one single IC dataset. We then repeat this simulation with 100 different IC datasets.

Table 7 shows the averaged ATS0 (in the column labeled by “δ = 0”) and ATS1 values along

with their standard errors (in the parentheses) under different settings, based on the 100 replicated

simulations. As we can see from the table, all the values here are close to their counterparts
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in Tables 2 and 3 when µ(t) and Σ(s, t) are assumed known. This example indicates that the

estimation procedure described in Section 2.1 can provide reliable estimates of µ(t) and Σ(s, t).

Table 7: Simulated ATS0 and ATS1 values for different d and λ values when µ(t) and Σ(s, t) are
both unknown.

d ATS0 λ δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1

20 0.05 19.988(0.047) 18.886(0.046) 16.513(0.036) 14.091(0.029) 12.002(0.024)
0.1 19.974(0.047) 18.800(0.047) 16.298(0.035) 15.821(0.032) 11.677(0.025)
0.2 20.005(0.055) 18.711(0.049) 16.025(0.038) 15.359(0.032) 11.189(0.024)

2 50 0.05 49.757(0.094) 43.173(0.077) 33.166(0.061) 29.026(0.047) 21.124(0.036)
0.1 49.694(0.104) 42.855(0.084) 32.350(0.062) 27.897(0.049) 19.999(0.037)
0.2 49.863(0.115) 43.045(0.098) 31.900(0.069) 26.765(0.052) 18.757(0.038)

20 0.05 19.968(0.040) 18.322(0.036) 15.230(0.028) 12.476(0.024) 10.362(0.020)
0.1 19.897(0.047) 18.132(0.042) 14.890(0.029) 13.273(0.024) 9.874(0.019)
0.2 19.776(0.053) 17.940(0.047) 14.603(0.031) 12.776(0.025) 9.378(0.020)

5 50 0.05 49.390(0.106) 39.576(0.065) 28.247(0.049) 22.876(0.037) 16.898(0.029)
0.1 49.359(0.106) 39.509(0.074) 27.597(0.054) 21.782(0.040) 15.699(0.031)
0.2 48.765(0.111) 40.159(0.087) 27.975(0.064) 21.355(0.046) 15.023(0.035)

In Section 2.2.3, we proposed a bootstrap procedure to determine the control limit when the

distribution of the error term is unknown and the number of observations for each subject is small.

In the following, we report some simulation results to evaluate the performance of this bootstrap

procedure. More specifically, in each simulation run, we first generate an IC dataset withm = 1, 000

subjects from the same IC model described above expect that the e(t) are now i.i.d. multivariate t

random vectors with mean 0, degrees of freedom 4, and the covariance matrix Σ0 (see its definition

at the beinning of this section). The corresponding IC covariance matrix function Σ(s, t) is

Σ(s, t) =
8

3
× 0.5(s−t)/ω × diag(1, exp(s), 1/(1 + s), 2, log(s+ 5))

× Σ0 × diag(1, exp(t), 1/(1 + t), 2, log(t+ 5)), t ∈ [0, 1].

We then use the data from the first 800 subjects to obtain the estimates of the IC mean vector

function and covariance matrix function, µ̂(t) and Σ̂(s, t). Based on these µ̂(t) and Σ̂(s, t), we

sequentially decorrelate the residuals from the remaining 200 subjects. The control limit is then

determined using the bootstrap resamples of those decorrelated residuals as described in Section
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2.2.3. We apply our MDySS procedure with this control limit to the 1,000 new subjects generated

from the mean vector function µ1(t) = µ(t) + δ · (1, 1, 1, 1, 1)T . The average time to the signal

from these 1,000 new subjects is the simulated ATS. We repeat this simulation 100 times. Table

8 shows the averaged ATS0 and ATS1 values along with their standard errors (in the parentheses)

under different settings, based on the 100 simulations. As we can see from the table, all the ATS0

values are within 10% of the nominal ATS0 values, which indicates the validity of our bootstrap

procedure. When δ increases, the ATS1 value decreases, which indicates a good detection power

of our bootstrap procedure.

Table 8: Simulated ATS values for different d and λ values when the bootstrap procedure is used
in determining the control limit.

d ATS0 λ δ = 0 δ = 0.5 δ = 1 δ = 1.5 δ = 2

20 0.05 21.379(0.056) 18.474(0.047) 14.119(0.036) 10.952(0.028) 8.778(0.023)
0.1 21.562(0.061) 18.473(0.048) 13.892(0.037) 13.643(0.029) 8.462(0.022)
0.2 21.827(0.063) 18.543(0.052) 13.642(0.039) 13.104(0.028) 7.984(0.022)

2 50 0.05 53.299(0.144) 40.477(0.110) 27.102(0.070) 23.561(0.052) 15.489(0.037)
0.1 53.625(0.150) 40.717(0.122) 26.473(0.073) 22.525(0.053) 14.513(0.038)
0.2 53.913(0.165) 42.493(0.148) 26.805(0.091) 21.751(0.062) 13.564(0.042)

20 0.05 21.123(0.059) 17.491(0.049) 12.797(0.038) 9.639(0.028) 7.600(0.022)
0.1 21.296(0.066) 17.456(0.054) 12.542(0.039) 10.855(0.029) 7.184(0.023)
0.2 21.512(0.069) 17.920(0.060) 12.740(0.043) 10.611(0.031) 6.872(0.024)

5 50 0.05 52.456(0.153) 35.903(0.099) 22.842(0.063) 18.077(0.045) 12.390(0.035)
0.1 52.503(0.159) 37.256(0.112) 22.838(0.072) 17.354(0.047) 11.530(0.036)
0.2 52.219(0.157) 41.664(0.142) 25.994(0.099) 18.457(0.064) 11.779(0.047)

4 A Real Application

In this section we use a data set from the SHARe Framingham Heart Study of the National Heart,

Lung and Blood Institute to demonstrate the application of our proposed MDySS procedure. In the

SHARe Framingham Heart Study, there are 1006 patients, and each of the patients was followed

7 times. During each clinic visit, four medical indices (the total cholesterol level (mg/100ml), the

glucose level (mg/100ml), the diastolic blood pressure (mmHg), and the systolic blood pressure

(mmHg)) of the patients were recorded. Among the 1006 patients, 979 did not have any strokes
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during the study, and the remaining 27 patients had at least one stroke. Figure 1 shows the four

medical index values from 10 randomly selected non-stroke patients (thin solid red line) and 10

randomly selected stroke patients (dashed green line) over the 7 clinic visits. It seems that the

stroke patients have higher values in all four medical indices than those non-stroke patients.

To develop a control chart that can simultaneously monitor a patient’s four medical indices, we

use the data of the 979 non-stroke patients as the IC data, and then apply the estimation procedure

described in Section 2.1 to 800 of the non-stroke patients to obtain the estimated IC mean vector

function µ̂(t) and the estimated IC covariance matrix function Σ̂(s, t). The estimated IC mean

vector function µ̂(t) is shown as the dark solid curve in Figure 1. Based on µ̂(t) and Σ̂(s, t), we

apply our sequential decorrelation procedure to the remaining 179 non-stroke patients to obtain the

decorrelated residuals. The control limit is then determined by the bootstrap procedure described

in Section 2.2.3. Since each stroke patient has an average of 2.3 observations every 10 years, we

choose d = 2 and the basic time unit is a year. We use λ = 0.2 and ATS0 = 20 in our proposed

MDySS procedure. The corresponding control limit l determined from our bootstrap procedure

is 3.425. We then apply our MDySS procedure with this control limit to the 27 stroke patients,

and all of them are detected to have mean shifts. The corresponding control charts of our MDySS

procedure for the 27 stroke patients are shown in Figure 2. The signal times of the 27 stroke

patients are reported in Table 9, and their average is 13.37 years.

Table 9: Signal times of the 27 stroke patients by our proposed MDySS procedure (ST1) and Qiu
and Xiang’s block bootstrap MEWMA procedure (ST2).

Patient ID ST1 ST2 ID ST1 ST2 ID ST1 ST2

1 26 - 10 19 23 19 23 23
2 23 26 11 19 22 20 11 11
3 17 25 12 12 15 21 7 19
4 11 - 13 7 7 22 7 7
5 11 11 14 15 25 23 19 -
6 7 12 15 0 23 24 19 22
7 12 12 16 12 12 25 7 11
8 12 23 17 15 23 26 12 16
9 15 11 18 16 - 27 7 12
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Figure 1: (a) Total cholesterol level (mg/100ml), (b) glucose level (mg/100ml), (c) diastolic blood
pressure (mmHg), and (d) systolic blood pressure (mmHg) of 10 randomly selected non-stroke
patients (thin solid red line) and 10 randomly selected stroke patients (dashed green line). The
dark solid curve is the estimated IC mean function µ̂(t) using the 979 non-stroke patients as the
IC data.
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Figure 2: The proposed MEWMA chart for monitoring the 27 stroke patients. The dashed hori-
zontal lines denote the control limit of l = 3.425.
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As a comparison, we also apply Qiu and Xiang’s block bootstrap MEWMA procedure to this

data set. Its results are shown in Figure 3, and their procedure fails to detect 4 of 27 stroke patients.

The signal times of the stroke patients detected by their procedure are also reported in Table 9, and

their average is 17 years. From Table 9, we can also see that the signal times of Qiu and Xiang’s

procedure are mostly larger than the signal times of our proposed procedure.
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Figure 3: The MEWMA chart for monitoring the 27 stroke patients using the block bootstrap
method proposed in Qiu and Xiang19. The dashed horizontal lines denote the control limit of
l = 8.215.

The reason why Qiu and Xiang’s block bootstrap MEWMA procedure does not perform well

in this example might be due to the difference of observation times (ages) in non-stroke patients

and stroke patients. To see this more clearly, we plot the histograms of the observation times

(in ages) for the non-stroke patients and stroke patients in Figure 4. The average observation
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times when the 7 measurements were taken from the non-stroke patients and stroke patients are

reported in Table 10. As seen from those results, the stroke patients tend to be observed at later

ages, compared to the non-stroke patients, indicating that the sampling scheme for the non-stroke

patients (IC data) is quite different from that for the stroke patients (Phase II data). As shown

in our simulation study presented in Section 3, to ensure the validity of Qiu and Xiang’s block

bootstrap MEWMA procedure, the sampling scheme in the IC data has to be the same as the

sampling scheme in the Phase II data. The difference of observation times in non-stroke patients

and stroke patients might explain why Qiu and Xiang’s block bootstrap MEWMA procedure does

not work well in this data set.
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Figure 4: The histogram of the observation times (in ages) for (a) the non-stroke patients; (b) the
stroke patients.
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Table 10: The average times (in ages) when each of the seven measurements was taken from the
non-stroke patients and stroke patients.

Measurement 1 2 3 4 5 6 7

Non-stroke patients 35.37 43.21 47.62 51.06 54.72 58.75 61.61
Stroke patients 41.89 49.81 53.93 57.59 61.15 65.37 67.93

5 Concluding Remarks

We have presented a new construction of the MDySS method for online monitoring of dynamic

systems whose IC distributions change over time. The new construction has been shown to be

more reliable in cases when the process observations are correlated and the sampling rates in Phase

I and Phase II SPC are different. In Butte and Tang23, a line-column approach was proposed

to identify the OC components after a signal is given from the multivariate EWMA chart. We

can similarly adopt their approach to identify which performance variables have caused the alarm

in our online monitoring of dynamic systems. In this paper, the weighting parameter λ in the

multivariate EWMA chart (4) is assumed fixed. This parameter can also be determined using an

adaptive parameter selection procedure (see, for example, Section 5.4.2. of Qiu3). Furthermore, we

can replace (4) by a self-starting control chart which keeps expanding the IC data each time when

a Phase II observation is confirmed to be IC (Section 5.4.1. of Qiu3). Also, as mentioned at the

end of Section 2, a nonparametric multivariate control chart can be considered for monitoring the

decorrelated data. These possible improvements will be studied in a future research.
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