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A comprehensive distribution-free scheme for tri-aspect surveillance of 

complex processes 

 

 

 

Abstract 

Distribution-free charting schemes for process monitoring are more robust and reliable than their 

parametric counterparts when the process distributions are unknown and complicated. Most of the 

control charts are uni-aspect schemes because they can detect a shift in only one aspect of the 

process distribution, like location or scale. Research on schemes for simultaneous surveillance of 

location and scale parameters has been very active in recent years, leading to many bi-aspect 

schemes. These schemes do not explicitly deal with the shape of the process distribution. However, 

a shift in the shape parameter along with or without a location or scale shift can occur in practice, 

especially in production or time-to-event processes. Note that, there are nonparametric schemes 

for detecting general shifts based on goodness-of-fit test statistics, or empirical likelihood ratio 

statistics, which cannot isolate if there is a shift in location, scale, shape or some mixture of them.  

In this paper, we introduce a new distribution-free process monitoring scheme that can detect a 

shift in either of location, scale and shape parameters, or any combinations of them. The new 

scheme is based on a combined statistic designed via Euclidean distance of the standardized 

Wilcoxon statistic for location, the standardized Ansari-Bradley statistic for scale and the 

standardized Savage-type statistic for shape. We discuss the implementation design using the 

average run-length as the performance metric and investigate the in-control performance of the 

proposed scheme. It is shown that the new charting scheme is in-control robust irrespective to the 

underlying process distribution and therefore applicable to monitor any univariate continuous 

processes. An out-of-control performance comparison study of the new scheme with many existing 

schemes shows that the new scheme is preferable to the existing schemes, as none of them is 

designed to monitor the three process parameters simultaneously. We discuss an application of the 

new chart in monitoring arrival delays of a passenger train in a regional route in Italy. The proposed 

scheme is comprehensive in the sense that it integrates the follow-up procedure via integrated sub-

charts for classifying the signalling component. 

 

 

Keywords: Ansari-Bradley Statistic; Arrival Delay; Control Chart; Nonparametric Phase-II 

Analysis; Savage Statistics; Statistical Process Control; Wilcoxon Statistic. 
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1. Introduction 

Quality 4.0 is one of the most critical aspects of the smart factory, where digitally enhanced 

processes increase productivity and flexibility in the factory and throughout the supply chain. 

Quality 4.0 emphasizes the crucial role of quality control in contributing to the smart factory 

evolution. Modern technologies and practices are used to improve overall quality, reduce supply 

chain interruptions, cost and time to market of products or service delivery. Quality 4.0 is a 

reference to Industry 4.0, the fourth industrial revolution promoted by the recent fast advancement 

in connectivity, mobility, scalability and data analytics. Industry 4.0 is resulting in transformations 

in manufacturing efficiency, supply chain performance, product innovation, and even entirely new 

business models. Quality 4.0 does not mean that traditional methods, like control charts, should be 

replaced but rather that they should be improved. Control charts play a central role in quality 

control and management because they are handy tools for improving the quality of a product, by 

limiting rework, slowdowns, and redundant processes. 

 Traditional control charts assume that the underlying process distribution has a known 

parametric form. For example, the Shewhart X-bar and R charts postulate that the process 

distribution is normal. Other familiar distributions that are assumed are the Exponential and 

Weibull ones. However, there are many situations where such assumptions are not met in practice. 

Examples are processes involved in monitoring service quality in a customer call centre or of bank 

teller counters, citizen satisfaction with municipal services, waiting time to reach a customer care 

executive or to get an appointment in a city hospital, punctuality of suburban rail services. 

Parametric control charts do not guarantee reliable results when their parametric assumptions on 

process distribution are not met. In this context, many scholars suggest the application of 

nonparametric, or distribution-free, control charts that are more robust and reliable than parametric 

charts because no parametric distributional assumption is required. Research on nonparametric 

control charts is very active. A search for “nonparametric control chart” OR “distribution-free 

control chart” in the past two decades shows that the interest is flourishing. Table 1 displays the 

number of search entries found in the most familiar academic databases. 
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Table 1. Search results for “nonparametric control chart” OR “distribution-free control chart” 

 Timespan 
Google 

Scholar 
Scopus Dimension 

Till 2000 57 26 50 

2001-2005 49 11 41 

2006-2010 95 69 100 

2011-2015 222 178 336 

2016-2020  381 404 606 

Distribution-free charting schemes do not assume a specific distribution for the process, or just 

impose some general assumptions, such as continuous distribution or symmetric distribution. 

Therefore, the primary advantage of distribution-free charts over parametric counterparts is in-

control (𝐼𝐶) robustness. The 𝐼𝐶 properties, such as 𝐼𝐶 average run-length (𝐴𝑅𝐿0) or false alarm 

rate (𝐹𝐴𝑅) of these charts are invariant for all underlying process distributions. If the underlying 

process distribution is indeed normal, then distribution-free schemes may be slightly less efficient 

than parametric schemes. However, distribution-free schemes are markedly more efficient when 

the normality assumption is not met (Koutras, & Triantafyllou, 2018; Qiu, & Li, 2011; Qiu, & 

Zhang, 2015). Many distribution-free charts have been developed for location shifts (Balakrishnan, 

Triantafyllou, & Koutras, 2009; Chakraborti, Eryilmaz, & Human, 2009; Graham, Chakraborti, & 

Human, 2011; Graham, Mukherjee, & Chakraborti, 2012; Hawkins, & Deng, 2010; Li, Tang, & 

Ng, 2010; Abid, Nazir, Riaz, & Lin 2017), for scale shifts (Jones, & Champ, 2010; Zhou, Zhou, 

& Geng 2016), and for distribution changes (Ross, & Adams, 2012). See Chakraborti, van der 

Laan, & Bakir (2001); Qiu (2018); Chakraborti, & Graham (2019) for general accounts on 

distribution-free charts. We especially recommend reading Chapters 8 and 9 of Qiu (2014); and 

the book edited by Koutras, & Triantafyllou (2020). 

Most of the traditional parametric and distribution-free control charts are either designed 

to monitor the location or the scale parameters separately. That is, one charting scheme is used for 

surveillance of one specific aspect of process quality. In practice, shifts in both the location and 

scale parameters of a process may happen simultaneously. Therefore, one chart for location and 

one for scale are often applied together. Rahim & Costa (2000) considered the economic design of 

the X-bar and R chart for monitoring both parameters of a normal distribution. David, & Grigoryan 

(2006) studied the joint statistical design of double sampling X-bar and s charts. Further, Zhang, 

Yang, Khoo, & Yu (2010) proposed an optimal design of control schemes for joint monitoring of 

mean and variance. Lee (2013) proposed the joint statistical design of X-bar and s charts with 
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combined double sampling and variable sampling interval. A serious disadvantage of using two 

separate control charts to monitor both the shift in location and variability is that monitoring 

becomes very complicated when a shift in one parameter affects the shift in the other parameter. 

Many scholars and practitioners advocated the introduction of schemes based on a single plotting 

statistic for jointly monitoring the location and scale parameters, leading to a very active research 

topic. Mukherjee, & Chakraborti (2012) first proposed a distribution-free Shewhart-Lepage (𝑆𝐿) 

scheme for jointly monitoring the location and scale parameters of a process that leads to a new 

dimension of research on bi-aspect monitoring. Subsquently, Chowdhury, Mukherjee, & 

Chakraborti (2015) proposed a cumulative sum scheme based on the Lepage statistic. Chowdhury, 

Mukherjee, & Chakraborti (2014) proposed a distribution-free Shewhart-Cucconi (𝑆𝐶) scheme for 

jointly monitoring the location and scale parameters of a process. Chong, Mukherjee, & Khoo 

(2017, 2018) respectively proposed a fuzzy monitoring scheme that combines two versions of the 

𝑆𝐿 chart and a class of 𝑆𝐿 type schemes for one-sided joint monitoring. Mukherjee & Marozzi 

(2017a) introduced a circular-grid chart based on some Lepage-type statistics. Mukherjee, & 

Marozzi (2017b) and Mukherjee (2017) discussed respectively, some distribution-free cumulative 

sum (𝐶𝑈𝑆𝑈𝑀) and exponentially weighted moving average (𝐸𝑊𝑀𝐴) schemes based on the 

Lepage statistic. A class of percentile modified 𝑆𝐿 type schemes was offered by Mukherjee, & Sen 

(2018). Zhang, Li, & Li (2017) proposed an 𝐸𝑊𝑀𝐴 scheme based on the Cramér–von Mises test 

for joint monitoring of location and scale. Song, Mukherjee, Liu, & Zhang (2019) proposed two 

adaptive modifications of the 𝑆𝐿 chart. Other recent contributions to distribution-free location-

scale joint monitoring schemes are Celano, Castagliola, & Chakraborti (2016); Li, Xie, & Zhou 

(2016); Song, Mukherjee, & Zhang (2020), Song, Mukherjee, Maozzi, & Zhang (2020), 

Mukherjee,& Marozzi (2020), among others.    

A location-scale model cannot always precisely capture the true nature of the shift in the 

process distributions involving service quality or product reliability or general time-to-event 

because a shift in the underlying process can also happen in the shape parameter of the distribution. 

However, the largest share of the existing distribution-free charts consists of uni-aspect schemes 

monitoring either the location or the scale parameter only. A sizeable share of distribution-free 

charts has arisen more recently and consists of bi-aspect schemes for simultaneous monitoring of 

location and scale parameters. Motivated by the lack of schemes for simultaneous monitoring of 

location, scale and shape parameters, we propose in this paper a tri-aspect distribution-free chart. 
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Our idea is to modify the familiar bi-aspect Shewhart-Lepage scheme so that it is sensitive also to 

a shift in the shape parameter of the underlying process distribution. In this paper, we also use the 

idea of integrated sub-charts for comprehensive monitoring and follow-up to identify in which 

parameter the shift has actually happened. More precisely, in Section 2, we design the new chart 

by combining the Wilcoxon, Ansari Bradley and antisymmetric Savage statistics. In Section 3, we 

show how to implement the new chart. A performance comparison study with several multi-aspect 

charts is presented in Section 4. The application of the new chart to an actual problem is illustrated 

in Section 5. Section 6 concludes the paper with some remarks and a direction for further research.  

 

2. The distribution-free tri-aspect scheme 

Suppose that a random sample of size 𝑚 is available from an 𝐼𝐶 process with an unknown 

univariate continuous distribution 𝐹𝑋. We recommend using an appropriate Phase-I analysis to 

establish it as a reference sample. Denote it by 𝑿𝒎 = (𝑋1, . . . , 𝑋𝑚). Let 𝒀𝒋,𝒏  =  (𝑌𝑗1, . . . , 𝑌𝑗𝑛) be 

the test sample obtained during the 𝑗th stage of monitoring independently of 𝑿𝒎. Suppose that test 

samples come from a univariate continuous distribution function denoted by 𝐺𝑌. Kössler and 

Mukherjee (2020) introduced a versatile shift model, combining the general location-scale 

alternative and the Lehmann alternative as 

𝐺𝑌(𝑥) = [𝐹𝑋 (
𝑥 − 𝜃

𝑒𝜗
)]
𝑒𝛿

, (𝜃, 𝜗, 𝛿) ∈ ℝ3,   

where 𝜃, 𝜗, 𝛿 are respectively the location, scale and shape parameters. Equivalently, in a 

simplified notation, one may write 

 𝐺𝑌(𝑥) = [𝐹𝑋 (
𝑥 − 𝜃

𝜗′
)]
𝛿′

, 𝜃 ∈  ℝ, 𝜗′ ∈ ℝ+, 𝛿′ ∈ ℝ+, 

where 𝜃 is as before, 𝜗′ and 𝛿′ are the reparameterized scale and shape components, respectively. 

This form alternative allows flexibility to include various types of shifts, including classical 

isolated location, scale shift or Lehmann alternative as well as mixed location and scale shift as a 

particular case and is explained later. 

 

We may note that the corresponding pdf is  

 𝑔𝑌(𝑥) =
𝛿′

𝜗′
𝑓𝑋 (

𝑥 − 𝜃

𝜗′
) [𝐹𝑋 (

𝑥 − 𝜃

𝜗′
)]

𝛿′−1

, 𝜃 ∈  ℝ, 𝜗′ ∈ ℝ+, 𝛿′ ∈ ℝ+, 
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For example, if  𝐹𝑋 (
𝑥−𝜃

𝜗′
) = 1 − 𝑒

−
𝑥−𝜃

𝜗′ , 𝑔𝑌(𝑥) is the pdf of an exponentiated shifted exponential 

random variable which includes popular exponentiated exponential, see Gupta and Kundu (2001), 

as a particular case when 𝜃 = 0, if 𝐹𝑋 (
𝑥−𝜃

𝜗′
) = Φ(

𝑥−𝜃

𝜗′
), Φ being the cdf of the normal distribution, 

we observe 𝑔𝑌(𝑥) as exponentiated normal (EN) distribution as in Gupta and Gupta (2008). Note 

that a standard EN distribution is the same as the standard normal distribution. Further, the EN 

distribution with 𝛿′ = 2 is the Azzalini’s skew-normal distribution, see Li et al. (2019), for its uses 

SPM context. Exponentiated models of the form 𝑔𝑌(𝑥) are widely addressed in modelling failure 

times, see, for example, Gupta et al. (1998) for some early reference. 

Consider the null hypothesis 𝐺𝑌(𝑥) = 𝐹𝑋(𝑥), i.e. that the test sample and reference samples 

come from two identical populations, and no shift is involved. In symbols, it is 

𝐻0:  [𝜃 = 0, 𝜗 = 0, 𝛿 = 0]  ≡ 𝐻0: [𝜃 = 0, 𝜗
′ = 1, 𝛿′ = 1]. 

Here, 𝐻0 assumes that the process is 𝐼𝐶. 𝐻0 can be violated in several ways when the process is 

out-of-control (𝑂𝑂𝐶). The pure location shift hypothesis corresponds to 

𝐺𝑌(𝑥) = 𝐹𝑋(𝑥 − 𝜃), 

in symbols it is 

𝐻𝑙:  [𝜃 ≠ 0, 𝜗 = 0, 𝛿 = 0] ≡    𝐻𝑙: [𝜃 ≠ 0, 𝜗
′ = 1, 𝛿′ = 1]. 

The Wilcoxon statistic W can be used to test for this alternative hypothesis. The test does not 

require the assumption of normality and is the most standard nonparametric test. The Wilcoxon 

test is nearly as powerful as the Student t-test when the parent population is normal unless sample 

sizes are very small. In fact, the asymptotic relative efficiency (𝐴𝑅𝐸) of the Wilcoxon test to the 

Student t-test is 0.955 under normal distributions. The 𝐴𝑅𝐸 for the logistic, double exponential, 

uniform and exponential distributions are respectively 1.097, 1.5, 1.0, 3.0. In general, the 𝐴𝑅𝐸 of 

the Wilcoxon test to the Student t-test has a lower bound of 0.864 but there is no upper bound, 

meaning that it can be infinitely more efficient than the Student t-test as emphasized by Lehmann 

(2009).  

Consider the combined reference sample 𝑿𝒎 and the 𝑗th test sample 𝒀𝒋,𝒏 of size 

𝑁,  where 𝑁 = 𝑚 + 𝑛 and sort its elements in the increasing order. Let 𝑖 be an indicator variable 

such that 
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𝑖 = {
0 if the 𝑖th smallest element of the pooled sample belongs to 𝑿𝒎
1 otherwise

. 

The 𝑊𝐼 statistic for testing 𝐻0 versus 𝐻𝑙 is defined as 

𝑊𝐼 =∑𝑖𝑖

𝑁

𝑖=1

. 

The pure scale shift alternative hypothesis for process variability corresponds to 

𝐺𝑌(𝑥) = 𝐹𝑋 (
𝑥

𝑒𝜗
) = 𝐹𝑋 (

𝑥

𝜗′
) , 

in symbols, it is 

𝐻𝑣:  [𝜃 = 0, 𝜗 ≠ 0, 𝛿 = 0] ≡ 𝐻𝑣: [𝜃 = 0, 𝜗
′ ≠ 1, 𝛿′ = 1]. 

The Ansari-Bradley (𝐴𝐵) statistic can be used to test for this alternative hypothesis. The 

corresponding test does not require the assumption of normality and is quite familiar in practice 

being also featured, for example, in the standard textbook on nonparametric tests by Hollander, 

Wolfe, & Chicken (2013). Its 𝐴𝑅𝐸 to the 𝐹 test is 0.61 under normal distributions. The 𝐴𝐵 statistic 

for testing  𝐻0 versus 𝐻𝑣 is defined as 

𝐴𝐵 =∑|𝑖 −
𝑁 + 1

2
| 𝑖

𝑁

𝑖=1

. 

The joint location-scale shift hypothesis corresponds to 

𝐺𝑌(𝑥) = 𝐹𝑋 (
𝑥−𝜃

𝑒𝜗
) = 𝐹𝑋 (

𝑥−𝜃

𝜗′
), 

in symbols it is 

𝐻𝑙𝑣:  [𝜃 ≠ 0, 𝜗 ≠ 0, 𝛿 = 0] ≡  𝐻𝑙𝑣:  [𝜃 ≠ 0, 𝜗
′ ≠ 1, 𝛿′ = 1]. 

The Lepage statistic can be used to test for this alternative hypothesis. The corresponding test does 

not require the assumption of normality and is the most familiar test for this hypothesis in practice, 

see Hollander, Wolfe, & Chicken (2013). The Lepage statistic (𝐿𝐸𝑃) is the sum of the squared 

standardized Wilcoxon statistic (𝐿) for location and Ansari-Bradley statistic (𝑉) for variability 

𝐿𝐸𝑃 =  (
𝑊𝐼 − 𝜇𝑊𝐼
𝜎𝑊𝐼

)
2

+ (
𝐴𝐵 − 𝜇𝐴𝐵
𝜎𝐴𝐵

)
2

= 𝐿2 + 𝑉2, 

where  

  𝜇𝑊𝐼 = 𝐸(𝑊𝐼|𝐻0) =
1

2
𝑛(𝑁 + 1),    𝜎𝑊𝐼

2 = 𝑉𝑎𝑟(𝑊𝐼|𝐻0) =
1

12
𝑚𝑛(𝑁 + 1) ; 
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𝜇𝐴𝐵 = 𝐸(𝐴𝐵|𝐻0) = {

𝑛𝑁

4
                 if 𝑁 is even 

𝑛(𝑁2 − 1)

4𝑁
 if 𝑁 is odd

, 

and 

𝜎𝐴𝐵
2 =   𝑉𝑎𝑟(𝐴𝐵|𝐻0) =   

{
 

 
1

48
𝑚𝑛

(𝑁2 − 4)

𝑁 − 1
               if 𝑁 is even

1

48

𝑚𝑛(𝑁 + 1)(𝑁2 + 3)

𝑁2
  if 𝑁 is odd.

 

Lepage (1971) showed that the Wilcoxon statistic and the Ansari-Bradley statistic are linearly 

uncorrelated under the null hypothesis. The 𝐿𝐸 statistic is the square of the Euclidean distance of 

(𝐿, 𝑉) from (0,0). 

 The Lehmann alternative responsible for a shift in shape is quite familiar in reliability and 

survival analysis and corresponds to a shift in the shape parameter. It assumes that 

𝐺𝑌(𝑥) = [𝐹𝑋(𝑥)]
𝑒𝛿 = [𝐹𝑋(𝑥)]

𝛿′ . 

In symbols, it is 

𝐻𝑠:  [𝜃 = 0, 𝜗 = 0, 𝛿 ≠ 0]   ≡   𝐻𝑠:  [𝜃 = 0, 𝜗
′ = 1, 𝛿′ ≠ 1]. 

The Savage-type test statistic (𝑆𝐴) can be used to test for the Lehmann alternative, where 

𝑆𝐴 =∑(1 −∑
1

𝑗

𝑁

𝑗=𝑖

)𝑖

𝑁

𝑖=1

. 

The mean and variance of the 𝑆𝐴 statistic when the process is 𝐼𝐶 are respectively 

   𝜇𝑆𝐴 = 𝐸(𝑆𝐴|𝐼𝐶) = 0  and 𝜎𝑆𝐴
2 = 𝑉𝑎𝑟(𝑆𝐴|𝐼𝐶)  =  √

𝑚𝑛

𝑁 − 1
(1 −

1

𝑁
∑

1

𝑗

𝑁

𝑗=1

) . 

In various lifetime distributions and business and economic models, one may encounter 𝑂𝑂𝐶 

situations that are more complex than those outlined before. They are the location-shape shift 

corresponding to 

𝐻𝑙𝑠: [𝜃 ≠ 0, 𝜗 = 0, 𝛿 ≠ 0]   ≡   𝐻𝑙𝑠:  [𝜃 ≠ 0, 𝜗
′ = 1, 𝛿′ ≠ 1], 

the variability-shape shift corresponding to 

𝐻𝑣𝑠: [𝜃 = 0, 𝜗 ≠ 0, 𝛿 ≠ 0]   ≡   𝐻𝑣𝑠:  [𝜃 = 0, 𝜗
′ ≠ 1, 𝛿′ ≠ 1], 

or the versatile shift in location-variability-shape corresponding to 

𝐻𝑙𝑣𝑠: [𝜃 ≠ 0, 𝜗 ≠ 0, 𝛿 ≠ 0]   ≡   𝐻𝑙𝑣𝑠:  [𝜃 ≠ 0, 𝜗
′ ≠ 1, 𝛿′ ≠ 1]. 
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Figure 1. An Illustration of seven types of shifts in a standard (exponentiated) normal distribution 

 

Figure 1 explains seven types of shifts in the standard (exponentiated) normal distribution. While 

alternatives of the types 𝐻𝑙 , 𝐻𝑣, 𝐻𝑠 or 𝐻𝑙𝑣 are addressed in literature more frequently, other 

possibilities are not well-addressed.  Kössler & Mukherjee (2020) proposed a two-sample test that 

is powerful for all possible alternatives involving the three parameters. Their idea was to modify 

the Lepage statistic, that is sensitive to location and/or scale shifts, to be sensitive also to shape  

shifts. More precisely, writing 𝑆 =
𝑆𝐴−𝜇𝑆𝐴

𝜎𝑆𝐴
, they considered the Euclidean distance of 

(
𝑊𝐼−𝜇𝑊𝐼

𝜎𝑊𝐼
,
𝐴𝐵−𝜇𝐴𝐵

𝜎𝐴𝐵
,
𝑆𝐴−𝜇𝑆𝐴

𝜎𝑆𝐴
) = (𝐿, 𝑉, 𝑆) from (0,0,0) as 

𝑇 =  (
𝑊−𝜇𝑊

𝜎𝑊
)
2
+ (

𝐴𝐵−𝜇𝐴𝐵

𝜎𝐴𝐵
)
2
+ (

𝑆𝐴−𝜇𝑆

𝜎𝑆
)
2
= 𝐿2 + 𝑉2 + 𝑆2.  

 

Note that, 𝐿, 𝑉 and  𝑆 being standardized, 𝐸(𝐿|𝐼𝐶) = 𝐸(𝑉|𝐼𝐶) = 𝐸(𝑆|𝐼𝐶) = 0, and 

𝑉𝑎𝑟(𝐿|𝐼𝐶) = 𝑉𝑎𝑟(𝑉|𝐼𝐶) = 𝑉𝑎𝑟(𝑆|𝐼𝐶) = 1. Therefore, we always have 𝐸(𝑇|𝐼𝐶) = 𝐸(𝐿2 +

𝑉2 + 𝑆2|𝐼𝐶) = 3. Irrespective of the magnitude,  nature and direction of the possible shifts in 

location, scale and shape, one may expect in most situations, 𝐸(𝑇|𝑂𝑂𝐶) > 3. Kössler, & 

Mukherjee (2020) referred to the statistic 𝑇 as the 𝐸𝐶𝑊𝐴𝑆 statistic.  In the context of process 
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monitoring, we propose a comprehensive tri-aspect Phase-II monitoring scheme for versatile shifts 

can be designed based on the 𝐸𝐶𝑊𝐴𝑆 statistic, referred to as the 𝐿𝑉𝑆  scheme, for joint 

surveillance of location, variability and shape, and we discuss its implementation in the next 

section. 

 

3. Implementation of the LVS chart 

The 𝐿𝑉𝑆 distribution-free chart for versatile shifts is a comprehensive, integrated scheme that 

ensures monitoring location, scale and shape aspects. The charting scheme plots the location (𝐿), 

variability (𝑉) and shape (𝑆) components as standardized Wilcox, AB and Savage-type statistics, 

as well as their sum of squares (𝑇) as the plotting statistic for the overall assessment of the process 

in the 𝑌-axis against the sample number in 𝑋-axis. Since 𝑇 ≥ 0, 𝑦𝑎𝑥𝑖𝑠 = 0 may be treated as the 

baseline for the overall assessment; and further 𝐸(𝐿|𝐼𝐶) = 𝐸(𝑉|𝐼𝐶) = 𝐸(𝑆|𝐼𝐶) = 0; so baseline 

also serves as the central line of the component sub-charts. As noted earlier, 𝐸(𝑇|𝐼𝐶) = 3. 

Therefore, 𝑦𝑎𝑥𝑖𝑠 = 3 can serve as the central line for the overall assessment. Also, under IC, 𝐿, 𝑉 

and 𝑆 are approximately distributed as standard normal, so, 𝑦𝑎𝑥𝑖𝑠 = 3 serves as the upper 3𝜎-

control limit of the component sub-charts, and we consider 𝑦𝑎𝑥𝑖𝑠 = −3 as the lower 3𝜎 control 

limit of the component sub-charts. For overall assessment, 𝑇 is compared with the upper control 

limit (𝑈𝐶𝐿), say 𝐻, and a median line (𝑀𝐿) may be considered to see any presence of runs in 𝑇. 

Here 𝑀𝐿 is such that 𝑃(𝑇 > 𝑀𝐿|𝐼𝐶) = 0.5. Determination of the 𝑀𝐿 and 𝐻 is deferred to Section 

3.3. 

 

3.1. Implementation steps for the 𝑳𝑽𝑺 chart 

Step 1: Perform Phase-I analysis. More precisely, collect a random reference sample 𝑿𝒎 =

{ 𝑋1, … , 𝑋𝑚}  of size 𝑚 from an 𝐼𝐶 process after a suitable Phase-I analysis, like the RS/P 

procedure by Capizzi,& Masarotto (2013) or that by Li, Mukherjee,& Su (2019). The 

previous methods can establish whether the reference sample is compatible with a stable 

process concerning the location and scale aspect. No method for all three parameters is 

available yet. 

Step 2: In the course of Phase-II monitoring, observe the 𝑗th test-sample (𝑗 = 1, 2, … ) of size 𝑛 

as 𝒀𝒋,𝒏 = {𝑌𝑗1, … , 𝑌𝑗𝑛} at the 𝑗th stage of inspection. 
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Step 3: Compute the component plotting statistics 𝐿, 𝑉, 𝑆 and the statistic 𝑇  of the 𝐿𝑉𝑆 scheme to 

compare the 𝑗th test-sample (𝑗 = 1, 2, … ) with the reference sample and denote them by 

𝐿𝑗 , 𝑉𝑗 , 𝑆𝑗 ,  and 𝑇𝑗.  

Step 4: Plot 𝑇𝑗 against the specified upper control limit (𝑈𝐶𝐿), say 𝐻. The central line (𝐶𝐿) is 𝐶𝐿 =

𝐸(𝑇𝑗|𝐼𝐶) = 3. When the process is OOC, irrespective of the number, nature and direction 

of possible shifts in location, scale and shape, it is 𝐸(𝑇𝑗|𝑂𝑂𝐶) > 3 and therefore there is 

only the upper control limit (𝑈𝐶𝐿). Also, plot 𝐿𝑗 , 𝑉𝑗  and  𝑆𝑗 for the sub-charts for the 

location, scale and shape components respectively. While 𝑇𝑗 of the main chart may be 

indicated by a small circle, 𝐿𝑗 , 𝑉𝑗  and  𝑆𝑗 maybe marked by 𝐿, 𝑉 and 𝑆 for easy 

identification of the component that they represent. 

Step 5: If 𝑇𝑗 > 𝐻, we suspect a possible shift in the process at the 𝑗th step and the search for an 

assignable cause begins. 

Step 6:  Post-signal Follow-up Procedure. We check if 𝐿, 𝑉 and 𝑆 are greater than +3 or less than 

-3 and accordingly conclude whether there is a change in either the location or scale or 

shape or in more than one of the three parameters. A run of 𝐿 or 𝑉 or 𝑆 above or below 

the baseline (that is the central line of the component charts), also indicate a possible shift 

in the corresponding parameter. Two situations may not be ruled out. First, a signal in the 

𝐿𝑉𝑆 chart but not signal in either of the component charts and second, a signal in one of 

the component charts but not in the LVS chart. In the first case, one can easily find the 

dominant components amongst |𝐿|, |𝑉| and |𝑆| and consider it as a primary cause of the 

signal. In the second situation, it will be advisable to inspect if there is any run, otherwise, 

continue sampling.  

It is important to emphasize that the post signal follow-up for the comprehensive 𝐿𝑉𝑆 scheme is 

straightforward compared to any other existing schemes and fully integrated. This is a significant 

practical advantage of the proposed scheme. 

3.2. Determination of Median Line and Upper Control Limit 

We now discuss the search algorithm for H. To this end, note the following result.  

 

Result 1. For a sequence of independently identically distributed reference sample of size 𝑚 and 

test sample of size 𝑛, as min{𝑚, 𝑛} → ∞ , the limiting IC distribution of 𝑇𝑗 , ∀ 𝑗, is approximately 
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equivalent to the distribution of 1.73𝑍 + 0.27, where 𝑍 follows a 𝜒2 distribution with 1.579 degrees 

of freedom (df). 

Proof. See Kössler & Mukherjee (2020). 

 

Result 2. (i) Conditionally on 𝑿𝒎, the distribution of the run-length variable 𝑅𝑇 of the 𝐿𝑉𝑆 scheme 

is geometric, and is given by,  

𝑃[𝑅𝑇 = 𝑡|𝑿𝒎, 𝐼𝐶] = 𝑃[𝑇1 < 𝐻|𝑿𝒎, 𝐼𝐶]
𝑡−1(1 − 𝑃[𝑇1 < 𝐻|𝑿𝒎, 𝐼𝐶]). 

(ii) Conditional IC Average Run-length (𝐶𝐴𝑅𝐿0) given 𝑿𝒎, is given by 

𝐸(𝑅𝑇|𝑿𝒎, 𝐼𝐶) =
1

1 − 𝑃[𝑇1 < 𝐻|𝑿𝒎, 𝐼𝐶]
. 

(iii) (Unconditional) IC Average Run-length (𝐴𝑅𝐿0) is given by 

𝐸(𝑅𝑇|𝐼𝐶) = 𝐸 [
1

1 − 𝑃[𝑇1 < 𝐻|𝑿𝒎, 𝐼𝐶]
] . 

Proof. Note that, given 𝑿𝒎 𝑇𝑗’s are independent as each 𝑇𝑗 depends only on the 𝑗th test sample, 

and consequently, outcomes with successive test samples become a sequence of Bernoulli trials 

with success being the probability of boundary-crossing, that is, 

𝑃[𝑇1 ≥ 𝐻|𝑿𝒎, 𝐼𝐶] = 1 − 𝑃[𝑇1 < 𝐻|𝑿𝒎, 𝐼𝐶]. 

The result (i) follows from the probability of first boundary crossing at the 𝑡𝑡ℎ trial. Result (ii) 

follows from the properties of Geometric distribution defined over the set of natural numbers as 

its support. Finally, (iii) follows integrating 𝐸(𝑅𝑇|𝑿𝒎, 𝐼𝐶] over the range of 𝑿𝒎. 

 

As a consequence of Result 2(iii), using Jensen’s inequality, we find that 

𝐸(𝑅𝑇|𝐼𝐶) = 𝐸 [
1

1 − 𝑃[𝑇1 < 𝐻|𝑿𝒎, 𝐼𝐶]
] ≥

1

1 − 𝐸[𝑃[𝑇1 < 𝐻|𝑿𝒎, 𝐼𝐶]]
=

1

1 − 𝑃[𝑇1 < 𝐻| 𝐼𝐶]
. 

Also from Result 1, one may approximate 

1

𝜏
≤  𝑃[𝑇1 ≥ 𝐻| 𝐼𝐶] = 𝑃 [𝑍 ≥

𝐻 − 0.27

1.73
|𝐼𝐶]   or  𝑃 [𝑍 <

𝐻 − 0.27

1.73
|𝐼𝐶] ≤ 1 −

1

𝜏
 . 

Therefore, given the target 𝐴𝑅𝐿0, say 𝜏, one may choose the starting value of 𝐻, say 𝐻𝑠𝑡𝑎𝑟𝑡 =

0.27 + 1.73𝜒
1−

1

𝜏
,1.579

2 , where 𝜒𝜉,1.579
2  is the upper 100𝜉 percent point of the the 𝜒2 distribution 

with 1.579 df. Note that, the approximation is far from being accurate in the tail region, especially 

with small samples. In this paper, we use Monte-Carlo simulation in determining control limits 
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and for performance analysis because the test sample size is almost always very small in the 

context of Phase-II monitoring. The large sample results are used to find starting values of Monte-

Carlo simulation for determination of control limits. Therefore, following search algorithm has 

been developed to improved estimation of 𝐻. Let ∇ be a reasonably small positive value. 

Search Algorithm 

1. Set 𝐻𝑡𝑟𝑎𝑖𝑙 = 𝐻𝑠𝑡𝑎𝑟𝑡  

2. Compute the 𝐴𝑅𝐿0 at 𝐻𝑡𝑟𝑎𝑖𝑙 , say 𝐴𝑅𝐿0𝑡𝑟𝑎𝑖𝑙, and record (𝐴𝑅𝐿0𝑡𝑟𝑎𝑖𝑙 , 𝐻𝑡𝑟𝑎𝑖𝑙) 

3. If  𝐴𝑅𝐿0𝑡𝑟𝑎𝑖𝑙 < 𝜏; set 𝐻𝑡𝑟𝑎𝑖𝑙 = 𝐻𝑡𝑟𝑖𝑎𝑙 + ∇, else if 𝐴𝑅𝐿0𝑡𝑟𝑎𝑖𝑙 > 𝜏; set 𝐻𝑡𝑟𝑎𝑖𝑙 = 𝐻𝑡𝑟𝑖𝑎𝑙 − ∇,  

4. Repeat step 2 and 3 until  𝐴𝑅𝐿0𝑡𝑟𝑎𝑖𝑙 − 𝜏 changes its sign 

5. Fit a locally weighted regression 𝐻 =  𝑓(𝐴𝑅𝐿0𝑡𝑟𝑎𝑖𝑙) based on all (𝐴𝑅𝐿0𝑡𝑟𝑎𝑖𝑙 , 𝐻𝑡𝑟𝑎𝑖𝑙) pairs 

6. Predict 𝑈𝐶𝐿 = 𝐻 from the fitted model in Step-5  

It is worth noting that the convergence as in Result 1 is reasonably accurate towards the central 

part of the distribution and therefore it is safe to consider 0.27 + 1.73𝜒0.5,1.579
2 = 1.97 as the 

median line 𝑀𝐿. However, it can also be more precisely estimated via simulation. 

 

4. Performance comparison study 

In this section, we first study the 𝐼𝐶robustness of the 𝐿𝑉𝑆 scheme. More precisely, we compute 

the 𝐴𝑅𝐿0 using Monte-Carlo simulation for different process distributions for a given (𝑚, 𝑛, 𝐻) to 

verify the distribution-free characteristics of the proposed scheme. Further, we compare the 𝑂𝑂𝐶-

𝐴𝑅𝐿 values of the proposed scheme with the Shewhart-Lepage (𝑆𝐿) scheme as in Mukherjee,& 

Chakraborti (2012), the Shewhart-Cucconi (𝑆𝐶) scheme as in Chowdhury, Mukherjee, & 

Chakraborti (2014), and the adaptive 𝑀𝐿𝑃𝐴 scheme, as in Song, Mukherjee, Liu, & Zhang (2019) 

for location-scale shifts. Both 𝑆𝐿 and 𝑆𝐶 schemes are well established nonparametric schemes for 

detecting joint shifts in location and scale, whereas the 𝑀𝐿𝑃𝐴 scheme is a more recent addition to 

the literature of location-scale schemes. The 𝑆𝐿 scheme is based on two components of the 

proposed chart. The 𝑀𝐿𝑃𝐴 scheme is an adaptive scheme based on Lepage-type statistics. It is 

meaningful to compare the proposed scheme with these competing schemes because there is 

evidence that both the Lepage and Cucconi tests are sensitive also against differences in shape, see 

Marozzi (2013), and Song, Mukherjee, Liu, & Zhang (2019) showed that the 𝑀𝐿𝑃𝐴 scheme can 

be useful also for detecting a shape shift. A recent study by Chong, Huang, Mukherjee, & Yang 
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(2020) also established that the 𝑆𝐿 and 𝑆𝐶 schemes are useful even for three or four-parameter 

processes. We study the performance of these schemes in identifying various possible shifts in 

location, scale and shape when the process distributions are: i) standard normal; ii) standard 

Laplace; iii) standard Cauchy; and iv) exponential with mean equal to 1. These distributions range 

from light to heavy-tailed ones and from symmetric to skewed ones, therefore covering a wide 

range of practical situations. More precisely, distribution (ii) is heavy-tailed and symmetric, 

distribution (iii) is very heavy-tailed and symmetric, distribution (iv) is skewed.  

 

4.1. 𝑰𝑪 performance 

The 𝐼𝐶 situation is simulated by setting (, 𝜗′, 𝛿′) = (0,1,1). The 𝐴𝑅𝐿, standard deviation (𝑆𝐷𝑅𝐿) 

and 5th, 25th, 50th, 75th and 95th percentiles of the run-length are computed for the various process 

distributions and for two popular target 𝐴𝑅𝐿0 values: 370 and 500. The considered reference and 

test sample sizes are (𝑚, 𝑛) = (50,5), (50,10), (100,5), (100,10), (300,5), (300,10), (500,5), 

(500,10) that cover a wide range of possible practical situations. In this paper, 10000 replications 

of Monte Carlo are considered for computing 𝐴𝑅𝐿0 and 𝑆𝐷𝑅𝐿0. Table 1 displays the performance 

of the proposed chart when the process is 𝐼𝐶 along with the charting parameter 𝐻. The cells 

corresponding to each of the four distributions contain the run-length statistics in two lines, where the first 

line displays the 𝐴𝑅𝐿0 and 𝑆𝐷𝑅𝐿0 within parenthesis, and the second line shows the 5th, 25th, 50th, 75th 

and 95th percentiles of the run-length distribution. The 𝐼𝐶 results are consistent with the distribution-

freeness of the 𝐿𝑉𝑆 chart because the estimated 𝐴𝑅𝐿0 values are very close to the target values 

irrespective to the distribution of the process. Percentile values show that the run length 

distribution of the proposed chart is highly-right-skewed because for example the 𝐴𝑅𝐿0 is much 

larger than the median and the 95th percentile is generally several times higher than the 𝐴𝑅𝐿0. 

Right-skewness of the run-length distribution is not surprising and has been found by many other 

authors, see for example Zhang, Li, & Li (2017) or Song, Mukherjee, Liu, & Zhang (2019). Note 

that, the conditional run length distribution being geometric with probability 𝑃[𝑇1 > 𝐻|𝑿𝒎, 𝐼𝐶],  

𝑉𝑎𝑟(𝑅𝑇|𝐼𝐶) = 𝑉𝑎𝑟[𝐸(𝑅𝑇|𝑿𝒎, 𝐼𝐶)] + 𝐸[𝑉𝑎𝑟(𝑅𝑇|𝑿𝒎, 𝐼𝐶)] 

For conditional run-length distribution, 𝐸(𝑅𝑇|𝑿𝒎, 𝐼𝐶) ≈ 𝑆𝐷(𝑅𝑇|𝑿𝒎, 𝐼𝐶), 𝑃[𝑇1 > 𝐻|𝑿𝒎, 𝐼𝐶] 

being a small positive proper fraction. But owing to the component, 𝑉𝑎𝑟[𝐸(𝑅𝑇|𝑿𝒎, 𝐼𝐶)] , we 

observe in Table 1 that unconditionally, 𝑆𝐷𝑅𝐿0 values are higher than the 𝐴𝑅𝐿0.  
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Table 2: Upper Control limit (𝐻) and 𝐼𝐶 robustness of the proposed chart for selected (𝑚, 𝑛) and Target 

𝐴𝑅𝐿0 = 370, and 500 

 
Target 𝐴𝑅𝐿0 = 370 

𝑚 𝑛 𝐻 Normal Laplace Cauchy Exponential 

50 5 15.89 370.98  (669.31) 

8, 48, 141, 384, 496 

371.27  (662.85) 

7, 48, 141, 388, 1512 

372.85  (678.61)    

7, 47, 142, 386, 1529 

378.35  (676.16) 

7, 48, 145, 394, 1529 

 10 14.60 371.14  (661.66) 

7, 44, 136, 389, 1559 

375.73  (681.52) 

7, 44, 138, 379, 1623 

375.32  (672.53) 

7, 44, 139, 396, 1589 

376.88  (672.49) 

7, 45, 140, 399, 1526 

100 5 17.92 364.90  (572.91) 

11, 62, 169, 421, 1394 

368.65  (579.62) 

11, 62, 170, 424, 1376 

364.30  (563.20)    

10, 61, 171, 426, 1359 

370.29  (579.38) 

11, 63, 174, 429, 1364 

 10 16.49 377.18  (601.41) 

10, 58, 166, 430, 1467 

368.17  (582.13) 

9, 58, 167, 428, 1370 

373.93  (586.51) 

10, 60, 170, 427, 1422 

364.60  (571.40) 

10, 59, 166, 418, 1417 

300 5 20.35 371.26  (479.23) 

15, 82, 211, 468, 1268 

375.40  (485.29) 

15, 86, 216, 471, 1258 

370.79  (470.17) 

15, 86, 216, 474, 1239 

370.92  (478.5)    

15, 84, 211, 469, 1269 

 10 18.75 368.19  (480.63) 

13, 79, 206, 462, 1263 

369.64  (480.63) 

14, 80, 206, 472, 1253 

365.54  (487.18) 

14, 79, 205, 453, 1251 

370.32  (485.18)    

14, 81, 209, 464, 1277 

500 5 21.03 370.93  (451.08) 

16, 88, 225, 486, 1218 

369.41  (440.87) 

16, 90, 226, 484, 1202 

366.48  (428.17) 

16, 92, 227, 483, 1182 

371.34  (446.82)    

16, 89, 226, 483, 1223 

 10 19.47 372.74  (463.60)    

16, 88, 222, 477, 1242 

370.08  (457.94) 

15, 85, 220, 478, 1244 

376.53  (468.90) 

16, 86, 222, 482, 1252 

376.12  (462.01) 

16, 89, 223, 488, 1251 

Target 𝐴𝑅𝐿0 = 500 

𝑚 𝑛 𝐻 Normal Laplace Cauchy Exponential 

50 5 16.90 508.78  (860.82) 

10, 63, 191, 543, 2157 

501.64  (847.33) 

9, 62, 194, 534, 2090 

503.33  (856.34) 

10, 61, 186, 525, 2203 

500.67  (845.97) 

10, 63, 193, 525, 2145 

 10 15.33 495.67  (858.64) 

9, 55, 176, 518, 2194 

497.21  (844.38)    

 8, 57, 182, 534, 2155 

491.35  (847.74) 

8, 58, 182, 514, 2108 

500.03  (851.50)    

9, 57, 181, 531, 2162 

100 5 19.13 497.14  (744.95) 

13, 81, 231, 583, 1886 

498.45  (750.61) 

14, 82, 232, 573, 1962 

498.45  (750.61) 

14, 82, 232, 573, 1962 

499.82  (774.52) 

14, 80, 223, 563, 1995 

 10 17.42 505.23  (785.29)    

13, 75, 223, 567, 2041 

497.71 (767.71)    

12, 75, 217, 573, 1982 

501.19  (781.07) 

12, 74, 217, 570, 2018 

499.58  (780.55)    

12. 76, 219, 568, 1988 

300 5 21.72 504.49 (638.30)    

20, 111,  286, 641, 1755 

492.20 (644.84) 

19, 106, 275, 616, 1703 

503.80  (651.46) 

19, 108, 282, 637, 1762 

499.11 (647.04) 

19, 111,  282,  626, 1707 

 10 19.95 494.21  (651.42) 

18, 102, 273, 622, 1694 

500.78  (659.23) 

18, 103, 274, 631, 1766 

491.93  (648.54) 

18, 103, 272, 619, 1703 

501.34  (648.55) 

18, 104, 277, 629, 1767 

500 5 22.60 500.49  (598.44)    

21, 120, 299, 660, 1663 

499.24  (595.21) 

22, 121, 304, 650, 1639 

494.17  (595.64)   

20, 118, 298, 643, 1625 

501.14  (605.55)    

21, 120, 303, 654, 1652 

 10 20.74 502.18  (614.41)    

20, 116, 296, 644, 1689 

502.97  (625.17) 

20, 117, 292, 651, 1671 

489.41  (598.56) 

21, 114, 290, 636, 1635 

501.30  (625.71) 

20, 112, 294, 647, 1682 

 

Note that, we use the 𝐻𝑠𝑡𝑎𝑟𝑡 = 18.83 for target 𝐴𝑅𝐿0 = 𝜏 = 370 and 𝐻𝑠𝑡𝑎𝑟𝑡 = 19.84 for target 

𝐴𝑅𝐿0 = 𝜏 = 500, as indicated in Section 3.2. We observe from Table 2 that the simulated 𝐻 

values increase as 𝑚 increases and decrease and 𝑛 increases, with a fair indication that for large 

(𝑚, 𝑛), 𝐻𝑠𝑡𝑎𝑟𝑡 itself may be considered as an approximate upper control limit. 

  

4.2. OOC performance 

The results of 𝑂𝑂𝐶 comparison study are displayed in Figure 2 and Tables 4-7. Various 

𝑂𝑂𝐶 situations are simulated by setting  ≠ 0 or 𝜗′ ≠ 1 or 𝛿′ ≠ 1. Again, 20000 iterations of 

Monte Carlo are considered for computing the run-length properties for each set of (, 𝜗′, 𝛿′). For 
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brevity, we present the results for (𝑚, 𝑛) =(100,5) and 𝐴𝑅𝐿0 =500. We consider a large number 

of 𝑂𝑂𝐶 situations with small to large shifts in either one, or two, or all of the location, scale and 

shape parameters. Figure 2 displays the 𝑂𝑂𝐶-𝐴𝑅𝐿 values of the four competing schemes when 

there is a shift in only one of the three parameters. First, we consider a pure location shift from 

𝐹(𝜃 = 0, 𝜗′ = 1, 𝛿′ = 1)  to 𝐹(𝜃; 𝜗′ = 1, 𝛿′ = 1) for eight equispaced values of 𝜃 in the interval 

0.25 to 2, including both the boundaries and compute the 𝑂𝑂𝐶-𝐴𝑅𝐿 values. The 𝐼𝐶 and 𝑂𝑂𝐶-𝐴𝑅𝐿 

values corresponding to 𝜃 = 0(0.25)2, for four distributions as before, are plotted in four panels, 

respectively in the 1st row of Figure 2.  In the 2nd row of Figure 2, 𝐴𝑅𝐿 comparisons under a pure 

scale shift are presented. Here, the plot is generated via the 𝐼𝐶-𝐴𝑅𝐿 for  𝜗′ = 𝑒𝜗 =  1, and 

simulated 𝑂𝑂𝐶-𝐴𝑅𝐿 values corresponding to a shift in 𝑒𝜗 , for eight equispaced values of 𝜗 in the 

interval of 0.15 to 1.2. That is, the 2nd row displays the nine values of 𝜗′ in the interval 1 to 3.32 

and the corresponding 𝐴𝑅𝐿 values when the other parameters are in the 𝐼𝐶 state. Finally, the 3rd 

row of Figure 2 shows the performance comparisons under a pure shift in the shape parameter. To  

this end, the plot is generated using the 𝐼𝐶-𝐴𝑅𝐿 for  𝛿′ = 𝑒𝛿 =  1, and simulated 𝑂𝑂𝐶-𝐴𝑅𝐿 values 

corresponding to a shift in 𝑒𝛿 , for eight equispaced values of 𝜗 in the interval of 0.25 to 2. That is, 

the 2nd row displays the nine values of 𝛿′ in the interval 1 to 7.39 and the corresponding 𝐴𝑅𝐿 

values when the other parameters are in the 𝐼𝐶 state. 

Figure 2 indicates that the proposed scheme performs markedly better than the competing 

ones in the presence of an isolated location shift. Most of the existing joint monitoring schemes 

display 𝐴𝑅𝐿-biasedness for a small shift in location, that is, for small 𝜃 ∈ (0,0.25) often the 𝑂𝑂𝐶-

𝐴𝑅𝐿 is found higher than the target 𝐴𝑅𝐿0 . The LVS scheme does not display any ARL-biasedness. 

The proposed scheme performs markedly better than the other ones in the presence of a solitary 

scale shift when the process distribution is exponential, that is, skewed. The 𝑀𝐿𝑃𝐴 scheme has 

the smallest 𝐴𝑅𝐿 when the process distribution is symmetric, that is, for the normal, Laplace and 

Cauchy distributions. For symmetric distributions, the performance of the proposed scheme in 

detecting isolated scale shift lies in between the 𝑆𝐿 and 𝑆𝐶 schemes, making it a safer choice when 

process distribution is actually unknown. As expected, the proposed scheme has the smallest 𝐴𝑅𝐿 

in the presence of an isolated upward shift in the shape parameter. Note, however, that for a 

downward shift in the shape parameter, the 𝑀𝐿𝑃𝐴 scheme has some advantage over the proposed 

𝐿𝑉𝑆 scheme. This is not surprising as the 𝑆 component of the 𝐿𝑉𝑆 scheme is more suitable for an  
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Figure 2: Comparison of 𝑂𝑂𝐶-𝐴𝑅𝐿 of Various Schemes under Isolated Shift in One of the Three Process Parameters for 𝑚 = 100, 𝑛 = 5 and target 𝐴𝑅𝐿0 =
500. 



18 
 

upward shift in the shape parameter. A savage-type test for downward shift also exists, future 

research is highly warranted for integrating it in an adaptive SPM scheme.    

For assessing the chart performance under a shift in two or more parameters, we consider 

four values of 𝜃  as 0.5, 1, 2, 3; four values of 𝜗′ as 1.25, 1.5, 2, 3; and four values of 𝛿′ as 0.5, 2, 

5, 10. To save space, we only present the 𝐴𝑅𝐿 values along with corresponding 𝑆𝐷𝑅𝐿 values in 

parenthesis and omit percentile values. The cells with the smallest 𝑂𝑂𝐶-𝐴𝑅𝐿 values are grey-

shaded, ignoring minor sampling fluctuations. Table 3 displays the 𝐴𝑅𝐿 of the schemes when a 

shift occurs in both the location and scale parameters. It is observed that the proposed scheme is 

the preferred one having the smallest 𝐴𝑅𝐿 for any location shift accompanied by a small scale 

shift. When there is a significant scale shift along with the location shift, the 𝑀𝐿𝑃𝐴 scheme is 

found to be marginally superior to the proposed schemes. Even in such cases, the difference in the 

𝑂𝑂𝐶-𝐴𝑅𝐿 between the best scheme and the proposed scheme is negligible except for a few 

settings. 

 

Table 3: Comparison of 𝑂𝑂𝐶-𝐴𝑅𝐿 of Various Schemes when a Shift Occurs in both the Location and 

Scale Parameters for 𝑚 = 100, 𝑛 = 5 and target 𝐴𝑅𝐿0 = 500 

𝑂𝑂𝐶 Parameters Proposed Scheme 𝑆𝐿 Scheme 𝑆𝐶 Scheme 𝑀𝐿𝑃𝐴 scheme 

 Normal Distribution 

(0.5, 1.25, 1) 13.48 (16.27) 31.07 (40.29) 26.18 (33.59) 21.37 (28.3) 

(0.5, 1.5, 1) 8.51 (9.16) 18.09 (20.28) 13.58 (15.09) 9.09 (10.13) 

(0.5, 2, 1) 5.09 (4.83) 8.7 (8.51) 5.81 (5.61) 3.54 (3.24) 

(0.5, 3, 1) 3.26 (2.77) 3.94 (3.5) 2.57 (2.05) 1.67 (1.09) 

(1, 1.25, 1) 3.54 (3.37) 6.75 (7.12) 6.15 (6.5) 5.48 (5.93) 

(1, 1.5, 1) 3.19 (2.87) 6.06 (6.09) 5.20 (5.14) 4.12 (3.99) 

(1, 2, 1) 2.76 (2.3) 4.89 (4.61) 3.76 (3.36) 2.6 (2.14) 

(1, 3, 1) 2.37 (1.82) 3.30 (2.81) 2.31 (1.78) 1.58 (0.99) 

(2, 1.25, 1) 1.15 (0.42) 1.42 (0.8) 1.36 (0.72) 1.29 (0.64) 

(2, 1.5, 1) 1.22 (0.53) 1.60 (1.02) 1.51 (0.90) 1.37 (0.74) 

(2, 2, 1) 1.34 (0.68) 1.90 (1.34) 1.71 (1.13) 1.45 (0.83) 

(2, 3, 1) 1.49 (0.86) 2.08 (1.52) 1.70 (1.10) 1.33 (0.68) 

 Laplace Distribution 

(0.5, 1.25, 1) 34.03 (53.93) 66.08 (100.35) 60.12 (94.22) 56.68 (97.61) 

(0.5, 1.5, 1) 19.50 (26.73) 36.14 (46.54) 28.76 (37.83) 24.37 (32.88) 

(0.5, 2, 1) 9.99 (11.19) 16.44 (18.26) 11.33 (12.46) 8.67 (10.05) 

(0.5, 3, 1) 5.27 (5.11) 6.66 (6.47) 4.30 (4.01) 3.24 (3.05) 

(1, 1.25, 1) 8.48 (11.68) 14.23 (22.15) 15.10 (25.30) 16.2 (27.89) 

(1, 1.5, 1) 6.61 (7.95) 11.15 (13.76) 10.44 (13.60) 10.02 (12.93) 

(1, 2, 1) 4.87 (5.02) 7.94 (8.74) 6.32 (6.81) 5.37 (5.78) 

(1, 3, 1) 3.51 (3.17) 4.86 (4.60) 3.39 (3.03) 2.68 (2.34) 

(2, 1.25, 1) 1.63 (1.17) 2.00 (1.61) 1.99 (1.70) 2.19 (2.16) 

(2, 1.5, 1) 1.70 (1.22) 2.15 (1.74) 2.06 (1.70) 2.18 (1.90) 

(2, 2, 1) 1.78 (1.28) 2.35 (1.9) 2.13 (1.71) 2.06 (1.66) 

(2, 3, 1) 1.84 (1.28) 2.43 (1.95) 1.97 (1.46) 1.75 (1.23) 
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 Cauchy Distribution 

(0.5, 1.25, 1) 139.16 (272.74) 183.64 (294.58) 180.72 (301.96) 178.41 (326.89) 

(0.5, 1.5, 1) 88.00 (160.88) 107.51 (161.26) 99.15 (162.06) 94.74 (156.41) 

(0.5, 2, 1) 43.94 (69.98) 48.13 (65.03) 41.34 (62.63) 38.23 (56.85) 

(0.5, 3, 1) 19.68 (26.85) 18.91 (22.72) 13.85 (18.3) 12.58 (16.2) 

(1, 1.25, 1) 68.04 (164.49) 99.94 (215.64) 115.21 (252.23) 104.77 (229.85) 

(1, 1.5, 1) 47.13 (102.06) 61.79 (111.83) 67.08 (122.14) 61.78 (120.3) 

(1, 2, 1) 27.45 (49.89) 32.98 (48.64) 30.96 (52.39) 28.22 (44.37) 

(1, 3, 1) 14.62 (20.54) 15.64 (19.99) 12.03 (16.23) 11.01 (14.86) 

(2, 1.25, 1) 14.99 (38.8) 18.71 (76.08) 29.12 (105.36) 25.57 (91.6) 

(2, 1.5, 1) 12.70 (32.55) 14.90 (37.12) 20.65 (58.37) 18.42 (50.47) 

(2, 2, 1) 10.03 (18.71) 11.53 (22.35) 13.15 (28.32) 12.04 (25.69) 

(2, 3, 1) 7.57 (10.92) 8.53 (11.01) 7.42 (10.73) 6.76 (9.18) 

 Exponential Distribution 

(0.5, 1.25, 1) 18.94 (30.7) 43.4 (72.97) 48.36 (87.93) 59.27 (145.8) 

(0.5, 1.5, 1) 8.1 (10.55) 17.79 (24.06) 18.49 (26.74) 19.4 (30.52) 

(0.5, 2, 1) 3.26 (3.16) 6.41 (7.16) 6.13 (6.82) 5.88 (6.92) 

(0.5, 3, 1) 1.63 (1.07) 2.6 (2.19) 2.47 (2.08) 2.21 (1.79) 

(1, 1.25, 1) 4.06 (6.05) 6.56 (10.18) 7.94 (13.14) 10.41 (18.23) 

(1, 1.5, 1) 2.52 (2.65) 3.79 (4.75) 4.29 (5.49) 5.06 (7.17) 

(1, 2, 1) 1.58 (1.10) 2.15 (1.97) 2.28 (2.07) 2.43 (2.37) 

(1, 3, 1) 1.16 (0.46) 1.40 (0.83) 1.41 (0.84) 1.40 (0.82) 

(2, 1.25, 1) 1.04 (0.24) 1.03 (0.21) 1.07 (0.39) 1.23 (0.81) 

(2, 1.5, 1) 1.02 (0.17) 1.01 (0.15) 1.04 (0.25) 1.13 (0.50) 

(2, 2, 1) 1.01 (0.09) 1.01 (0.09) 1.01 (0.14) 1.05 (0.26) 

(2, 3, 1) 1.00 (0.04) 1.00 (0.04) 1.00 (0.06) 1.01 (0.12) 

 

Table 4 displays the 𝐴𝑅𝐿 of the schemes when a shift occurs in both the scale and shape 

parameters. Table 4 shows that the proposed scheme performs markedly better than the other ones, 

except when the downward shift in the shape parameter is present, where the 𝑀𝐿𝑃𝐴 has smaller 

𝐴𝑅𝐿. Note that no distribution-free charting scheme for a mixed shift involving scale and shape 

parameters is discussed in the current literature to the best of our knowledge. 

 

Table 4: Comparison of 𝑂𝑂𝐶-𝐴𝑅𝐿 of Various Schemes when a Shift Occurs in both the Scale and Shape 

Parameters for 𝑚 = 100, 𝑛 = 5 and target 𝐴𝑅𝐿0 = 500 

 
𝑂𝑂𝐶 Parameters Proposed Scheme 𝑆𝐿 Scheme 𝑆𝐶 Scheme 𝑀𝐿𝑃𝐴 scheme 

 Normal Distribution 

(0, 1.25, 0.5) 23.28 (25.38) 7.94 (7.99) 6.56 (6.66) 4.92 (4.96) 

(0, 1.25, 2) 11.27 (14.44) 24.67 (32.93) 24.41 (34.29) 25.32 (39.66) 

(0, 1.25, 5) 1.60 (1.12) 2.14 (1.82) 2.19 (1.93) 2.37 (2.33) 

(0, 1.25, 10) 1.03 (0.20) 1.07 (0.29) 1.08 (0.31) 1.11 (0.4) 

(0, 1.5, 0.5) 14.69 (15.02) 5.16 (4.91) 4.08 (3.73) 2.92 (2.51) 

(0, 1.5, 2) 5.32 (5.64) 11.21 (12.78) 10.1 (11.5) 8.87 (10.35) 

(0, 1.5, 5) 1.23 (0.56) 1.54 (0.99) 1.51 (0.95) 1.50 (0.95) 

(0, 1.5, 10) 1.01 (0.07) 1.02 (0.14) 1.02 (0.14) 1.02 (0.14) 

(0, 2, 0.5) 8.85 (8.50) 3.16 (2.68) 2.43 (1.89) 1.75 (1.17) 

(0, 2, 2) 2.66 (2.24) 4.98 (4.74) 4.18 (3.92) 3.23 (2.90) 

(0, 2, 5) 1.06 (0.25) 1.21 (0.52) 1.18 (0.47) 1.13 (0.40) 

(0, 2, 10) 1.00 (0.02) 1.00 (0.06) 1.00 (0.05) 1.00 (0.04) 
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 Laplace Distribution 

(0, 1.25, 0.5) 28.33 (31.98) 9.45 (10.05) 7.98 (8.27) 7.23 (8.04) 

(0, 1.25, 2) 16.14 (22.84) 35.11 (53.16) 36.47 (58.81) 41.30 (73.84) 

(0, 1.25, 5) 1.88 (1.59) 2.51 (2.42) 2.69 (2.79) 2.96 (3.49) 

(0, 1.25, 10) 1.06 (0.28) 1.11 (0.38) 1.13 (0.43) 1.17 (0.56) 

(0, 1.5, 0.5) 18.81 (20.04) 6.56 (6.5) 5.3 (5.15) 4.68 (4.70) 

(0, 1.5, 2) 8.4 (10.47) 17.29 (22.01) 16.63 (21.88) 17.45 (23.91) 

(0, 1.5, 5) 1.41 (0.87) 1.80 (1.35) 1.84 (1.44) 1.93 (1.59) 

(0, 1.5, 10) 1.02 (0.14) 1.04 (0.21) 1.04 (0.22) 1.06 (0.26) 

(0, 2, 0.5) 11.71 (11.72) 4.14 (3.76) 3.25 (2.83) 2.76 (2.45) 

(0, 2, 2) 4.04 (3.94) 7.66 (8.16) 6.83 (7.27) 6.54 (7.22) 

(0, 2, 5) 1.14 (0.42) 1.35 (0.73) 1.33 (0.71) 1.34 (0.73) 

(0, 2, 10) 1.00 (0.04) 1.01 (0.1) 1.01 (0.09) 1.01 (0.1) 

 Cauchy Distribution 

(0, 1.25, 0.5) 35.75 (43.31) 11.80 (13.28) 10.25 (11.75) 11.27 (12.9) 

(0, 1.25, 2) 27.81 (51.1) 52.24 (95.18) 62.16 (138.2) 70.58 (143.25) 

(0, 1.25, 5) 2.38 (2.55) 3.07 (3.64) 3.54 (5.02) 3.78 (5.72) 

(0, 1.25, 10) 1.12 (0.43) 1.16 (0.5) 1.23 (0.66) 1.24 (0.71) 

(0, 1.5, 0.5) 25.93 (30.32) 8.94 (9.78) 7.76 (8.45) 8.45 (9.41) 

(0, 1.5, 2) 17.24 (28.99) 30.56 (51.75) 35.18 (73.51) 39.19 (75.95) 

(0, 1.5, 5) 1.87 (1.68) 2.30 (2.29) 2.54 (2.82) 2.69 (3.03) 

(0, 1.5, 10) 1.06 (0.28) 1.08 (0.33) 1.11 (0.43) 1.13 (0.46) 

(0, 2, 0.5) 16.97 (18.55) 6.07 (6.23) 5.12 (5.25) 5.38 (5.48) 

(0, 2, 2) 9.09 (13.16) 14.46 (20.74) 15.77 (24.72) 17.67 (29.51) 

(0, 2, 5) 1.42 (0.92) 1.65 (1.22) 1.74 (1.48) 1.82 (1.55) 

(0, 2, 10) 1.02 (0.14) 1.03 (0.18) 1.04 (0.22) 1.05 (0.25) 

 Exponential Distribution 

(0, 1.25, 0.5) 76.07 (91.02) 23.84 (28.51) 19.65 (23.37) 15.28 (19.14) 

(0, 1.25, 2) 10.22 (13.96) 20.36 (29.36) 22.14 (34.15) 26.46 (49.53) 

(0, 1.25, 5) 1.51 (1.05) 1.86 (1.53) 1.99 (1.8) 2.32 (2.41) 

(0, 1.25, 10) 1.03 (0.19) 1.05 (0.24) 1.06 (0.28) 1.11 (0.42) 

(0, 1.5, 0.5) 76.33 (87.97) 30.16 (35.57) 23.05 (27.36) 15.86 (19.44) 

(0, 1.5, 2) 4.20 (4.58) 7.73 (9.31) 7.72 (9.66) 8.28 (11.21) 

(0, 1.5, 5) 1.15 (0.45) 1.29 (0.67) 1.31 (0.7) 1.38 (0.85) 

(0, 1.5, 10) 1.00 (0.05) 1.01 (0.08) 1.01 (0.09) 1.02 (0.14) 

(0, 2, 0.5) 40.16 (47.05) 33.43 (37.87) 22.1 (24.88) 13.3 (15.57) 

(0, 2, 2) 1.82 (1.34) 2.80 (2.53) 2.72 (2.45) 2.65 (2.44) 

(0, 2, 5) 1.01 (0.12) 1.05 (0.23) 1.04 (0.22) 1.05 (0.23) 

(0, 2, 10) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01) 1.00 (0.02) 

 

Table 5 displays the 𝐴𝑅𝐿 of the schemes when a shift occurs in both location and shape 

parameters. It is shown that the proposed scheme has a markedly smaller 𝐴𝑅𝐿 than those of the 

other ones, except for very few settings where the 𝑀𝐿𝑃𝐴 scheme has an 𝐴𝑅𝐿 slightly smaller than 

that of the proposed scheme. In particular, the proposed schemes loses to the 𝑀𝐿𝑃𝐴 schemes when 

there are small location shift in symmetric densities accompanied by a downward shift in the shape 

parameters. For a skewed population or for an upward shift in the shape parameters accompanied 

by a location shift in symmetric populations, the proposed scheme is substantially superior. 
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Table 5: Comparison of 𝑂𝑂𝐶-𝐴𝑅𝐿 of Various Schemes when a Shift Occurs in both Location and Shape 

Parameters for 𝑚 = 100, 𝑛 = 5 and target 𝐴𝑅𝐿0 = 500 

𝑂𝑂𝐶 Parameters Proposed Scheme 𝑆𝐿 Scheme 𝑆𝐶 Scheme 𝑀𝐿𝑃𝐴 scheme 

 Normal Distribution 

(0.5, 1, 0.5) 151.88 (193.12) 80.59 (101.36) 61.13 (77.96) 44.62 (62.17) 

(0.5, 1, 2) 4.23 (4.89) 6.91 (8.89) 7.59 (10.56) 9.22 (15.32) 

(0.5, 1, 5) 1.14 (0.45) 1.24 (0.63) 1.29 (0.74) 1.43 (1.01) 

(0.5, 1, 10) 1.00 (0.06) 1.01 (0.07) 1.01 (0.09) 1.02 (0.16) 

(1, 1, 0.5) 28.46 (39.27) 58.3 (75.87) 45.95 (60.39) 35.67 (51.9) 

(1, 1, 2) 1.35 (0.77) 1.7 (1.23) 1.72 (1.29) 1.81 (1.49) 

(1, 1, 5) 1.00 (0.06) 1.01 (0.08) 1.01 (0.09) 1.01 (0.13) 

(1, 1, 10) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 

(2, 1, 0.5) 2.04 (1.57) 3.35 (3.06) 3.13 (2.84) 2.84 (2.6) 

(2, 1, 2) 1.00 (0.02) 1.00 (0.06) 1.00 (0.06) 1.00 (0.06) 

(2, 1, 5) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 

(2, 1, 10) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 

 Laplace Distribution 

(0.5, 1, 0.5) 129.85 (155.51) 42.56 (50.06) 33.17 (39.88) 29.1 (37.86) 

(0.5, 1, 2) 8.68 (15.28) 13.84 (25.49) 17.57 (35.11) 24.18 (71.54) 

(0.5, 1, 5) 1.43 (1.10) 1.57 (1.29) 1.77 (1.75) 2.09 (2.54) 

(0.5, 1, 10) 1.03 (0.18) 1.03 (0.19) 1.05 (0.26) 1.09 (0.41) 

(1, 1, 0.5) 88.19 (132.27) 58.54 (70.49) 43.85 (54.32) 35.23 (48.52) 

(1, 1, 2) 2.31 (2.66) 2.81 (3.98) 3.39 (5.06) 4.39 (8.8) 

(1, 1, 5) 1.05 (0.26) 1.05 (0.26) 1.09 (0.4) 1.16 (0.64) 

(1, 1, 10) 1.00 (0.04) 1.00 (0.02) 1.00 (0.05) 1.01 (0.10) 

(2, 1, 0.5) 5.98 (8.37) 7.40 (9.61) 6.99 (10.05) 7.31 (11.14) 

(2, 1, 2) 1.03 (0.19) 1.04 (0.23) 1.05 (0.25) 1.09 (0.43) 

(2, 1, 5) 1.00 (0.00) 1.00 (0.01) 1.00 (0.01) 1.00 (0.03) 

(2, 1, 10) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 

 Cauchy Distribution 

(0.5, 1, 0.5) 85.67 (98.63) 24.74 (28.22) 20.77 (23.92) 23.66 (27.73) 

(0.5, 1, 2) 23.85 (52.19) 43.01 (117.68) 58.47 (150.27) 63.98 (208.37) 

(0.5, 1, 5) 2.27 (2.83) 2.7 (3.85) 3.38 (5.41) 3.51 (6.26) 

(0.5, 1, 10) 1.12 (0.45) 1.13 (0.51) 1.22 (0.74) 1.22 (0.8) 

(1, 1, 0.5) 110.58 (124.47) 31.57 (35.64) 25.01 (28.3) 27.69 (32.5) 

(1, 1, 2) 11.04 (23.59) 16.72 (59.38) 24.88 (73.32) 26.55 (103.25) 

(1, 1, 5) 1.61 (1.62) 1.67 (1.99) 2.10 (3.14) 2.13 (3.49) 

(1, 1, 10) 1.06 (0.31) 1.05 (0.27) 1.10 (0.46) 1.10 (0.54) 

(2, 1, 0.5) 85.28 (126.02) 29.89 (35.69) 22.96 (28.14) 22.42 (30.24) 

(2, 1, 2) 3.11 (6.08) 3.27 (10.04) 5.26 (21.86) 5.64 (26.45) 

(2, 1, 5) 1.14 (0.68) 1.10 (0.62) 1.23 (1.29) 1.27 (2.00) 

(2, 1, 10) 1.01 (0.14) 1.01 (0.10) 1.02 (0.19) 1.03 (0.26) 

 Exponential Distribution 

(0.5, 1, 0.5) 1069.1 (2183.39) 1199.61 (2366.59) 3487.67 (4967.29) 4152.6 (5672.05) 

(0.5, 1, 2) 8.4 (14.32) 13.69 (24.19) 17.57 (35.49) 26.88 (65.4) 

(0.5, 1, 5) 1.42 (1.04) 1.56 (1.39) 1.75 (1.65) 2.36 (3.04) 

(0.5, 1, 10) 1.03 (0.19) 1.03 (0.18) 1.05 (0.26) 1.13 (0.54) 

(1, 1, 0.5) 84.26 (260.51) 202.58 (522.34) 297.37 (838.99) 469.33 (1349.12) 

(1, 1, 2) 2.13 (2.49) 2.5 (3.28) 3.14 (4.92) 4.84 (11.26) 

(1, 1, 5) 1.04 (0.25) 1.04 (0.25) 1.08 (0.37) 1.21 (0.74) 

(1, 1, 10) 1.00 (0.04) 1.00 (0.02) 1.00 (0.05) 1.01 (0.13) 

(2, 1, 0.5) 1.53 (1.85) 1.47 (2.35) 2.05 (4.82) 4.11 (11.6) 

(2, 1, 2) 1.01 (0.09) 1.00 (0.07) 1.01 (0.12) 1.06 (0.39) 

(2, 1, 5) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 1.00 (0.04) 

(2, 1, 10) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 
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Table 6 displays the 𝐴𝑅𝐿 of the schemes when a shift occurs in all three parameters. Table 

6 shows that the proposed scheme is preferred when the process distribution is exponential. The 

proposed scheme performs very well also when the process distribution is normal, Laplace and 

Cauchy except for the 𝑂𝑂𝐶 situations where the downward shift in the shape parameter is present, 

where the 𝑀𝐿𝑃𝐴 has a smaller 𝐴𝑅𝐿.  

 

Table 6: Comparison of 𝑂𝑂𝐶-𝐴𝑅𝐿 of Various Schemes when a Shift Occurs in All Three Parameters 

Simultaneously for 𝑚 = 100, 𝑛 = 5 and target 𝐴𝑅𝐿0 = 500 

 
𝑂𝑂𝐶 Parameters Proposed Scheme 𝑆𝐿 Scheme 𝑆𝐶 Scheme 𝑀𝐿𝑃𝐴 scheme 

 Normal Distribution 

(0.5, 1.25, 0.5) 46.95 (52.37) 21.64 (23.93) 15.04 (16.32) 9.48 (10.51) 

(0.5, 1.25, 2) 2.58 (2.31) 4.36 (4.47) 4.25 (4.45) 4.25 (4.75) 

(0.5, 1.25, 5) 1.05 (0.24) 1.12 (0.37) 1.12 (0.4) 1.14 (0.44) 

(0.5, 1.5, 0.5) 23.71 (24.74) 10.12 (10.28) 6.88 (6.85) 4.27 (4.04) 

(0.5, 1.5, 2) 2.02 (1.54) 3.33 (3.04) 3.15 (2.86) 2.85 (2.58) 

(0.5, 1.5, 5) 1.02 (0.15) 1.08 (0.3) 1.07 (0.29) 1.06 (0.27) 

(0.5, 2, 0.5) 11.01 (10.72) 4.51 (4.08) 3.13 (2.63) 2.04 (1.51) 

(0.5, 2, 2) 1.60 (1.01) 2.50 (2.02) 2.26 (1.75) 1.91 (1.38) 

(0.5, 2, 5) 1.01 (0.09) 1.04 (0.22) 1.03 (0.19) 1.02 (0.15) 

(1, 1.25, 0.5) 19.13 (22.49) 28.52 (31.82) 18.48 (20.87) 10.88 (12.3) 

(1, 1.25, 2) 1.27 (0.63) 1.65 (1.11) 1.62 (1.08) 1.57 (1.04) 

(1, 1.25, 5) 1.00 (0.03) 1.01 (0.08) 1.01 (0.08) 1.01 (0.08) 

(1, 1.5, 0.5) 13.90 (14.84) 14.5 (14.85) 8.83 (9.01) 4.99 (4.91) 

(1, 1.5, 2) 1.23 (0.56) 1.62 (1.05) 1.56 (0.97) 1.46 (0.87) 

(1, 1.5, 5) 1.00 (0.02) 1.01 (0.07) 1.00 (0.06) 1.00 (0.06) 

(1, 2, 0.5) 9.00 (8.85) 5.85 (5.52) 3.72 (3.29) 2.24 (1.74) 

(1, 2, 2) 1.20 (0.49) 1.58 (0.98) 1.49 (0.87) 1.34 (0.7) 

(1, 2, 5) 1.00 (0.02) 1.01 (0.08) 1.00 (0.07) 1.00 (0.04) 

(2, 1.25, 0.5) 2.52 (2.08) 4.51 (4.29) 3.85 (3.54) 3.10 (2.8) 

(2, 1.25, 2) 1.00 (0.04) 1.01 (0.12) 1.01 (0.10) 1.01 (0.09) 

(2, 1.25, 5) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 

(2, 1.5, 0.5) 2.90 (2.45) 5.21 (4.94) 4.03 (3.68) 2.83 (2.44) 

(2, 1.5, 2) 1.00 (0.07) 1.03 (0.18) 1.02 (0.16) 1.01 (0.11) 

(2, 1.5, 5) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 

(2, 2, 0.5) 3.38 (2.93) 4.9 (4.49) 3.28 (2.84) 2.08 (1.55) 

(2, 2, 2) 1.01 (0.11) 1.07 (0.27) 1.05 (0.24) 1.03 (0.17) 

(2, 2, 5) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 

 Laplace Distribution 

(0.5, 1.25, 0.5) 55.85 (61.13) 18.73 (20.41) 14.2 (15.46) 11.65 (13.60) 

(0.5, 1.25, 2) 4.68 (5.66) 7.62 (10.31) 8.46 (11.91) 9.53 (15.05) 

(0.5, 1.25, 5) 1.17 (0.51) 1.28 (0.7) 1.34 (0.82) 1.43 (1.01) 

(0.5, 1.5, 0.5) 32.37 (33.93) 10.95 (11.26) 8.06 (8.21) 6.55 (6.97) 

(0.5, 1.5, 2) 3.25 (3.30) 5.34 (6.08) 5.44 (6.46) 5.75 (7.02) 

(0.5, 1.5, 5) 1.09 (0.33) 1.17 (0.5) 1.19 (0.53) 1.23 (0.59) 

(0.5, 2, 0.5) 16.59 (16.73) 5.79 (5.54) 4.14 (3.8) 3.32 (3.08) 

(0.5, 2, 2) 2.23 (1.82) 3.54 (3.38) 3.39 (3.26) 3.36 (3.27) 

(0.5, 2, 5) 1.03 (0.19) 1.09 (0.33) 1.09 (0.32) 1.09 (0.33) 

(1, 1.25, 0.5) 45.75 (57.36) 26.12 (29.24) 17.82 (20.46) 13.49 (16.23) 

(1, 1.25, 2) 1.88 (1.61) 2.36 (2.3) 2.57 (2.7) 2.95 (3.45) 

(1, 1.25, 5) 1.02 (0.16) 1.03 (0.18) 1.04 (0.23) 1.07 (0.32) 

(1, 1.5, 0.5) 29.19 (33.63) 14.67 (15.44) 9.67 (10.3) 7.27 (7.98) 

(1, 1.5, 2) 1.67 (1.22) 2.16 (1.86) 2.24 (2.06) 2.41 (2.32) 
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(1, 1.5, 5) 1.01 (0.10) 1.02 (0.15) 1.03 (0.17) 1.04 (0.22) 

(1, 2, 0.5) 16.06 (16.98) 7.04 (6.87) 4.60 (4.32) 3.54 (3.36) 

(1, 2, 2) 1.47 (0.89) 1.96 (1.49) 1.91 (1.46) 1.92 (1.47) 

(1, 2, 5) 1.00 (0.07) 1.02 (0.13) 1.01 (0.12) 1.02 (0.14) 

(2, 1.25, 0.5) 6.32 (7.72) 7.79 (9.22) 6.12 (7.32) 5.49 (6.64) 

(2, 1.25, 2) 1.03 (0.20) 1.07 (0.28) 1.07 (0.29) 1.10 (0.38) 

(2, 1.25, 5) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 1.00 (0.02) 

(2, 1.5, 0.5) 6.43 (7.37) 7.26 (7.86) 5.06 (5.42) 4.17 (4.38) 

(2, 1.5, 2) 1.04 (0.21) 1.09 (0.33) 1.08 (0.32) 1.11 (0.38) 

(2, 1.5, 5) 1.00 (0.00) 1.00 (0.01) 1.00 (0.00) 1.00 (0.02) 

(2, 2, 0.5) 6.18 (6.56) 5.51 (5.5) 3.52 (3.24) 2.77 (2.49) 

(2, 2, 2) 1.05 (0.24) 1.13 (0.39) 1.11 (0.37) 1.12 (0.38) 

(2, 2, 5) 1.00 (0.00) 1.00 (0.02) 1.00 (0.01) 1.00 (0.02) 

 Cauchy Distribution 

(0.5, 1.25, 0.5) 53.57 (61.06) 16.33 (18.06) 13.56 (15.43) 14.86 (16.92) 

(0.5, 1.25, 2) 14.08 (27.34) 22.93 (47.32) 30.35 (70.55) 32.27 (78.56) 

(0.5, 1.25, 5) 1.72 (1.64) 1.95 (2.02) 2.29 (2.81) 2.39 (3.24) 

(0.5, 1.5, 0.5) 37.85 (42.48) 12.07 (13.12) 9.76 (10.65) 10.68 (11.88) 

(0.5, 1.5, 2) 9.7 (16.37) 15.07 (26.56) 18.9 (39.65) 20.16 (49.68) 

(0.5, 1.5, 5) 1.47 (1.13) 1.61 (1.33) 1.81 (1.77) 1.86 (2.04) 

(0.5, 2, 0.5) 22.92 (24.58) 7.61 (8.01) 6.17 (6.4) 6.41 (6.74) 

(0.5, 2, 2) 5.9 (8.71) 8.44 (12.22) 9.61 (16.26) 10.32 (17.3) 

(0.5, 2, 5) 1.23 (0.64) 1.33 (0.78) 1.40 (0.94) 1.45 (1.1) 

(1, 1.25, 0.5) 69.54 (77.15) 20.67 (22.66) 16.16 (18.17) 17.31 (19.93) 

(1, 1.25, 2) 7.46 (15.32) 10.38 (37.66) 14.63 (38.79) 15.39 (49.03) 

(1, 1.25, 5) 1.35 (1.07) 1.4 (1.18) 1.62 (1.74) 1.64 (1.93) 

(1, 1.5, 0.5) 49.2 (54.18) 14.78 (15.86) 11.49 (12.66) 12.11 (13.51) 

(1, 1.5, 2) 5.52 (9.28) 7.32 (13.4) 9.85 (25.48) 10.5 (27.33) 

(1, 1.5, 5) 1.24 (0.82) 1.26 (0.8) 1.40 (1.20) 1.42 (1.3) 

(1, 2, 0.5) 28.98 (30.58) 9.07 (9.42) 7.01 (7.26) 7.13 (7.54) 

(1, 2, 2) 3.91 (5.14) 4.96 (6.9) 5.92 (10.63) 6.30 (11.66) 

(1, 2, 5) 1.12 (0.44) 1.16 (0.52) 1.20 (0.61) 1.23 (0.75) 

(2, 1.25, 0.5) 61.93 (83.08) 21.61 (24.4) 15.79 (18.6) 15.20 (19.11) 

(2, 1.25, 2) 2.59 (4.52) 2.66 (4.93) 3.91 (12.02) 4.04 (12.51) 

(2, 1.25, 5) 1.09 (0.48) 1.06 (0.37) 1.14 (0.68) 1.15 (0.85) 

(2, 1.5, 0.5) 48.12 (60.04) 16.59 (18.11) 11.80 (13.31) 11.25 (13.67) 

(2, 1.5, 2) 2.27 (3.15) 2.38 (3.69) 3.19 (6.81) 3.34 (8.68) 

(2, 1.5, 5) 1.05 (0.32) 1.04 (0.26) 1.09 (0.44) 1.10 (0.59) 

(2, 2, 0.5) 31.8 (36.68) 10.61 (11.07) 7.37 (7.87) 6.90 (7.46) 

(2, 2, 2) 1.99 (2.14) 2.16 (2.38) 2.53 (3.63) 2.70 (4.35) 

(2, 2, 5) 1.03 (0.21) 1.03 (0.19) 1.05 (0.28) 1.06 (0.32) 

 Exponential Distribution 

(0.5, 1.25, 0.5) 202.97 (389.94) 466.73 (817.74) 734.88 (1380.12) 808.88 (1656.48) 

(0.5, 1.25, 2) 3.08 (3.40) 4.65 (5.71) 5.22 (6.97) 6.5 (10.05) 

(0.5, 1.25, 5) 1.09 (0.35) 1.13 (0.43) 1.17 (0.53) 1.28 (0.74) 

(0.5, 1.5, 0.5) 69.94 (112.83) 204.2 (317.31) 232.76 (386.76) 226.1 (435.51) 

(0.5, 1.5, 2) 1.86 (1.50) 2.61 (2.55) 2.75 (2.81) 3.05 (3.37) 

(0.5, 1.5, 5) 1.02 (0.15) 1.04 (0.2) 1.05 (0.24) 1.08 (0.32) 

(0.5, 2, 0.5) 19.17 (23.96) 60.24 (79.86) 55.61 (74.09) 48.08 (69.62) 

(0.5, 2, 2) 1.24 (0.59) 1.52 (0.98) 1.52 (0.99) 1.55 (1.05) 

(0.5, 2, 5) 1.00 (0.03) 1.00 (0.06) 1.00 (0.06) 1.01 (0.08) 

(1, 1.25, 0.5) 25.23 (53.44) 64.24 (128.34) 80.3 (190.78) 99.09 (232.2) 

(1, 1.25, 2) 1.38 (0.90) 1.56 (1.25) 1.73 (1.56) 2.16 (2.38) 

(1, 1.25, 5) 1.01 (0.09) 1.01 (0.09) 1.01 (0.13) 1.04 (0.24) 

(1, 1.5, 0.5) 12.08 (18.33) 29.7 (49.51) 34.15 (58.3) 37.13 (67.25) 

(1, 1.5, 2) 1.16 (0.48) 1.26 (0.67) 1.34 (0.84) 1.49 (1.07) 

(1, 1.5, 5) 1.00 (0.04) 1.00 (0.04) 1.00 (0.05) 1.01 (0.10) 

(1, 2, 0.5) 5.24 (6.30) 11.94 (16.32) 12.49 (17.58) 12.06 (16.61) 

(1, 2, 2) 1.04 (0.21) 1.08 (0.31) 1.10 (0.36) 1.13 (0.43) 
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(1, 2, 5) 1.00 (0.00) 1.00 (0.01) 1.00 (0.01) 1.00 (0.02) 

(2, 1.25, 0.5) 1.30 (1.00) 1.28 (1.38) 1.57 (2.23) 2.52 (4.44) 

(2, 1.25, 2) 1.00 (0.04) 1.00 (0.03) 1.00 (0.06) 1.02 (0.16) 

(2, 1.25, 5) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 

(2, 1.5, 0.5) 1.20 (0.71) 1.17 (0.73) 1.36 (1.27) 1.88 (2.32) 

(2, 1.5, 2) 1.00 (0.02) 1.00 (0.02) 1.00 (0.03) 1.01 (0.09) 

(2, 1.5, 5) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 

(2, 2, 0.5) 1.10 (0.42) 1.09 (0.46) 1.19 (0.70) 1.44 (1.15) 

(2, 2, 2) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01) 1.00 (0.04) 

(2, 2, 5) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 

 

5. Application in monitoring arrival delay 

In this section, we illustrate the application of the proposed chart to a real problem. We consider 

arrival delay data of the Trenord railway network in Italy at the Mortara station for the R25 line 

between the cities of Novara and Mortara (referred to as Direttrice -route- D26). Trenord is a 

railway company in Italy which is accountable for the operation of regional passenger trains 

mainly in the northern Italian Lombardy region. Between August 4 and 31, 2019, there was a 

reduced train schedule for various works on the railways for service improvement. Here, we 

consider the arrival delay as one of the measures of service quality. There was no service on this 

route on September 1, 2019, and the service resumed on the next day. In a press release dated 

October 17 2019, the chief executive officer of Trenord stated that during the previous months of 

2019, the service has been markedly improved. 

For this reason, we consider arrival delays during the September 02 - October 17, 2019 

period for collecting the Phase-I data. In a typical day, there are three trains on the route-D26. 

There are some days with no service and a few days with reduced service. We consider the 36 days 

within this period with full service, that is, with all three trains operating in the route and obtain a 

total of 108 data points. First, we establish whether the 108 observations can be perceived as the 

Phase-I sample. To this end, the Box-Pierce and Ljung-Box tests for testing the possible presence 

of autocorrelation is applied. The p-values of both tests for autocorrelation with lag 1 are higher 

than 0.3.  For lag values between 2 to 7, the p-values are even larger. Therefore, there is practical 

evidence that the sequence of observations is a random sample. Figure 3 displays the histogram 

and density plot of the Phase-I observations and indicates the possible presence of a few extreme 

observations. Now, we should identify them, if present, via an appropriate Phase-I control chart. 

 

Figure 3. Histogram and density plot of the Phase-I observations 
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 We can check using the Easyfit software that most of the well-known time-to-event 

distributions, such as two-parameter exponential, Weibull or lognormal do not fit well to these 

data. Therefore it is recommended a nonparametric Phase-I analysis. It might be preferable and 

convenient to monitor after every two days of full operations using a subgroup of size 6. Hence, 

we first apply the RS/P chart for Phase-I analysis, introduced by Capizzi, & Masarotto (2013), 

over 18 subgroups of size n = 6, see Figure 4. The results are consistent with the previous ones 

since both p-values, respectively for level and scale, are again equal to 1, and the process is deemed 

to be IC. 

 

Figure 4. Phase-I RS/P control chart for the reference sample observations based on subgroups 
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While the RS/P Phase-I chart is excellent for detecting a sustained shift, the Phase-I Lepage 

chart introduced by Li, Mukherjee, & Su (2019) is known to be more efficient in detecting one or 

two isolated shifts. In Figure 5, we present the Phase-I Lepage chart setting the false alarm 

probability at 0.1, for which the control limit is 9.333. The results clearly indicate that the 108 

observations may be safely taken as the reference sample.  

 

Figure 5, The Phase-I Lepage chart for the reference sample 

 

 

 After Phase-I analysis, Phase-II monitoring is planned with the established reference 

sample to monitor the service quality in terms of delay time. A change in location, scale or shape 

of the distribution of arrival delay can be detected with the proposed 𝐿𝑉𝑆 charting scheme. We 

consider, as before, 6 data points from every second day of full-service operations for the rest of 

the year. Given (m,n) = (108,6), the 𝑈𝐶𝐿 (𝐻) for the proposed 𝐿𝑉𝑆 chart is determined via Monte-

Carlo simulations as 17.79 for a target 𝐴𝑅𝐿0 = 370. The median line is 1.81. The standardized 

values of the three statistics behind the proposed chart, namely the Wilcoxon one for location (𝐿), 

𝐴𝐵 for variability (𝑉) and Savage for shape (𝑆), and the plotting statistics for the 𝐿𝑉𝑆 chart are 

computed. The results are presented in Table A.1 in the Appendix. We plot the corresponding 
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observed value of the various statistics against the corresponding sample number in Figure 6. In 

the same plot, labels 𝐿, 𝑉, and 𝑆 are used to distinguish the corresponding location, variability and 

shape statistics.  

 

From Figure 6, we see that there is a clear 𝑂𝑂𝐶 signal at test sample number 4.  Moreover, 

there is a run of 10 consecutive samples (from 3 to 12) over the median line. The value of the 

plotting statistic for sample number 2 falling below the median line just by a margin of 0.01, 

otherwise, it would have been a run 12 consecutive samples from 1 to 12. We see a similar run of 

8 points from sample number 14 to number 21. These are quite clear indications of a shift. To 

understand which aspect is more responsible for the shift, we can look at the 𝐿, 𝑉, and 𝑆 statistics 

values. Figure 5 shows that the 𝐿-component corresponding to all of the first 9 sample points is 

above the baseline. This is a clear indication of a shift in location. We conclude that the 

improvement of service quality did not extend to the later months of 2019 in route D26, and further 

assessment would have been necessary to reduce delay.  

 

Figure 6. Integrated 𝐿𝑉𝑆 chart with sub-charts for location, scale and shape components for delay 

data 
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6. Concluding remarks 

In this paper, we fill a gap in the literature on distribution-free charting schemes for process 

monitoring by introducing a new distribution-free process monitoring scheme that can detect a 

shift in either of location, scale and shape parameters of the process distribution, or any 

combinations of them. In fact, the available distribution-free charts are either uni-aspect schemes 

(because they can detect a shift in only one aspect, like location or scale) or bi-aspect schemes 

(because they can simultaneously detect a shift in location and scale). The new scheme is based 

on a combined statistic designed via Euclidean distance of the standardized Wilcoxon statistic for 

location, the standardized Ansari-Bradley statistic for scale and the standardized Savage-type 

statistic for shape. We discuss the implementation design using the average run-length as a metric 

and investigate the in-control performance of the proposed scheme. It is shown that the new chart 

is in-control robust irrespective to the underlying process distribution and therefore applicable to 

monitor any univariate continuous processes. An out-of-control performance comparison study of 

the new scheme with many existing schemes shows that the new scheme is preferable to the 

existing schemes, as none of them is designed to monitor the three process parameters 

simultaneously. The application of the new chart in monitoring arrival delays of a passenger train 

in a regional route in Italy shows that the chart is useful in practice to detect the presence of shifts. 

The chart also allows us to understand which aspect is more responsible for a shift among location, 

scale and shape. This is a significant advantage of the new chart since it dramatically helps quality 

engineers in finding out the assignable cause. Possible directions for further research are the 

CUSUM and EWMA version of the proposed 𝐿𝑉𝑆 scheme. 
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Appendix  

 

Table A.1. Plotting statistic for the proposed 𝐿𝑉𝑆 scheme and the component sub-charts for the delay data 

Sample 

No. 

Delay in Minutes Standardized 

Wilcoxon (𝐿) 

Standardized AB 

(𝑉) 

Standardized Savage 

(𝑆) 

Plotting Statistic 𝑇 of 

𝐿𝑉𝑆 scheme 

1 (4, 5, 6, 4, 3, 9) 1.472 -1.091 0.651 3.782 

2 (3, 1, 12, 4, 3, 4) 0.298 -1.307 -0.060 1.801 

3 (7, 4, 2, 8, 4, 8) 1.561 -0.127 0.962 3.378 

4 (8, 21, 14, 5, 5, 9) 2.931 1.523 2.787 18.677 

5 (5, 3, 6, 4, 3, 4) 0.869 -2.043 -0.057 4.934 

6 (0, 5, 12, 25, 2, 14) 1.326 1.840 2.061 9.394 

7 (4, 2, 6, 14, 7, 3) 1.320 -0.355 0.883 2.648 

8 (4, 0, 5, 2, 76, 10) 0.857 0.901 1.837 4.920 

9 (4, 2, 4, 2, 3, 8) 0.273 -1.459 -0.238 2.261 

10 (1, 3, 5, 3, 2, 4) -0.362 -1.688 -0.826 3.661 

11 (1, 3, 4, 9, 6, 10) 1.148 0.190 0.836 2.055 

12 (4, 1, 3, 1, 4, 5) -0.406 -1.041 -0.797 1.883 

13 (2, 1, 9, 2, 1, 17) -0.216 1.066 0.302 1.274 

14 (7, 17, 6, 2, 6, 6) 2.043 0.838 1.636 7.551 

15 (1, 19, 5, 1, 4, 8) 0.673 0.914 0.796 1.921 

16 (3, 1, 5, 3, 2, 4) -0.362 -1.688 -0.826 3.661 

17 (5, 0, 5, 4, 16, 10) 1.339 0.825 1.244 4.021 

18 (2, 15, 14, 13, 1, 5) 1.415 1.510 1.696 7.158 

19 (0, 0, 3, 4, 1, 6) -1.161 0.292 -1.064 2.566 

20 (7, 3, 9, 4, 4, 3) 1.206 -1.371 0.524 3.606 

21 (3, 4, 4, 2, 3, 6) 0.330 -2.132 -0.406 4.820 

22 (2, 2, 3, 3, 2, 22) -0.171 -1.307 -0.074 1.744 

23 (4, 1, 6, 5, 10, 0) 0.343 0.761 0.176 0.728 

24 (2, 3, 3, 8, 3, 7) 0.628 -1.383 0.124 2.324 

25 (22, 2, 10, 0, 2, 10) 0.711 1.599 1.232 4.580 

26 (1, 0, 5, 7, -1, 8) -0.406 1.904 -0.180 3.821 

27 (3, 3, 1, 7, 3, 6) 0.266 -1.218 -0.228 1.607 

28 (5, 3, 7, 5, 5, 5) 1.618 -0.800 0.593 3.609 

29 (7, -1, 2, 3, 3, 2) -0.755 -0.825 -0.856 1.983 

 

 


