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ABSTRACT
It is one of the important issues in survival analysis to compare two hazard rate
functions to evaluate treatment effect. It is quite common that the two hazard rate
functions cross each other at one or more unknown time points, representing tem-
poral changes of the treatment effect. In certain applications, besides survival data,
we also have related longitudinal data available regarding some time-dependent co-
variates. In such cases, a joint model that accommodates both types of data can
allow us to infer the association between the survival and longitudinal data and to
assess the treatment effect better. In this paper, we propose a modeling approach for
comparing two crossing hazard rate functions by joint modeling survival and longi-
tudinal data. Maximum likelihood estimation is used in estimating the parameters
of the proposed joint model using the EM algorithm. Asymptotic properties of the
maximum likelihood estimators are studied. To illustrate the virtues of the proposed
method, we compare the performance of the proposed method with several existing
methods in a simulation study. Our proposed method is also demonstrated using a
real dataset obtained from an HIV clinical trial.

KEYWORDS
censoring data; crossing hazard rates; longitudinal data; proportional hazards
regression; survival analysis

1. Introduction

In survival data analysis, we are often interested in comparing two hazard rate func-
tions for evaluating a treatment effect [1–3]. In various applications, the two hazard
rate functions would cross each other, reflecting temporal changes of the treatment
effect [4–8]. This paper focuses on the efficient comparison of two hazard rate functions
in such cases.

In practice, the phenomenon of crossing hazard rates is common. For example, radia-
tion and chemotherapy can usually improve patients’ prospects for short-term survival;
but they have little or no long-term medical benefits. Surgery may cause high mor-
tality in a short period; but, in the long run, it will often improve patients’ long-term
health. In these cases, the two related hazard rate functions would often cross each
other, reflecting the different treatment effects in different time periods. In the liter-
ature, some procedures have been proposed for comparing two hazard rate functions.
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Early methods, including the logrank, Gehan-Wilcoxon, and Peto-Peto tests, among
several others (cf., [3], Chapter 7) do not take into account the crossing phenomenon.
It has been well demonstrated that these methods are ineffective in comparing two
crossing hazard rates because early differences between the two hazard rates would be
canceled out by later differences of opposite signs in their test statistics [7,9]. To over-
come this limitation, several authors, including [6] and [10], define their test statistics
using absolute or squared differences between the two hazard rates. Another group
of methods handles the crossing hazard rates problem by choosing special weights in
the weighted logrank test, which change signs before and after a potential crossing
point. See, e.g., [8,11–13], and [14] for different weighting schemes. Some other meth-
ods employ the modeling approach, by explicitly including the crossing structure of the
hazard rates in a model [7,15–17]. For recent development on nonparametric estima-
tion of crossing hazard rates, see [18] and [19], and the references cited therein. Some
additional models have been developed for covariate-dependent heteroscedasticity by
[20] and [21]. They proposed generalized proportional hazards model for analysis of
survival regression data with cross-effects of survival functions. While models in [20]
and [21] handle cross-effect caused by observable covariates, models in other papers de-
scribed above, including the one discussed in the current paper, deal with cross-effect
that cannot be explained by any observable covariates.

Although some modeling approaches [7] can accommodate some time-independent
baseline information (e.g., a patient’s age, gender, etc., at the time when he/she was
first included in the study), most existing methods for handling the crossing hazard
rates problem, including the ones mentioned above, use survival data only. However,
in medical research, it is a common practice to collect both the time-dependent and
time-independent data, besides patients’ survival times. There are some existing meth-
ods in the literature for jointly analyzing the longitudinal and survival data. See, for
instance, [22–24], and [25], and the references cited there. Almost all these papers do
not specifically handle the case when two hazard rate functions cross.

One motivation example of our current research on comparing two crossing hazard
rate functions by joint modeling longitudinal and survival data is the ddI/ddC data
that are obtained from an HIV clinical trial [26]. The major goal of this study is
to compare the efficacy of two drugs ddI and ddC for HIV-infected patients. See
Section 4 for more detailed description. In the data, besides patients’ survival times
(in months), their longitudinal observations of the number of CD4 cells at different
time points are also available. Intuitively, the longitudinal CD4 cell counts are related
to patients’ survival times; a low number of CD4 cells is prognostic of poor survival
outcome. Therefore, such longitudinal information should be accommodated when
comparing the hazard rate functions of the two treatment groups of patients. The life-
table estimates of the two hazard rate functions are shown in Figure 1, from which it
can be seen that they cross each other around the 2-month and 15-month time points.
However, the statistical analysis of this data in [27] did not consider the crossing hazard
rates phenomenon, although they jointly modeled the longitudinal and survival data.
Because the positive differences of the two hazard rates at certain time points and their
negative differences at certain other time points could be canceled out, they concluded
that the two drugs did not have a significant difference in their efficacy, which may
not be appropriate here.

Model selection and diagnostics for the proposed joint model has been discussed in
[28]. In this paper, we rigorously justify the proposed model by investigating its identi-
fiability, consistency, and asymptotic normality. We also perform extensive numerical
studies to investigate its numerical performance. The rest part of this article is orga-
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Figure 1. Life-table estimates of the two hazard rate functions of the ddI and ddC patient groups in the HIV

clinical trial example.

nized as follows. Section 2 describes the proposed joint model, the model estimation
procedure using the EM algorithm, and some statistical properties of the maximum
likelihood estimators of the model coefficients. Section 3 presents a simulation study to
compare the numerical performance of the proposed method and some existing meth-
ods. Section 4 demonstrates the proposed method using the ddI/ddC data mentioned
above. Section 5 gives some concluding remarks. Proofs of some theoretical results are
given in a supplementary file.

2. Proposed Method

In this section, we describe our proposed method in three parts. Subsection 2.1 de-
scribes the proposed joint model, Subsection 2.2 describes the model estimation, and
Subsection 2.3 discusses some asymptotic properties of the estimated model.

2.1. Proposed joint modeling procedure

Assume that there are n subjects involved in a study in question. For each individual,
we observe both survival and longitudinal data. Let Ti denote the true survival time
and Ci denote the censoring time of the ith subject, for i = 1, · · · , n. Then, for the ith
subject, we actually observe (Oi,∆i), where Oi = min (Ti, Ci), and ∆i = I{Ti ≤ Ci}
which equals 1 if Ti ≤ Ci and 0 otherwise. For the longitudinal part of the data,
let Y (t) be the longitudinal process. For the ith subject, it is measured at discrete
time points {tij , tij ≤ Oi, j = 1, . . . , ni}. Then, for the ith subject, the observed
survival and longitudinal data are (Oi,∆i,Yi, ti), where Yi = (Y (ti1), . . . , Y (tini

))′

and ti = (ti1, . . . , tini
)′. We further assume that the longitudinal process Y (t) follows

the following linear mixed effects model:

Y (tij) = M(tij) + εij

= X(tij)
′β +Z(tij)

′bi + εij ,
(1)
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where X and Z are the covariates of the fixed effects and the random effects, re-
spectively, β is the fixed effects coefficients, and bi is the random effects coefficients

with bi
iid∼ N(0,Σb). We further assume that the random errors εij

iid∼ N(0, σ2
ε) are

independent of the random effects coefficients bi.
Note that longitudinal outcome is usually measured only at discrete time points,

and thus no longitudinal measurements exist when an event occurs between scheduled
follow-up visits. In the literature, various approaches are available to handle missing
longitudinal data and missing covariates in survival analysis. See, for instance, [29],
[30], [31], and [32]. Moreover, [33] discussed the imputation of longitudinal data in in-
formative dropout setting, and [34] recently proposed a multiple imputation approach
to impute missing data in both longitudinal and survival data.

For the survival data, in cases when the two hazard rate functions of the case and
control groups cross only once, we assume that the hazard model for the ith subject
is defined by

λ (tij |M(tij), gi) = λ0(tij) exp {ψM(tij) + φ (tij − γ) gi} , (2)

where λ0(tij) is a baseline hazard, M(tij) is the conditional mean component of the
longitudinal response Y (tij) conditional on the random effects coefficients bi of the ith
subject (cf., model (1)), gi is the group indicator that equals 1 if the ith subject is
in the treatment group and 0 otherwise, ψ and φ are unknown coefficients, and γ is
the unknown crossing point. In model (2), the coefficient ψ measures the association
between the survival and longitudinal data. In cases when ψ = 0, the information in
the longitudinal data would not affect the survival of each patient. In other words, the
survival and longitudinal information is independent of each other in such cases. If
the ith subject is in the treatment group (i.e., gi = 1), then, from model (2), his/her
hazard function is

λ (tij |M(tij), gi = 1) = λ0(tij) exp {ψM(tij) + φ (tij − γ)} .

Similarly, in cases when the ith subject is in the control group (i.e., gi = 0), the hazard
function becomes

λ (tij |M(tij), gi = 0) = λ0(tij) exp {ψM(tij)} .

Therefore, the ratio of the two hazard functions is

λ (tij |M(tij), gi = 1)

λ (tij |M(tij), gi = 0)
= exp {φ (tij − γ)} . (3)

From (3), it can be seen that the hazard ratio depends on φ and γ. In cases when
φ = 0, the hazard ratio equals 1 all the time. In such cases, the two hazard functions
are identical. In cases when φ > 0, the hazard ratio is less than 1 when tij < γ, equal
to 1 when tij = γ, and greater than 1 when tij > γ. In such cases, the two hazard
functions cross at γ, the hazard function of the case group is below the hazard function
of the control group before the crossing point, and their positions are switched after
the crossing point. The magnitude of φ controls how different the two hazard functions
are. In cases when φ < 0, the two hazard functions also cross at γ, but the hazard
function of the case group is above the hazard function of the control group before
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the crossing point in such cases. From this description, we can see that the crossing
pattern of the two hazard functions depends on both φ and γ.

Model (2) can be generalized in several different ways. For instance, in certain appli-
cations, besides the longitudinal data described in model (1) and the group indicator
gi, there might be other covariates. Let Wi be the vector of these covariates evaluated
for the ith patient. Then, we can consider the following generalized model:

λ (tij |M(tij), gi,Wi) = λ0(tij) exp{ψM(tij) + φ (tij − γ) gi +Wi
′η},

where η is a vector of coefficients. Model (2) can also be generalized to include two or
more crossing points. In cases when two crossing points are present and the covariate
vector Wi is also considered, the model becomes

λ (tij |M(tij), gi,Wi) = λ0(tij) exp {ψM(tij) + φ1 (tij − γ1) I{tij ≤ κ}gi+
φ2 (tij − γ2) I{tij > κ}gi +Wi

′η
}
,

where γ1 and γ2 are the two crossing points, κ is the change point, and φ1 and φ2

are coefficients. It should be pointed out that, theoretically speaking, our model can
accommodate as many crossing points as needed. However, in practice, there are only
one or two crossing points in most applications. Also, survival data are often censored.
In cases when there are multiple crossing points, we usually only consider the first one
or two crossing points [18], because the observed survival data usually do not provide
enough information for us to estimate the remaining crossing points with a reasonable
accuracy.

To take into account the longitudinal data when modeling the survival data, besides
the joint modeling approach described above (cf., (1) and (2)), there are some alter-
native approaches. For instance, in the proposed joint modeling approach, only the
component M(tij) of the longitudinal response Y (tij) (cf., expression (1)) is included
in the Cox proportional hazards model (2). A simpler approach is to include Y (tij) as a
time-dependent covariate in the Cox proportional hazards model (2) directly. Namely,
we concentrate on the Cox proportional hazards model alone by considering the model

λ (tij |Y (tij), gi) = λ0(tij) exp {ψY (tij) + φ (tij − γ) gi} . (4)

This approach is called the naive approach in this paper. The frailty modeling ap-
proach described below is an extension of the above naive modeling approach. It aims
to account for heterogeneity caused by unobserved covariates. It can be considered
as a random effect model for describing survival data where the random effect has
a multiplicative effect on the baseline hazard function. More specifically, the frailty
model corresponding to the naive model (4) can be formulated as

λ (tij |νi, Y (tij), gi) = νiλ0(tij) exp {ψY (tij) + φ (tij − γ) gi} , (5)

where the longitudinal response Y (tij) is included in the survival model directly as a
time-dependent covariate, and νi is the random effects term (also called the frailty).
In the literature, {νi, i = 1, . . . , n} is often assumed to be an i.i.d. sequence of random
variables following a given distribution. Among many possible distributions, the most
common frailty distribution is the gamma distribution because of its relatively simple
computation [35]. Estimation of the frailty model (5) can be accomplished by the R-
package frailtypack [36]. By comparing the naive model (4), the frailty model (5), and
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the joint models (1) and (2), we can have the following several observations. (i) By
using M(tij) in (2), we try to remove the measurement error from the longitudinal
response Y (tij) so that the resulting survival model (2) could be more efficient. But
the underlying model assumptions in (1) could compromise this benefit when the
assumptions are invalid. (ii) Because the frailty model (5) has the frailty νi included,
which can accommodate certain variability in the survival data, it should be more
robust to the model specification, compared to the joint models (1) and (2) and the
naive model (4).

2.2. Model estimation

The joint model defined by (1) and (2) can be estimated by maximizing the log like-
lihood of the observed survival and longitudinal data. Remember that, for the ith
patient, the observed data are (Oi,∆i,Yi, ti). Let θ = (θy,θb,θt) be a vector of all
parameters in models (1) and (2), where θy =

(
β, σ2

ε

)
, θb is a vector of all parameters

in Σb of the random effects term in (1), and θt = (ψ, φ, γ,Λ0) includes all parameters

in model (2) in which Λ0 (t) =
∫ t

0 λ0 (u) du is the cumulative baseline hazard. Then,
the likelihood of the observed data can be written as

L(θ) =

n∏
i=1

Li (θ|Oi,∆i,Yi, ti)

=

n∏
i=1

∫ ∞
−∞


ni∏
j=1

f1 (Y (tij)|bi,θy)

 f2 (bi|θb) f3 (Oi,∆i|bi,θt) dbi

 , (6)

where

f1 (Y (tij)|bi,θy) =
1√

2πσ2
ε

exp

{
− (Y (tij)−M(tij))

2

2σ2
ε

}
,

f2 (bi|θb) =
1

(2π)q/2 |Σb|1/2
exp

{
− 1

2
b′iΣ

−1
b bi

}
,

and

f3 (Oi,∆i|bi,θt) = [λ0(Oi) exp {ψM(Oi) + φ (Oi − γ) gi}]∆i

× exp

[
−
∫ Oi

0
λ0 (u) exp {ψM(u) + φ (u− γ) gi} du

]
.

The maximum of this likelihood over the infinite parameter space {λ0 (t) ≥
0, for all t ∈ [0,∞)} does not exist. Thus, the maximum likelihood principle is not
applicable here. Nevertheless, we can use the nonparametric likelihood after modi-
fying the likelihood by discretizing the cumulative baseline hazard Λ0 (t) as a step
function with jumps at the observed follow-up times. More specifically, let us re-order
the survival times such that u1 < · · · < up. Then, the baseline hazard is evaluated
at each of the ordered survival times, and denoted by λ0 (uk), where k = 1, · · · , p. A
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nonparametric likelihood is obtained by changing f3 (Oi,∆i|bi,θt) in (6) to

f
′

3 (Oi,∆i|bi,θt) =

[
p∏

k=1

λ0 (uk)
∆iI{Oi=uk}

]
× [exp {ψM(Oi) + φ (Oi − γ) gi}]∆i

× exp

[
−

p∑
k=1

λ0 (uk) exp {ψM(uk) + φ (uk − γ) gi} I{Oi ≥ uk}

]
.

This nonparametric likelihood approach is well discussed in survival analysis, and
similar approaches have been proposed for joint modeling of survival and longitudinal
data by several authors, including [22] and [37].

For maximizing the likelihood of a joint model, the expectation-maximization (EM)
algorithm is a standard method [22], which has two alternating steps. The E-step com-
putes the expectation of the log-likelihood of the uncensored observations, conditional
on all observed data and on the current estimates of the parameters, and the expec-
tation can be evaluated using the numerical integration technique of Gauss-Hermite
quadrature [24,38]. The M-step updates the parameter estimates by maximizing the
expectation obtained from the E-step. More specifically, the conditional expectation
of the log-likelihood of the complete data can be factorized into three parts

E

log

n∏
i=1

ni∏
j=1

f1 (Y (tij)|bi,θy)
∣∣∣∣Oi,∆i,Yi, ti, θ̂

+

E

[
log

n∏
i=1

f2 (bi|θb)
∣∣∣∣Oi,∆i,Yi, ti, θ̂

]
+ (7)

E

[
log

n∏
i=1

f3 (Oi,∆i|bi,θt)
∣∣∣∣Oi,∆i,Yi, ti, θ̂

]
.

Each of the above three parts has the form E{h(bi)|Oi,∆i,Yi, ti, θ̂}, where h(·) is a
specific function. For simplicity, we denote it as Ei{h(bi)}. Then, the equation (7)
becomes

− 1

2

n∑
i=1

ni log
(
2πσ2

ε

)
− 1

2σ2
ε

n∑
i=1

ni∑
j=1

Ei {Y (tij)−M(tij)}2

− n

2
log | (2π)q Σb| −

1

2

n∑
i=1

Ei
{
b′iΣ

−1
b bi

}
+

n∑
i=1

p∑
k=1

∆iI{Oi = uk} log λ0(uk) +

n∑
i=1

∆i {ψM(Oi) + φ (Oi − γ) gi}

−
n∑
i=1

p∑
k=1

λ0 (uk)Ei [exp {ψM(uk) + φ (uk − γ) gi}] I{Oi ≥ uk}.

(8)

Then, the closed-form maximum likelihood estimators of σ2
ε , Σb, and λ0(u) can be
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obtained as follows.

σ̂2
ε =

∑n
i=1

∑ni

j=1Ei {Y (tij)−M(tij)}2∑n
i=1 ni

Σ̂b =
1

n

n∑
i=1

Ei
{
bib
′
i

}
λ̂0(u) =

∑n
i=1 ∆iI (Oi = u)∑n

i=1Ei [exp {ψM(u) + φ (u− γ) gi}] I{Oi ≥ u}
.

No closed-form solutions exist for the remaining parameters, including θ̃ =
(β, ψ, φ, γ), which can be obtained by using the Newton-Raphson algorithm. In the
algorithm, the observed score and information evaluated at the current values of the
parameters should be computed beforehand in order to update the parameter esti-

mates. If
ˆ̃
θ(l−1) is the current estimate of θ̃, then an updated estimate would be

ˆ̃
θ(l) =

ˆ̃
θ(l−1) + I−1

ˆ̃
θ(l−1)

Sˆ̃
θ(l−1)

,

where Sˆ̃
θ(l−1)

is the observed score evaluated at
ˆ̃
θ(l−1), which can be obtained by the

first derivative of the conditional expectation of the log-likelihood of the complete data

(8), and Iˆ̃
θ(l−1)

is the observed information evaluated at
ˆ̃
θ(l−1), which is equal to the

negative derivative of the above quantity. More details can be found in [22] and [39].
In this iterative algorithm, the initial values of β can be set to be their estimates from
the linear mixed effects model (1) when the model is estimated alone. Similarly, the
initial values of the remaining parameters ψ, φ, and γ can be set to be their estimates
in the Cox proportional hazards model when the model is estimated in the way that
the longitudinal data are incorporated as a time-dependent covariate in the model,
which is called the naive model in Section 3.

The inverse observed information matrix can be used as an approximate variance-
covariance matrix for the estimates [40], which is used in our paper to estimate approx-
imate standard errors of the estimates. Several other approaches, such as the bootstrap
approach [41] and the profile likelihood approach [42] have been proposed in the joint
modeling literature. For recent development on standard error estimation for the joint
modeling of survival and longitudinal data, see [43], and the references cited therein.

2.3. Theoretical properties

Let En be the expectation with respect to the empirical distribution of the data, and
E0 be the expectation with respect to the underlying true distribution of the data.
Further, let ζ denote (β, σ2

ε ,θb, ψ, φ, γ). Then, the parameter set θ can be expressed as
θ = (ζ,Λ0). Some theoretical results in this section require the following conditions:

(C.1) There are some individuals still at risk at the end of the study, namely,
P (O ≥ τ) > 0, where τ denotes the time when the study ends.

(C.2) The parameter set ζ is an interior point of some known compact set Z ⊂ Rr,
where r is the dimension of ζ. The cumulative hazard rate function Λ0 is an
absolutely continuous function with respect to the Lebesque measure on [0,∞),
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and it is nondecreasing with Λ0(0) = 0 and Λ0(τ) < ∞. The set containing all
such functions is denoted as M .

(C.3) Let Θ denote the parameter space Z ×M . Then, it is assumed that the true
values of all parameters in θ are contained in Θ.

(C.4) In model (1), it is assumed that the matrices with {X(tij)
′, j = 1, . . . , ni, i =

1, . . . , n} and {Z(tij)
′, j = 1, . . . , ni, i = 1, . . . , n} as their rows have full column

ranks. Moreover, X(t) and Z(t) are continuously differentiable in [0, τ ]. We
denote the derivatives of X(t) and Z(t) with respect to t as ∇tX(t) and ∇tZ(t),
respectively. Then, max[0,τ ]‖∇tX(t)‖ and max[0,τ ]‖∇tZ(t)‖ are finite, where ‖·‖
is the Euclidean norm.

(C.5) From model (2), λ(t|M(t), g) can be re-expressed as

λ0(t) exp{ψ
(
X(t)′β +Z(t)′b

)
+ φ (t− γ) g}

= λ0(t) exp{ψZ(t)′b+X(t)′ψβ + φtg − φγg}
= λ0(t) exp{ψZ(t)′b+W (t)′η},

where W (t)′ = [X(t)′, tg, g], η′ = (η′1, η2, η3), η1 = ψβ, η2 = φ, and η3 = −φγ.
We assume that if there exist constant vectors V1 and V2 such that Z(t)′V1 = 0
and W (t)′V2 = m(t) for all t ∈ [0, τ ] where m(t) is a non-random function of t,
then V1,V2 and m(t) are all 0. Furthermore, W (t) is continuously differentiable
in [0, τ ], and max[0,τ ]‖∇tW (t)‖ <∞.

For the maximum likelihood estimation problem discussed in the previous subsec-
tion, we have the following results.

Lemma 2.1 (Existence). Under the assumptions (C.1)–(C.5), the maximum likeli-

hood estimators θ̂ = (ζ̂, Λ̂0) for maximizing the likelihood function defined in (6) exist,
and they satisfy the equation

Λ̂0(t) =

∫ t

0

dHn(u)

Wn(u; θ̂)
,

where Hn(u) = 1
n

∑n
i=1 ∆iI (Oi ≤ u) and Wn(u; θ̂) = 1

n

∑n
i=1Ei

[
exp{ψ̂M(u) + φ̂(u−

γ̂)gi}
]
I{Oi ≥ u}.

Lemma 2.2 (Identifiability). Under the assumptions (C.1)–(C.5), all parameters in
the maximum likelihood estimation problem discussed in Subsection 2.2 are identifiable.
That is, if there are θ and θ∗ in Θ such that L(θ) = L(θ∗) almost surely, then we
have θ = θ∗.

Lemma 1 says that the maximum likelihood estimators of θ exist, and Lemma 2
confirms that they are unique under some regularity conditions. Therefore, the max-
imum likelihood estimators θ̂ are well defined. The next theorem builds their strong
consistency.

Theorem 2.3 (Consistency). Under the assumptions (C.1) - (C.5), the maximum

likelihood estimators θ̂ = (ζ̂, Λ̂0) of θ = (ζ,Λ0) have the properties that ‖ζ̂ − ζ‖ and

‖Λ̂0 − Λ0‖∞ both converge almost surely to zero as n → ∞, where ‖ · ‖ denotes the
Euclidean norm and ‖ · ‖∞ denotes the supremum norm on [0, τ ].

Next, we provide a result about the asymptotic normality of θ. To this end, some
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notation is required. Let H = {h = (h1, h2) |‖h1‖ ≤ 1, ‖h2‖v ≤ 1}, where ‖·‖ is
the Euclidean norm and ‖h2‖v is defined to be the absolute value of h2(0) plus the
total variation of h2 on the [0, τ ]. We define θ(h) = ζ′h1 +

∫ τ
0 h2(u)dΛ(u). Then, the

parameter vector θ can be considered as a functional on H, and the parameter space
Θ can be considered as a subset of l∞(H), which is the space of bounded real-valued
functions on H. We further define the supremum norm as ‖U‖∞ = suph∈H |U(h)| on
l∞(H). Then, we have the following result.

Theorem 2.4 (Asymptotic Normality). Under the assumptions (C.1) - (C.5),
√
n(ζ̂−

ζ, Λ̂0 − Λ0) weakly converges to a Gaussian process G in l∞ (H) with mean zero and
covariance process

cov [G(g), G(g∗)] = ω−1
1 (g∗)′g1 +

∫ τ

0
ω−1

2 (g∗)g2(u)dΛ0(u),

where g = (g1, g2) and g∗ are two elements of H, and ω1(g∗) and ω2(g∗) are two con-
tinuously invertible linear operator on H that are defined in the proof of this theorem.

3. Simulation Study

In this section, we present some simulation results to compare the performance of the
proposed joint modeling approach with some alternative approaches. The alternative
approaches considered here include the joint modeling method without considering
any crossing points [23,27], the modeling approach by [7] for comparing two crossing
hazard rate functions, the frailty modeling approach, and the naive modeling approach
described in Section 2.1. In model (2) of our proposed joint modeling approach, only
one crossing point is assumed present. In this section, we also consider the case when
two crossing points are assumed present. In such a case, model (2) becomes

λ (tij |M(tij), gi) = λ0 (tij) exp {ψM(tij) + φ1 (tij − γ1) I{tij ≤ κ}gi+
φ2 (tij − γ2) I{tij > κ}gi} ,

where γ1 and γ2 are the two crossing time points, κ is the change point, and ψ, φ1, and
φ2 are parameters. To distinguish the two cases, our proposed joint modeling approach
with one crossing point assumed present is denoted as NEW1, and the one with two
crossing points assumed present is denoted as NEW2. Similarly, in both the frailty
modeling approach and the naive approach, we also consider cases with either one or
two crossing points present, and the corresponding models are denoted as FRAILTY1,
FRAILTY2, NAIVE1 and NAIVE2, respectively. In the frailty model (5), we assume

that νi ∼ Γ
(

1
ρ ,

1
ρ

)
, E(νi) = 1, V ar(νi) = ρ, and the value of ρ is estimated by MLE.

In the conventional joint modeling approach without considering any crossing points,
which is noted as OLD in this section, the longitudinal data are still modeled by (1),
but the survival data are modeled by

λ (tij |M(tij), gi) = λ0 (tij) exp {ψM(tij) + φtijgi} .
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Figure 2. Log ratios of two hazard rate functions in five different cases considered in the simulation study.

In the modeling approach by [7], denoted as LQS here, the survival data are modeled
by

λ (tij |gi) = λ0 (tij) exp {φ (BCα(tij)−BCα(γ)) gi} ,

where

BCα(tij) =

{
tαij , if α 6= 0

log(tij), if α = 0,

φ and α are two parameters, and γ is the crossing point.
In the simulation study, we consider five different patterns of the hazard rate func-

tions of the treatment and control groups. The log ratios of the hazard rate functions
in the five different cases are shown in Figure 2 (a)-(e), respectively. In case (a), the log
ratio of the hazard rate functions is linear over time, and the two hazard rate functions
have one crossing point at time=4. In case (b), the two hazard rate functions still have
one crossing point at time=4, but their log ratio is non-linear. In case (c), the log ratio
of the hazard rate functions is linear, but the hazard rate functions do not have any
crossing point. Case (d) considers two crossing points at time=1 and time=5, and the
log ratio of the hazard rate functions is piecewise linear. Case (e) also considers two
crossing points at time=2 and time=6, but the log ratio of the hazard rate functions
is not piecewise linear. More specifically, the hazard rate functions in these five cases
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are given by the following five expressions, respectively:

λ (t) = λ0(t) exp {0.5M(t) + 0.2 (t− 4) g} ,
λ (t) = λ0(t) exp {0.5M(t) + 0.5(log(t)− log(4))g},
λ (t) = λ0(t) exp {ψM(t) + 0.2tg},
λ (t) = λ0(t) exp {0.5M(t) + 0.2 (t− 1) 1{t ≤ 3}g − 0.2 (t− 5) 1{t > 3}g} ,

λ (t) = λ0(t) exp
{

0.5M(t) +
[
−0.05 (t− 4)2 + 0.2

]
g
}
,

where g = 0 or 1 is a group indicator, and M(t) is the conditional mean component
of the longitudinal response Y (t) (cf., model (1)). In each case, the two hazard rate
functions can be specified from the related expression of λ (t) by replacing g by 0 and
1, respectively. In all cases considered, a constant baseline hazard function is used for
λ0. The true longitudinal covariate is modeled by

M(t) = β0 + (β1 + bi) t,

where β0 = 1, β1 = 0.5, and bi is the random effect coefficient generated from a zero-
mean normal distribution with variance σ2

b = 0.1. The observed longitudinal data (i.e.,
observations of Y (t)) are generated from N(M(t), σ2

ε) with σ2
ε = 0.5. In each setting,

both sample sizes of the treatment and control groups are chosen to be n1 = 100 or
200. The censoring time for each subject is generated from the uniform distribution
on the interval [1, T ], where T is adjusted to reach a pre-specified censoring rate. We
choose the left end of the interval to be 1 to allow a minimum follow-up time of one
time unit. In the simulation, we consider the two censoring rates of 20% and 50%.

First, we compare the performance of NEW1, NAIVE1, and FRAILTY1 in the first
three cases when there is only one crossing point or when there is no crossing point.
The MSE values of their estimated parameters based on 200 replicated simulations
are presented in Table 1. In case (b), because the true log hazard ratio is not linear
over t and thus the true value of φ is unavailable, the MSE values of φ cannot be
computed. Similarly, in case (c) when there is no crossing point in the survival model,
the MSE values of γ cannot be computed either. From the table, it can be seen that, in
case (a) when the linear Cox proportional hazards model (2) with one crossing point is
valid, the method NEW1 is more efficient for estimating the coefficients in that model,
compared to the method NAIVE1. This is especially true for estimating ψ which is
the coefficient for connecting the longitudinal data with the survival model. Compared
to FRAILTY1, NEW1 is still much better in estimating ψ, and marginally better in
estimating φ (except in the case when n1 = 100 and CR = 50%). But, FRAILTY1 is
better in estimating the crossing point γ. In case (b) when the linear log-hazard-ratio
assumption is invalid in all three models, we can see that FRAILTY1 performs the
best, which confirms our observation made at the end of Section 2.1 that it is quite
robust to its model specification compared to the other two models. In case (c) when
the linear Cox proportional hazards model is valid but it contains no crossing points
(i.e., γ ≤ 0 in model (2)), the method NEW1 performs the best uniformly in all cases
considered.

Next, we compare the performance of NEW2, NAIVE2, and FRAILTY2 in cases
(d) and (e) when there are two crossing points in the true survival model. The MSE
values of their estimated parameters based on 200 replicated simulations are presented
in Table 2. In case (e), because the true values of φ1 and φ2 are unavailable, their MSE

12



Table 1. MSE values of the estimated parameters of the methods NEW1, NAIVE1, and FRAILTY1

in the first three cases when there is only one crossing point or when there is no crossing point. In the
table, n1 denotes the number of subjects in the case (or control) group, and CR denotes the censoring

rate.

Case n1 CR Method ψ φ γ β0 β1 σ2
ε σ2

b

(a)

100

20%
NEW1 0.0750 0.0086 1.7837 0.0005 0.0003 0.0001 0.0001

NAIVE1 0.1643 0.0099 1.8693
FRAILTY1 0.1567 0.0095 1.0318

50%
NEW1 0.1471 0.0335 2.1464 0.0005 0.0003 0.0001 0.0002

NAIVE1 0.1803 0.0353 2.1392
FRAILTY1 0.1852 0.0239 1.6920

200
20%

NEW1 0.0538 0.0037 0.5528 0.0003 0.0001 0.0001 0.0000
NAIVE1 0.1332 0.0041 0.7360

FRAILTY1 0.1375 0.0041 0.6485

50%
NEW1 0.1198 0.0114 1.6661 0.0003 0.0002 0.0001 0.0001

NAIVE1 0.1903 0.0133 2.0055
FRAILTY1 0.1897 0.0123 1.1175

(b)

100

20%
NEW1 0.2946 3.2598 0.0004 0.0001 0.0001 0.0000

NAIVE1 0.2845 2.8488
FRAILTY1 0.1534 1.5055

50%
NEW1 0.3161 3.3015 0.0004 0.0001 0.0001 0.0001

NAIVE1 0.3002 3.1890
FRAILTY1 0.1563 1.9263

200

20%
NEW1 0.2779 1.6740 0.0002 0.0000 0.0000 0.0000

NAIVE1 0.2619 1.3726
FRAILTY1 0.1483 1.0089

50%
NEW1 0.2789 2.0686 0.0002 0.0001 0.0000 0.0000

NAIVE1 0.2700 2.0542
FRAILTY1 0.1600 1.0717

(c)

100

20%
NEW1 0.0859 0.0151 0.0007 0.0005 0.0001 0.0002

NAIVE1 0.1837 0.0228
FRAILTY1 0.1903 0.0221

50%
NEW1 0.1831 0.0634 0.0008 0.0005 0.0002 0.0004

NAIVE1 0.2347 0.0837
FRAILTY1 0.2050 0.0736

200

20%
NEW1 0.0758 0.0087 0.0003 0.0002 0.0001 0.0001

NAIVE1 0.1758 0.0111
FRAILTY1 0.1738 0.0100

50%
NEW1 0.1596 0.0271 0.0004 0.0003 0.0001 0.0002

NAIVE1 0.2513 0.0377
FRAILTY1 0.2224 0.0357
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Table 2. MSE values of the estimated parameters of the methods NEW2, NAIVE2, and FRAILTY2 in the cases (d) and (e) when

there are two crossing points in the survival model. In the table, n1 denotes the number of subjects in the case (or control) group,
and CR denotes the censoring rate.

Case n1 CR Method ψ κ φ1 γ1 φ2 γ2 β0 β1 σ2
ε σ2

b

(d)

100

20%
NEW2 0.0967 0.0356 0.0401 0.7007 0.0380 1.9027 0.0006 0.0003 0.0001 0.0001

NAIVE2 0.1554 0.0335 0.0336 0.5963 0.0468 2.4047
FRAILTY2 0.1529 0.0319 0.0313 0.9275 0.0325 1.9834

50%
NEW2 0.1501 0.0354 0.0419 0.7622 0.0920 2.4763 0.0006 0.0004 0.0001 0.0002

NAIVE2 0.1980 0.0332 0.0454 0.4867 0.1066 3.0328
FRAILTY2 0.2128 0.0314 0.0445 0.6774 0.0855 4.3216

200

20%
NEW2 0.0708 0.0357 0.0196 0.3542 0.0167 1.2533 0.0003 0.0002 0.0001 0.0001

NAIVE2 0.1680 0.0325 0.0161 0.3429 0.0205 1.1788
FRAILTY2 0.1684 0.0320 0.0143 0.6292 0.0110 1.7654

50%
NEW2 0.1118 0.0345 0.0225 0.5336 0.0604 2.5771 0.0003 0.0002 0.0001 0.0001

NAIVE2 0.1843 0.0326 0.0261 0.4659 0.0619 2.9668
FRAILTY2 0.2027 0.0317 0.0261 0.5538 0.0762 3.3739

(e)

100

20%
NEW2 0.2966 0.1376 1.1704 1.6083 0.0004 0.0001 0.0001 0.0000

NAIVE2 0.2757 0.1324 1.0274 1.6632
FRAILTY2 0.1255 0.1297 1.9155 3.1192

50%
NEW2 0.3287 0.1413 0.8106 1.7911 0.0003 0.0001 0.0001 0.0001

NAIVE2 0.2924 0.1307 0.7115 2.1246
FRAILTY2 0.1954 0.1333 1.0489 2.3273

200

20%
NEW2 0.2812 0.1452 0.7451 1.4151 0.0002 0.0000 0.000 0.0000

NAIVE2 0.2624 0.1364 0.6981 1.4724
FRAILTY2 0.1130 0.1353 1.5640 2.5908

50%
NEW2 0.2908 0.1358 0.6854 1.7467 0.0002 0.0001 0.0001 0.0000

NAIVE2 0.2719 0.1353 0.7235 1.8478
FRAILTY2 0.1843 0.1215 0.6384 2.5220

values cannot be computed. From the table, it can be seen that, in case (d) when the
linear Cox proportional hazards model with two crossing points is valid, NEW2 is
much better than the other two methods for estimating ψ, it is close to the best in
estimating φ2 and γ2, and the three methods are comparable for estimating κ, φ1, and
γ1. In case (e) when the linear Cox proportional hazards model is invalid, FRAILTY2
is much more efficient in estimating ψ compared to the other two methods, which is
consistent with the results found in Table 1. Its performance is close to the best in
estimating κ. But, it does not do a good job in estimating the two crossing points γ1

and γ2.
Finally, for each of the eight methods NEW1, NAIVE1, FRAILTY1, LQS, NEW2,

NAIVE2, FRAILTY2, and OLD, we compute the mean squared residuals of the esti-
mated log hazard ratio in each of the five cases considered. Then, the mean squared
residuals is averaged over 200 replicated simulations. The averaged value of the mean
squared residuals is presented in Table 3. Because some methods, including NAIVE1,
FRAILTY1, LQS, NAIVE2 and FRAILTY2 do not specifically model the longitudinal
data, the corresponding results for the longitudinal data are not presented. From the
table, it can be seen that the proposed method NEW1 outperforms all other methods
in case (a) except the method FRAILTY1 which is slightly better in the case when
n1 = 100 and CR = 50%. In case (b) when the linear Cox proportional hazards model
is invalid, FRAILTY1 performs the best among all methods, NEW1 and NAIVE1 per-
form similarly well, but the methods LQS, NEW2, NAIVE2, FRAILTY2, and OLD
perform much worse. In case (c) when there is no crossing point, the conventional joint
modeling approach OLD performs the best, as expected, and our proposed method
NEW1 performs the second best. In case (d) when the linear Cox proportional haz-
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Table 3. Averaged mean squared residuals of the estimated log hazard ratio by the methods NEW1, NAIVE1,

FRAILTY1, LQS, NEW2, NAIVE2, FRAILTY2 and OLD in all five cases considered, based on 200 replicated

simulations.

Case n1 CR
Method

NEW1 NAIVE1 FRAILTY1 LQS NEW2 NAIVE2 FRAILTY2 OLD

(a)
100

20% 0.0557 0.0652 0.0632 0.1217 0.1995 0.2130 0.2186 0.2064
50% 0.1023 0.1228 0.0911 0.1244 0.3092 0.3550 0.1516 0.2724

200
20% 0.0258 0.0299 0.0295 0.0657 0.0960 0.0404 0.0409 0.1874
50% 0.0446 0.0561 0.0534 0.0943 0.1769 0.0930 0.0739 0.2560

(b)
100

20% 0.0934 0.0952 0.0887 0.2328 0.3340 0.2662 2.7131 0.2019
50% 0.1484 0.1542 0.1312 0.3087 0.6543 0.6246 5.2855 0.3136

200
20% 0.0708 0.0745 0.0673 0.2044 0.1735 0.1664 0.1450 0.1827
50% 0.0955 0.1000 0.0939 0.2276 0.1838 0.4687 1.8622 0.2731

(c)
100

20% 0.0767 0.0969 0.0936 0.1413 0.2434 0.2095 0.1015 0.0374
50% 0.1369 0.1867 0.1509 0.6488 0.3416 0.2450 0.1677 0.0535

200
20% 0.0385 0.0487 0.0433 0.0499 0.1321 0.1364 0.0764 0.0274
50% 0.0660 0.0882 0.0754 0.2939 0.2133 0.1684 0.0985 0.0286

(d)
100

20% 0.1078 0.1118 0.1199 0.4999 0.0787 0.0837 0.1035 0.0844
50% 0.1784 0.1928 0.1056 1.0871 0.0986 0.1121 0.2174 0.1394

200
20% 0.0766 0.0778 0.0807 0.3685 0.0408 0.0432 0.0428 0.0678
50% 0.1026 0.1148 0.0563 0.5004 0.0625 0.0676 0.0605 0.0950

(e)
100

20% 0.2068 0.1722 0.2330 0.2652 0.1238 0.1169 0.2221 0.1788
50% 0.5015 0.3895 0.1497 0.5838 0.2244 0.2602 0.1486 0.2882

200
20% 0.1837 0.1540 0.2042 0.2359 0.0835 0.0789 0.1755 0.1633
50% 0.3631 0.1739 0.1006 0.4196 0.1580 0.1758 0.0822 0.2291

ards model with two crossing points is invalid, the method NEW2 performs the best
among all methods except FRAILTY1 and FRAILTY2 which perform slightly better
than NEW2 when n1 = 200 and CR = 50%. In case (e) when the linear Cox pro-
portional model is invalid and there are two crossing points in the model, NAIVE2
performs the best when CR = 20%, NEW2 performs the second best in such a case,
and all other methods do not perform well. In case (e) when CR = 50%, FRAILTY2
performs the best, FRAILTY1 is slightly worse, and NEW2 performs the third best.
From this example, we can conclude that (i) when the linear Cox proportional haz-
ards model is valid, our proposed method NEW performs well, (ii) when the linear
Cox proportional hazards model is invalid, the frailty method and sometimes the naive
method could be more reliable, and (iii) in the latter case, the performance of NEW
is still reasonably good.

In the case when n1 = 100 and the censoring rate is 20%, the estimated log hazard
ratios by the eight methods in the five cases considered are shown in Figure 3. From
the plots in the figure, it can be seen that, in cases (a) and (b), the methods NEW1,
NAIVE1, FRAILTY1, NEW2, NAIVE2, and FRAILTY2 all estimate the true log
hazard ratio reasonably well, the method LQS can catch the overall trend but its
estimate is quite far away from the true hazard ratio, and the method OLD cannot
provide a reasonable estimate at all. In case (c) when there is no crossing point and
the linear Cox proportional hazards model is valid, the conventional method OLD
performs the best, the estimates by the method LQS are quite far away from the
true hazard ratios, and the other six methods all perform reasonable well. In case (d),
the methods NEW2, NAIVE2, and FRAILTY2 perform well, and all the other five
methods do not perform well. In case (e), the methods NEW2 and NAIVE2 perform
well, while the method FRAILTY2 catches the trend but its estimates do not look
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Figure 3. Estimates of the log hazard ratios in the five different cases considered in the simulation study

when n1 = 100 and the censoring rate is 20%.
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reasonable. As we can expect, all the other five methods do not provide reasonable
estimates in this case.

4. A Real-Data Example

In this section, we apply our proposed joint modeling approach to the HIV clinical trial
example mentioned in Section 1. The goal of the study was to compare the efficacy
and safety of two drug treatments named didanosine (ddI) and zalcitabine (ddC)
for HIV-infected patients who had failed or were intolerant of the zidovudine (AZT)
therapy. More details about how the study was conducted can be found in [26] and [44].
The ddI/ddC data in this example were previously analyzed by [27] and [45], using
joint modeling approaches. In the data, there were totally 467 eligible HIV-infected
patients included, 230 of them were randomly assigned to receive the ddI treatment,
and the remaining 237 patients were assigned to receive the ddC treatment. For each
patient, his/her survival time was defined to be the period from the start of the study
to the time when the patient developed AIDS symptoms or when he/she was dead.
During the course of the study, CD4 cell counts were recorded for each patient at the
0 (i.e., the time when the study started), 2, 6, 12, and 18 months. For the survival
data, the number of censored observations is 130 in the ddI group and 149 in the
ddC group. Besides the survival times and the longitudinal CD4 cell counts, there are
also four time-independent covariates, described below using the same notations and
assignments of numerical values as those in [27].

• Drug=1 if the patient was in the ddI group, and Drug=0 otherwise.
• Gender=1 if the patient was male, and Gender=-1 otherwise.
• PrevOI=1 if the patient received AIDS diagnosis before the study, and PrevOI=0

otherwise.
• Stratum=1 if the patient failed the AZT therapy before the study, and

Stratum=-1 if the patient was found intolerant of the AZT therapy before the
study.

[27] has justified that the following mixed-effects model is appropriate for describing
the longitudinal data:

Y (tij) = β0 + β1tij + β2tijDrugi + β3Genderi

+ β4PrevOIi + β5Stratumi + b0i + b1itij + εij , (9)

where Y is the squared root of the observed CD4 cell count, bi = (b0i, b1i)
′ are the

random effects coefficients with bi
iid∼ N(0,Σb), (β0, β1, β2, β3, β4, β5) are coefficients,

and εij are i.i.d. random errors.
From Figure 1, the two estimated hazard rate functions of the two treatment groups

have two possible crossing points. So, a natural survival model is the following Cox
proportional hazards model with two crossing points, denoted as NEW2:

λ(tij) = λ0(tij) exp {ψM(tij) + φ1 (tij − γ1) I{tij ≤ κ}Drugi}
× exp {φ2 (tij − γ2) I{tij > κ}Drugi} (10)

× exp {η1Genderi + η2PrevOIi + η3Stratumi} ,

where M(tij) is the right-hand side of (9) without the random error term, γ1 and γ2 are
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Table 4. Point estimates and the 95% CIs of the parameters in models (9) and (10) by our proposed joint modeling approach

NEW2 , the naive approach NAIVE2, and the frailty modeling approach FRAILTY2, respectively.

NEW2 NAIVE2 FRAILTY2
Parameter Estimate 95% CI Estimate 95% CI Estimate 95% CI

Model (10)

ψ −0.235 (−0.289,−0.182) −0.165 (−0.215,−0.115) −0.162 (−0.212,−0.112)
φ1 0.076 (−0.016, 0.168) −0.130 (−0.593, 0.334) −0.125 (−0.366, 0.116)
γ1 1.230 (−5.153, 7.613) 7.524 (3.608, 11.441) 7.778 (4.313, 11.243)
φ2 −0.217 (−0.383,−0.051) −1.569 (−4.199, 1.061) −2.097 (−3.155,−1.039)
γ2 15.079 (12.535, 17.624) 11.172 (10.186, 12.157) 11.345 (10.978, 11.711)
η1 −0.200 (−0.417, 0.016) −0.161 (−0.401, 0.078) −0.161 (−0.403, 0.081)
η2 0.300 (0.098, 0.502) 0.377 (0.148, 0.605) 0.389 (0.160, 0.619)
η3 0.062 (−0.100, 0.225) 0.057 (−0.101, 0.216) 0.058 (−0.101, 0.216)

Model (9)

β0 8.775 (8.415, 9.134)
β1 −0.184 (−0.225,−0.143)
β2 0.028 (−0.028, 0.085)
β3 −0.142 (−0.484, 0.201)
β4 −2.565 (−2.868,−2.262)
β5 0.590 (0.264, 0.916)

the two crossing points, and (ψ, φ1, φ2, κ, η1, η2, η3) are all coefficients. In model (10),
if M(tij) is replaced by Y (tij) and the resulting model is estimated alone, then the
corresponding approach is the naive approach denoted as NAIVE2 here. The frailty
model with two crossing points, denoted as FRAILTY2, is also considered, which is
obtained by replacing M(tij) with Y (tij) in (10) and then multiplying by the frailty
νi on the right-hand-side. As in the simulation examples in Section 3, we assume that

νi ∼ Γ
(

1
ρ ,

1
ρ

)
, E(νi) = 1, V ar(νi) = ρ, and the value of ρ is estimated by MLE.

The estimated parameters and the corresponding 95% confidence intervals (CIs) of
the methods NEW2, NAIVE2, and FRAILTY2 are presented in Table 4. From the
table, it can be seen that, for the method NEW2, the parameters β0, β1, β4, and β5 in
the longitudinal model (9) are all significantly different from 0 at the significance level
of 0.05, and the parameters β2 and β3 are not significantly different from 0. These
results along with the values of the parameter estimates show that 1) the CD4 cell
counts decreases over time, 2) the decreasing rates of the two treatment groups are
not significantly different, 3) gender does not have a significant impact on the CD4
cell counts, 4) patients with previous AIDS diagnostic experience before the study
have significantly lower CD4 cell counts, and 5) those who had failed the AZT therapy
before the study have significantly higher levels of CD4 cell counts than those who
were found intolerant of the AZT therapy before the study. For the survival part of
the results, the estimate of ψ by NEW2 is −0.235 and its 95% CI is (−0.289,−0.182),
which provides a strong evidence of a negative association between the hazard of death
and the CD4 cell counts. The estimates φ̂1 = 0.076 and γ̂1 = 1.230 suggest that the
ddI group has a little better survival rate than the ddC group before the first crossing
point at γ̂1 = 1.230 months, but the ddC group has a slightly better survival rate than
the ddI group after the first crossing point and before the estimated change point
at κ̂ = 11.5 months. However, because the CIs of φ1 and γ1 both contain 0, the first
crossing point is not significant. On the other hand, the CI of neither φ2 nor γ2 contains
0, suggesting that the second crossing point is significant at the significance level of
0.05. The estimates φ̂2 = −0.217 and γ̂2 = 15.079 suggest that the ddI group has a
little worse survival rate than the ddC group after the estimated changing point at
κ̂ = 11.5 months and before the estimated second crossing point γ̂2 = 15.079 months.
However, after the estimated second crossing point, the ddI group has a better survival
rate than the ddC group. Further, for the three time-independent covariates Gender,
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Figure 4. Estimated log hazard ratios by our proposed method NEW2 (dashed line), the naive method

NAIVE2 (dot-dashed line), the frailty method FRAILTY2 (long-dashed line), and the method of [27] (dotted

line). The bold solid curve denotes the life-table estimator of the log hazard ratio computed directly from the
observed survival data.

PrevOI, and Stratum, it seems that only PrevOI has a significantly positive impact
on patients’ hazard rates. Regarding the results of NAIVE2 and FRAILTY2, we can
see from Table 4 that their estimates of the first crossing point γ1 are 7.524 and
7.778, respectively, and their estimates of the second crossing point γ2 are 11.172 and
11.345, respectively. None of the CIs for γ1 and γ2 contain 0. Compared to the life-
table estimates of the two hazard rate functions shown in Figure 1, these results are
obviously unreliable. Therefore, the estimates of other parameters by them would not
be reliable either.

To further illustrate the results in Table 4, the estimated hazard ratio of the ddI
and ddC groups by the method NEW2 when Gender=1, PrevOI=1, and Stratum=1
is shown in Figure 4 by the short-dashed line. As a comparison, the estimated hazard
ratios by NAIVE2, FRAILTY2, the method of [27], and the life-table estimation are
shown in the same plot by the dot-dashed, long-dashed, dotted, and bold solid lines,
respectively. Because the estimated log hazard ratio by the life-table estimation is
computed from the observed survival data directly without using any models, and
the other four estimated hazard ratios are based on four different models, this plot
can be used as a model checking plot [46], for evaluating the efficacy of the four
modeling approaches. From this plot, it seems that our proposed approach NEW2
performs reasonably well, the approach by [27] cannot describe the increasing-and-
then-decreasing trend of the hazard ratio well, and both the NAIVE2 and FRAILTY2
approaches cannot estimate the two crossing points properly.

5. Discussion

In this article, we have proposed a modeling approach for comparing two crossing haz-
ard rate functions by jointly modeling survival and longitudinal data. This approach
has the flexibility to accommodate more than one crossing point. Numerical results
show that it works reasonably well in various cases. Theoretically, we have proved that
the maximum likelihood estimates of our proposed models exist, are well-defined, and
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have the strong consistency and the asymptotic normality properties.
Many research questions are still open in the proposed method. For instance, al-

though the proposed method is already much more general than some existing meth-
ods, it is restricted to cases with piecewisely linear log hazard ratios. While it is effi-
cient when the piecewise linearity is valid, it may not be appropriate for applications
in which log hazard ratios are not piecewisely linear. In the literature, there has been
some discussion about cases when the log hazard ratios are nonlinear [7,18]. However,
almost all such research focuses on analyzing survival data only. It, therefore, requires
much future research to generalize our proposed survival model properly for compari-
son of two crossing hazard rate functions when longitudinal data are available. From
the numerical results in Section 3, we can see that the frailty modeling approach seems
more robust to the piecewise linearity assumption than our proposed joint modeling
approach. Systematic theoretical and numerical comparison between these two types
of approaches is needed in our future research. Further, in our proposed joint models,
only numerical continuous longitudinal data are considered. In practice, many longitu-
dinal data might be discrete or even categorical. It is therefore important to generalize
our method to such cases as well.
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