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Abstract

Process monitoring and fault diagnosis using profile data remains an important and chal-

lenging problem in statistical process control (SPC). Although the analysis of profile data has

been extensively studied in the SPC literature, the challenges associated with monitoring and

diagnosis of multichannel (multiple) nonlinear profiles are yet to be addressed. Motivated by

an application in multi-operation forging processes, we propose a new modeling, monitoring

and diagnosis framework for phase-I analysis of multichannel profiles. The proposed frame-

work is developed under the assumption that different profile channels have similar structure so

that we can gain strength by borrowing information from all channels. The multi-dimensional

functional principal component analysis is incorporated into change-point models to construct

monitoring statistics. Simulation results show that the proposed approach has good perfor-

mance in identifying change-points in various situations compared with some existing meth-

ods. The codes for implementing the proposed procedure are available in the supplementary

material.

Keywords: Functional data analysis; Functional principal component analysis; Multichan-

nel profiles; Nonlinear profile; Statistical process control
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1 Introduction

Advanced sensing technologies have facilitated real-time data collection for process monitoring

and fault diagnosis in complex manufacturing systems. Profile or functional data, where the mea-

sured variable is represented as a function of some explanatory variables such as time or space,

is one of the common data types collected by sensing systems. Profile monitoring has been ex-

tensively studied in statistical process control (SPC) and several methods have been developed

for monitoring linear and nonlinear profile data. Some examples include the use of multivariate

control charts for monitoring linear and nonlinear regression coefficients (Kang and Albin 2000;

Mahmoud and Woodall 2004; Zou et al. 2007; Williams et al. 2007), monitoring methods based on

mixed-effect models (Jensen et al. 2008; Qiu et al. 2010; Paynabar et al. 2012), wavelet methods

(Jin and Shi 1999; Chicken et al. 2009; Paynabar and Jin 2011), and nonparametric regression

methods (Qiu and Zou 2010). Extensive discussion about various research problems on profile

monitoring can be found in Woodall (2007), Noorossana et al. (2011) and Qiu (2014, Chap 10).

Most existing profile monitoring methods are applicable to single-stream profile data only, and

they cannot be used in situations where process performance is measured by multichannel sen-

sors. For example, as shown in Figure 1(a), in multi-operation forging processes with transfer or

progressive dies, tonnage force exerted on all dies are measured by four strain sensors that are

mounted on four columns of the press. In this sensing system, each sensor records the tonnage

force profile at the predefined equal sampling interval of a rotational crank angle. This results in

multichannel profile data shown in Figure 1(b). There is very little work in the literature focus-

ing on the analysis of multichannel profile data. Lei et al. (2010) transformed the multichannel

tonnage profiles to a single aggregated profile by adding signal magnitudes across the channels.

Clearly, the aggregated profile data, cannot capture all information existing in individual profile

channels. Alternatively, one may analyze each profile channel separately. This approach, however,

overlooks the inter-relationship among profile channels that provides valuable information about

the process (See for example Paynabar et al., 2013). In order to fully utilize the information of

multichannel profiles, Paynabar et al. (2013) used multilinear dimension reduction techniques to

extract informative features from multichannel profiles, while considering their inter-relationships.

Specifically, they used a tensor-to-vector projection method known as Uncorrelated Multilinear

Principal Component Analysis (UMPCA) for feature extraction and utilized these features for fault

detection and classification in multi-operation forging processes. Their method, however, relied on
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the assumption that sufficient profile data from both normal and faulty operations are available that

can be used for training classifiers. Consequently, their method cannot be used for phase-I process

control, in which only unlabeled profile data are available.

In practice, phase-I process control is crucially important to check the stability of historical

profile data and to obtain accurate estimates of the baseline model parameters used for phase-II

monitoring. The main objective of this paper is to develop a new method for phase-I monitoring

of multichannel profile data. There are several challenges associated with this task. First, the

high-dimensionality of multichannel profiles prevents us from using existing multivariate statistical

methods (e.g., Srivastava and Worsley 1986) due to the “curse of dimensionality.” Second, it is

challenging to properly model the inter-relationship of profile channels. Third, it is also difficult

to check the stability of the process from which the profile data were collected. To address these

challenges, in this paper, we first utilize the multi-dimensional functional principal component

analysis (MFPCA) to model multichannel profiles and their inter-relationships, and to extract their

important features as well. Then, we develop a change-point model that uses the extracted features

for phase-I monitoring. Furthermore, a diagnostic procedure is developed to identify the set of

altered profile channels causing the out-of-control alarms.

The remainder of the paper is organized as follows. Our proposed modelling, monitoring and

diagnosis procedures are described in Section 2. In Section 3, the performance of the proposed

method is evaluated and compared with some alternative methods using simulations. In Section

4, we revisit the forging process presented in Figure 1 and use it to demonstrate the implementa-

tion of the proposed scheme. Several remarks conclude the article in Section 5. Some technical

details, including some asymptotic results and their proof, are provided in an appendix, which is

available online as supplementary materials. The codes for implementing the proposed procedure

are available in the supplementary material.

2 Methodology

The phase-I monitoring and diagnosis methodology developed in this paper consists of three main

steps. First, in order to model multichannel profiles and their inter-relationships, the MFPCA is

applied to a sample of profile data. Similar to the functional PCA, the MFPCA would enable us to
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ACCEPTED MANUSCRIPT

reduce the infinite-dimensional nature of the functional estimation problem to a few features that

can describe the major structure of profile variation well. In the second step, based on the extracted

features, a change-point model is developed for detecting possible process changes and estimating

the change times. Finally, a Bayesian Information Criterion (BIC)-based variable selection pro-

cedure is used for identification of out-of-control profile channels. The details of each step are

elaborated in subsequent sections.

2.1 Multi-dimensional Functional Principal Component Analysis

We first review the widely used FPCA technique as discussed in Ramsay and Silverman (2005).

The basic idea of FPCA is to decompose the space of curves into principal directions of variation.

Let X(u), be a squared integrable random function with meanμ(u) = E{X(u)} and covariance

function Cov{X(u),X(u′)} for u,u′ ∈ [0,1]. The spectral decomposition of Cov{X(u),X(u′)} is

given by
∑∞

k=1 λkφk(u)φk(u′), whereλ1 ≥ λ2 ≥ ∙ ∙ ∙ are ordered nonnegative eigenvalues andφk’s are

the corresponding orthogonal eigenfunctions with unitL2 norms. Then, the random functionX(u)

can be written asX(u) = μ(u) +
∑∞

k=1 ξkφk(u), whereξk =
�
{X(u) − μ(u)}φk(u)duare uncorrelated

random variables, known as principal component (PC) scores or loadings, with mean zero and

varianceλk. Note that in practice, only a few eigenvalues and eigenfunctions are required to capture

the important modes of variations of a sample of random functions.

We need to generalize the FPCA technique to the MFPCA that is capable of modeling multi-

channel profiles by appropriately addressing the correlations between individual functional ob-

servations. Our treatment is similar to that in Di et al. (2009) which introduces the multi-

level functional principal component analysis for fitting a two-way functional ANOVA model.

See Dubin and M̈uller (2005) for a related discussion. Suppose a random sample ofm profiles

each withp channels is available. We requirem > p throughout this paper. These profiles are

represented by a set of vector-valued functional data denoted by{Xi(u), i = 1, . . . ,m}, where

Xi(u) = (Xi1(u), . . . ,Xip(u))T is the vector of profiles observations measured atu from individual

channels. In some applications, like the forging process described before,u represents time. How-

ever, profiles can be functions of other independent variables, such as locations, temperature, etc.

In addition, though we treat profiles as random functions for facilitating the exposition, profiles are

usually observed at discrete sets of sampling points and this will be discussed later in Section 2.3.
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Moreover, it is assumed that the set of multichannel profiles can be modeled as independent

realizations of an underlying multivariate stochastic process,

Xi(u) = μ(u) + Yi(u), i = 1, . . . ,m, (1)

whereμ(u) is the mean vector function of the stochastic process andYi(u) is the stochastic error

with E[Yi(u)] = 0. Without loss of generality, we assume thatu ∈ T = [0,1]. Similar to the single

functional observations, the random vector-valued functionYi(u) can be represented by a set of

orthonormal basis functions as follows

Yi(u) =
∑

1≤k<∞

ξikυk(u), (2)

where the sequences{ξik, i = 1, . . . ,m, k = 1,2, . . .} are independently and identically distributed

(i.i.d.) p-variate random variables with mean0 and covariance matrixΣk, and the eigenfunctions

υk(u), k = 1,2, . . . , form an orthonormal basis. The covariance matrixΣk is

Σk = E
(
ξikξ

T
ik

)
= E

{�1

0
Yi(u)vk(u)du

�1

0
Y T

i (u)vk(u)du
}
.

The basis functionsυk(u) are not random and the randomness in the model enters via thep-variate

coefficient vectorsξik, k = 1,2, . . .. It should be emphasized that our model (2) assumes that

all the p random functions share a common set of eigenfunctions and their inter-relationships

are essentially described by the correlations between the components ofξik. This assumption

distinguishes from the standard multivariate FPCA (see Sec. 8.5 in Ramsay and Silverman 2005) in

which the vector-valued random functions are represented by a set of multivariate eigenfunctions.

Model (2) is valid in the case when the multiple profile curves exhibit similar pattern and thus we

can expect that it is particularly useful for our multichannel profiles described in Section 1 (c.f.

Figure 1). Model (2) allows us to integrate all the information across multiple channels, resulting

in an elegant procedure as developed below.

In order to implement MFPCA, we usually need to analyze the covariance functionΛ(u,u′) =

(Λ jl (u,u′))p×p with Λ jh(u,u′) = Cov{Yi j (u),Yih(u′)}, which is an asymmetricp by p matrix givenu

andu′. The analysis ofΛ(u,u′) is fairly flexible and can be parametric or nonparametric. For ex-

ample, if we assume thatΛ jl (u,u′) = ρ(|u− u′|; a) for some correlation functionρ and a coefficient

a, that is the covariance depends only on the absolute difference|u− u′|, then the correlation struc-

ture includes the nonhomogeneous Ornstein-Uhlenbeck process and Gaussian process models. By
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(2) we can see thatΛ jh(u,u′) = 0 for anyu,u′ if the jth andhth profile channels are independent

of each other, say Cov(ξik j , ξikh) = 0 for all k, whereξik j is the jth component ofξik.

Rather than working withΛ(u,u′), the eigenfunctions can be obtained from a scalar-valued

correlation function,c(u,u′) = E {〈Yi(u),Yi(u′)〉} that is aggregated across channels. Here we

use a straightforward definition of the inner product between multivariate functions, i.e.,〈f , g〉 =
∑p

j=1 f jgj introduced by Dubin and M̈uller (2005). Of course, other inner products can be used

instead. c(u,u′) can be viewed as a quantity which measures the “overall covariance” between

the two random vectorsYi(u) andYi(u′) but its practical interpretation is not quite clear. It is

primarily a device to implement MFPCA so that we can obtain the set of eigenfunctions. Using

this inner-product operator and Eq.(2), the covariance function is

c(u,u′) =
∞∑

k=1

p∑

j=1

σ2
jkυk(u)υk(u

′),

whereσ2
jk = E[ξ2ik j]. We let λk ≡

∑p
j=1σ

2
jk andυk(∙) denote the eigenvalues and eigenfunctions

of the covariance operatorc(u,u′), respectively. Givenc(u,u′), λk andυk(u) can be calculated by

solving the following system of equations

�1

0
c(u,u′)υk(u

′)du′ = λkυk(u), u ∈ T , k = 1,2, . . .

By assuming (2), we only need to work with the scalar functionc(u,u′) which aggregates all the

covariance information across the elements ofYi (through the inner-product operator). In contrast,

in the standard MFPCA, FPCA is performed on eachΛ jh(u,u′) for j ≤ h and accordinglyp(p+1)/2

eigen-systems need to be solved.

2.2 Estimation of MFPCA Parameters

In this section, we discuss how to use a sample of multichannel profiles{X1(u), . . .Xm(u)} to

estimate the model parameters of the MFPCA. We begin with the estimation of the covariance

functionc(u,u′) = E {〈Yi(u),Yi(u′)〉}. Using the method of moments,c(u,u′) can be estimated by

c̃(u,u′) =
1
m

m∑

i=1

〈{Xi(u) − X̄(u)}, {Xi(u
′) − X̄(u′)}〉, (3)
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ACCEPTED MANUSCRIPT

whereX̄(u) = m−1 ∑m
i=1 Xi(u). Consequently, the corresponding estimators ofλk andυk(∙), respec-

tively denoted bỹλk andυ̃k(∙), are calculated by solving

�1

0
c̃(u,u′)υ̃k(u

′)du′ = λ̃kυ̃k(u), u ∈ T , k = 1,2, . . . .

After calculatingυ̃k(∙), the covariance matrix ofξik’s, i.e.,Σk, can be estimated by

Σ̃k =
1
m

m∑

i=1

�1

0
{Xi(u) − X̄(u)}υ̃k(u)du

�1

0
{Xi(u) − X̄(u)}Tυ̃k(u)du.

Under some mild conditions, if the sample of profiles are collected from an in-control process, the

foregoing estimators are consistent (see Proposition 3 in Appendix B).

Remark 1 Note that for a given profile sample, the eigenfunctionsυk’s can also be consistently

estimated using the univariate method of moments. Particularly, one can solve the functional

eigensystem with the sample covariance functionm−1 ∑m
i=1{Xi j (u)− X̄j(u)}{Xi j (u′)− X̄j(u′)} for any

j ∈ {1, . . . , p} to obtain consistent estimators. However, under the assumptions that model (2) is

valid, the set of estimators using joint multichannel profile data would be more efficient. Some

theoretical comparison can be made using similar arguments to those in Hall and Hosseini-Nasab

(2006), which is beyond the scope of this paper. However, some numerical evidence is presented

in Section 3. �

2.3 Estimation with the discretized MFPCA

In practice, each functionXi(u), is measured at a set of grid points{uit : t = 1, . . . , ni}. If

sampling points are the same across different profiles, i.e.,uit = ut andni = n, then the func-

tional principal components problem can be solved by applying principal components analysis to

the n × p matrix of the observed data (sizem), say {Xi(ut), i = 1, . . . ,m, t = 1, . . . , n}, where

Xi(ut) = (Xi1(ut), . . . ,Xip(ut))T. To be more specific, the covariance function ˜c(u,u′) can be dis-

cretely evaluated atn pointsu1, . . . , un, resulting in the covariance matrix̃C = (C̃ts)n×n, where

C̃ts =
1
m

m∑

i=1

p∑

j=1

{Xi j (ut) − X̄j(ut)}{Xi j (us) − X̄j(us)}, (4)
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and X̄j(ut) = m−1 ∑m
i=1 Xi j (ut). Then, we can solve the eigenvalue system ofC̃ and obtain the

eigenvalues̃λk and eigenvectors (˜υk(u1), . . . , υ̃k(un))T. As a consequence, the (j,h)th element of

Σ̃k, σ̃k jh, can be computed by

σ̃k jh =
1
m

m∑

i=1




n∑

t=1

{Xi j (ut) − X̄j(ut)}υ̃k(ut)
n∑

t=1

{Xih(ut) − X̄h(ut)}υ̃k(ut)


 . (5)

If the sampling grid is sparse or the sampling points are unequally spaced, one can smooth the

profile data first by applying any smoothing techniques such as spline or kernel regression methods,

and then use the predicted (interpolated) values on an equally-spaced grid of points. That is to say,

we estimate the individual curves, sample the curves on a fine grid, and then perform FPCA on the

resulting data as in (4) and (5). See Ramsay and Silverman (2005; Sec. 5) and Yao et al. (2005)

for some detailed discussion. Another problem of critical importance to profile data is that we

often see that variation in functional observations involves both phase and amplitude, especially

when different sensors are collecting signal data. We need to transform curves by transforming

their argumentsu rather than the valuesX(u) so that two functions can be compared, which we

call curve registration or alignment of the data (i.e., the scale ofu itself has to be distorted or

transformed). Detailed discussion and general methods for curve registration can be found in Sec.

7 of Ramsay and Silverman (2005).

2.4 Change-Point Model for Phase-I Monitoring

Change-point models have been used extensively in both phase-I and phase-II SPC (e.g., Hawkins

et al. 2003). Zou et al. (2006) and Mahmoud et al. (2007) employed change-point models

for monitoring linear profiles. Chicken et al. (2009) and Paynabar and Jin (2011) developed

change-point models based on wavelet coefficients for analyzing nonlinear profiles. Zou et al.

(2009) incorporated kernel smoothing methods into change-point models for monitoring nonlinear

profiles. Berkes et al. (2009) developed a methodology for detecting change-points in the mean

of univariate functional data using FPCA. The foregoing change-point models, however, are only

applicable to single profile data.

Assume that the mean multichannel profiles change at an unknown time pointτ . Provided
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that the covariance function is unchanged, model (1) can be rewritten as

Xi(u) =





μ1(u) + Yi(u), for i = 1, . . . , τ,

μ2(u) + Yi(u), for i = τ + 1, . . . ,m,
(6)

whereτ is the unknown change point, andμ1(u) andμ2(u) are the mean vectors of profiles before

and after the change. If all profiles are from an identical distribution, thenμ1(u) = μ2(u). Thus, the

following hypotheses can be used to check whether the collected profile data follow an identical

distribution:




H0 : μ1(u) = μ2(u), for all 1 ≤ τ < m andu ∈ T

Ha : μ1(u) , μ2(u), for some 1≤ τ < m in(6).
(7)

To formulate the change-point model, the classical binary segmentation procedure is adopted

as follows. For each 1≤ l < m, define the standardized difference of profile sample means before

and after a potential change-pointl as

Δl(u) =

√
l(m− l)

m





1
l

l∑

i=1

Xi(u) −
1

m− l

m∑

i=l+1

Xi(u)




. (8)

If there is no shift, then this difference should be small for all 1≤ l < m andu ∈ T . Otherwise, it

should be large whenl is the true change-point.

Since the observations are in an infinite-dimensional domain, we consider to use the MFPCA to

reduce the dimensionality and work with the low-dimensional projections ofΔl(u) on the principal

components of the profile data. For this purpose, the eigenfunctions of the estimatedc(u,u′) are

used for the projection. However, under the alternative hypothesis in (7), in which the sample

includes both the in-control and out-of-control profiles, the set of estimators discussed in Section

2.2 would not be consistent anymore (see Claim 2 in Appendix B for more details). To address

this issue, we suggest to use the moving ranges of neighboring samples to estimate the covariance

function, say

ĉ(u,u′) =
1

2(m− 1)

m−1∑

i=1

〈{Xi+1(u) −Xi(u)}{Xi+1(u
′) −Xi(u

′)}〉.

Similar methods for robust estimation of the covariance matrix have been studied in the literature.
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See, for instance, Williams et al. (2007) and the references therein. Letλ̂k and υ̂k(∙) denote the

corresponding eigenfunctions and eigenvalues of ˆc(u,u′), respectively. Then,Σk discussed in (2)

can be estimated by

Σ̂k =
1

2(m− 1)

m−1∑

i=1

�1

0
{Xi+1(u) −Xi(u)}υ̂k(u)du

�1

0
{Xi+1(u) −Xi(u)}Tυ̂k(u)du.

Proposition 1 in Appendix B shows that under some mild conditions,λ̂k, ĉkυ̂k(∙) andΣ̂k are con-

sistent estimators ofλk, υk(∙) andΣk, respectively, where ˆck = sgn
{�1

0
υk(u)υ̂k(u)du

}
. These

quantities can be discretely computed in a similar fashion to (4) and (5).

Let η̂lk, for k = 1, . . . , d, be the projected vectors ofΔl(u) corresponding to the largestd

eigenvalues, which are defined by

η̂lk =
�1

0
Δl(u)υ̂k(u)du, l = 1, . . . ,m− 1, k = 1, . . . , d

≈
n∑

t=1

Δl(ut)υ̂k(ut). (9)

Then,η̂lk’s are the low-dimensional vectors that are capable of capturing the difference between

pre- and post-shift profile means at a candidate change-pointl. If the profile sample is collected

from an in-control process, then it can be easily checked that under the assumptions (A.1)-(A.3) in

Appendix A,η̂lk
d
→N (0,Σk). If a change-point occurs atl, thenη̂lk

d
→N

(�1

0
Δl(u)υk(u)du,Σk

)
.

By a similar approach to that in Srivastava and Worsley (1986), we use a likelihood ratio test to

evaluate the hypotheses in (7). To this end, because ˆηlk andη̂lk′ are asymptotically uncorrelated,

we can use the test statistic

Qm = max
1≤l<m

∑

1≤k≤d

η̂T
lkΣ̂

−1
k η̂lk. (10)

A large value ofQm exceeding a threshold (control limit)L would lead to the rejection of the

null hypothesis, implying the occurrence of a change in the process. When the null hypothesis is

rejected, the change-pointτ can be estimated naturally by

τ̂ = arg max
1≤l<m

∑

1≤k≤d

η̂T
lkΣ̂

−1
k η̂lk. (11)

Under certain conditions, we can establish the consistency of the change point estimator ˆτ under

10
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the alternative hypothesis, i.e.,|τ̂ − τ| = Op(1). See Theorem 1 in Appendix B.

With respect to the choice ofd (i.e., the number of eigenfunctionsυk used for projection), there

are several approaches proposed in the literature. One approach, which is adopted in this paper,

is to determined based on the percentage of total variation explained by the extracted PC-scores.

Another approach is to use the pseudo Akaike information criterion (AIC) and the cross-validation

procedure (cf., Yao et al. 2005) for determiningd. A thorough study, including a performance

comparison of these methods, deserves much future research.

Remark 2 In traditional multivariate change-point models, in order to remove the effect of mean

change on a covariance matrix estimator, the covariance matrix is often estimated from two samples

(i.e., the samples before and after the change) separately, and the estimator is updated recursively

at each time point (cf., Srivastava and Worsley 1986; Mahmoud et al. 2007). The updates of

covariance estimates require a considerable computational effort and the computation time would

grow linearly with the sample sizem. Consequently, this procedure is computationally infeasible

whenp andmare large. To avoid this issue, we use the robust estimator ofc(u,u′) constructed from

the pooled sample in this paper, as discussed earlier. From a simulation study (available from the

authors), we found that the monitoring performance of our method based on the robust estimator

of the covariance matrix is similar to that with the recursively updated estimators. �

2.5 Determining the Control Limit

In order to determine the control limitL of the proposed monitoring method, it is possible to

determine the limiting distribution of the monitoring statisticQm under the null hypothesis (see

Theorem 2 in the supplementary material). The asymptotic null distribution ofQm is independent

of the nuisance parametersμ1(u) = μ2(u) andc(u,u′); thus,Qm is asymptotically pivotal. However,

in change-point problems, the rate of convergence of the test statistic distribution derived based on

the binary segmentation is believed to be slow (see Sec. 1.3 of Csörgö and Horv́ath 1997 for some

related discussions). Consequently, the asymptotic quantiles do not work well with the values ofm

commonly encountered in application. As an alternative approach, by the results in the following

claim, we can use simulation to determine the control limit in such cases.

Claim 1: Assume thatξi ’s are normally distributed andυk(u) is known. Then, the distribution

11
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of Qm with υk(u)’s substituting for ˆυk(u)’s is identical to that of

Gm = max
1≤i<m

d∑

k=1

(z̄k,1,i − z̄k,i+1,m)TΣ̂−1
zk (z̄k,1,i − z̄k,i+1,m), (12)

where {zk,i} is a set of independent standard normal multivariate observations of dimensionp,

z̄k,l1,l2 = (l2 − l1 + 1)−1 ∑l2
i=l1

zk,i andΣ̂zk = 1
2(m−1)

∑m−1
i=1

(
zk,i+1 − zk,i

) (
zk,i+1 − zk,i

)T . Consequently,

in order to determine the critical value of our proposed test, denoted asLm,p,d(α), we can first

randomly generatem independent standard normal observations and then calculate the values of

Gm. Then, the upperα quantile of the empirical distribution ofGm is defined as the control limit

with the approximate significance level ofα.

Given d and the eigenvectorsvk(u), the simulation-based control limits could be sufficiently

accurate regardless of which value ofp by Claim 1. The choice of a sufficiently largem depends

mainly on the number ofd (under the Gaussian assumption) and the variance of the noise (ξik).

In other words, the largerd is, the more functionsυk(u) we need to estimate and consequently the

largerm is needed. For example, as shown by Table 2 in Section 3, the simulation-based control

limits described above are sufficiently accurate whenm= 100 andd = 4. On the contrary, if eight

eigenvectors/eigenvalues must be used (d = 8) thenmshould be at least equal to 200. Based on our

experience, the number ofm required linearly increases withd. Simulation results partly reported

in the next section indicate that as long asm is not too small so that ˆυk(u) ≈ υk(u), this simulation-

based method would yield quite accurate and reliable approximations of the control limits. Table

1 gives theLm,p,d(α) values obtained by simulation for various combinations ofm, p, andd and for

three commonly used significance levels of 10%, 5% and 1%. For the other values ofp, one could

easily obtain the control limits by using the codes provided in the supplementary material.

It should be pointed out that these simulation-based control limits are obtained under the Gaus-

sian assumption. Many parametric Phase I methods have statistical performance that is quite sen-

sitive to departures from the model assumptions (Jones-Farmer et al. 2014) and, in particular, that

the false alarm probability can be in real applications much larger than the nominal if the Gaussian

assumption is not fulfilled. Please see Jones-Farmer et al. (2009), Capizzi and Masarotto (2013)

and Bell et al. (2014) for more discussions. In practice, we may roughly check the multivariate

normality of the ˆηlk by some statistical tests (e.g., Mardia 1970). The independence between ˆηlk

andη̂lk′ is more difficult to check, but we may perform a series of Pearson correlation tests for all

combinations ofk, k′ and the channel numbers. In the cases that a parametric assumption may not
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be valid, some permutation or bootstrap methods could be used instead (see Qiu et al. 2010 and

Capizzi and Masarotto 2013, for some related Phase I research).

2.6 Post-Signal Diagnostics

After detecting a change in the functional mean, it is often useful to identify the set of profile

channels whose functional means have changed significantly. Assuming that the estimation of the

change point is sufficiently accurate, our objective in this subsection is to determine the channels

that are responsible for the change. An implicit but important assumption we make here is that

the probability for all process parameters to shift simultaneously is rather small. This is often a

reasonable assumption because a fault is usually caused by a hidden source, which is reflected in

unknown changes of one or a small set of model parameters (cf., Wang and Jiang 2009, Zou and

Qiu 2009, Capizzi and Masarotto 2011).

Let s denote a model in which|s| profile channels have changed after the estimated change

point τ̂ . Consequently,s ∈ S whereS is the model space under consideration with 2p − 1 subsets.

Note that the empty set that indicates no channels have changed has been excluded fromS. After

the proposed test triggers an out-of-control alarm, the change-point estimate ˆτ can be obtained

simultaneously which divides the profile sample into two parts. LetZ1 = {X1(u), . . . ,Xτ̂(u)}

andZ2 = {Xτ̂+1(u), . . . ,Xm(u)} denote the two sets of independent profiles before and after ˆτ,

respectively. Then, we can generalize the best-subset searching procedure in Zou et al. (2011)

to cases with functional data to determine which profile channels have changed. To this end, the

following BIC criterion (Chen and Chen 2008) for functional data is calculated for each models:

BICs = g(s) + |s|d

(

log
τ̂(m− τ̂)

m
+ 2 log(pd)

)

, (13)

whereg(s) =
∑

1≤k≤d
η̂T

ksΣ̂
−1
k η̂ks, the jth component of ˆηks is defined by

η̂( j)
ks =





√
τ̂(m−τ̂)

m

�1

0

{
X̄1,τ(u) − X̄τ+1,m(u)

}( j)
υ̂k(u)du, for j < s

0, for j ∈ s
,

andX̄l1,l2(u) = (l2 − l1 + 1)−1 ∑l2
i=l1

Xi(u). The model ˆs that minimizes the criterion in (13), i.e.,

13
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ŝ = arg mins BICs, is the model that includes the profile channels whose functional means have

changed. It should be noted that the number of possible models under which the BIC criterion

needs to be calculated increases exponentially with the number of channelsp. This makes it hard

to optimize the BIC whenp is large. In such cases, we suggest using combinatorial optimization

methods to find the optimals. See more discussion about combinatorial optimization methods in

Nemhauser and Wolsey (1999). The consistency of the diagnosis procedure described above is

given in the supplementary material.

3 Simulation Study

In this section, we evaluate the performance of the proposed method through a simulation study.

For this purpose, we first study the empirical false alarm rate of the developed change-point model,

and then compare its detection power and change-point estimation performance with those of some

alternatives. Finally, the performance of the proposed diagnosis procedure is examined. All the

results in this section are obtained from 2,500 replicated simulations.

In order to study the false alarm rate, three different in-control scenarios were considered. In

all of the following data generating models, without loss of generality (sinceQm is invariant of

μ1(u) andμ2(u) under the null hypothesis), the in-control mean functionμ1(u) (= μ2(u)) was

chosen to be 0. We fix the number of channels (profiles) asp = 4.

• Model (I)-IC: Yi(u) =
∑4

k=1 ξikυk(u), whereυk(u)’s are the first four non-constant Fourier

basis functions with a period of 0.5 andξik’s are four-dimensional multivariate normally

distributed vectors with mean zero and covariance (Σk) jh = k(0.8)| j−h|;

• Model (II)-IC: Yi(u) =
∑8

k=1 ξikυk(u), whereυk(u)’s are the first eight non-constant Fourier

bases with period 0.5 andξik’s are four-dimensional multivariate normally distributed vec-

tors with mean zero and covariance (Σk) jh = k(0.6)| j−h|, whenk = 1, . . . , 4, and (Σk) jh =

k(0.4)| j−h|, whenk = 5, . . . , 8;

• Model (III)-IC: Yi(u) =
∑4

k=1 ξikυk(u), whereυk(u)’s are the first four B-spline basis functions

of order three with equally spaced knots in [0,1] andξik’s are four-dimensional multivariate

normally distributed vectors with mean zero and covariance (Σk) jh = k(0.5)| j−h|.
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All the three processes were realized on a grid of 50 equispaced points inT = [0,1]. The averages

of 50 curves generated from these three models are depicted in the left column of Figure 2. In

the supplementary material, three individual curves generated from these models are presented in

Figure A.1. We have also conducted some other simulations with various values ofp, different

values ofn, and the results show that the general comparison conclusions given below do not

change. These additional simulation results are available from the authors upon request.

To illustrate the effectiveness of the proposed approximation method, in Table 2, we tabulate

the simulated type I error rates for the three models, various values ofm, and the nominal type I

error rates (1%, 5% and 10%). In each replication, the number of the eigenfunctionsd was chosen

automatically such that the explained cumulative percentage variance is 95%. The percentage of

mis-specification of the number of eigenfunctions (d = 4,8,4 for Models (I)-(III), respectively) in

our simulation is rather low (usually less than 1%; See Figure 3). It can be seen that the accuracy

of the approximation based on (12), increases quickly asm increases. Also, comparison of the

calculated error rates from Models (I) and (II) indicates that approximation accuracy decreases

as the value ofd increases. Moreover, by comparing results under Models (I) and (III), it seems

that our method is not affected much by the type of basis functions and the covariance matrices.

Overall, Lm,p,d(α) provides a good and consistent approximation to the threshold value in most

cases.

Now we turn to compare the detection power of the proposed method with some existing

procedures in the literature. One natural idea to handle multichannel profiles is to stack up the

profile channels and change them into a high-dimensional vector. One could then apply the FPCA

to the resulting vector and extract features to construct the change-point model, as discussed earlier.

This method is referred to as vectorized-FPCA (VFPCA). There are several issues in using VFPCA

for multichannel profiles; see Paynabar et al. (2013) for related discussions. In particular, under

our models (1) and (2), this approach breaks the correlation structure in the original data, and

potentially loses the useful representations that can be obtained in the original form. Another

standard PCA-based method is to use the univariate method of moments as described in Remark

1. That is, univariate FPCA is applied to each individual channel to obtain the corresponding

estimates ofυk(u)’s. This method is referred to as individual-FPCA (IFPCA).

In addition, we also consider another two non-PCA methods. The first one takes the average
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of the signals across the channels and uses the test statistic

max
1≤l<m

1
n

n∑

t=1

1
p

p∑

j=1

Δ2
l j (ut),

whereΔl j (u) is the jth component ofΔ(u) in (8). The other one monitors each profile separately

with a χ2-type test statistic (Zhang and Albin 2009) and combine all the information across the

channels together by

max
1≤l<m

max
1≤ j≤p

1
n

n∑

t=1

Δ2
l j (ut).

We refer these two methods as NoPCA-I and NoPCA-II, respectively. It should be emphasized that

because all these benchmarks do not correctly/fully utilize the correlation information, it is difficult

to obtain approximate threshold values (control limits) for them. To have a fair comparison, we

have performed a size-corrected power comparison in the sense that the actual threshold values

were found through simulations so that all the three tests have approximately the same type-I error

rate of 0.05. Of course, such a size-correction is only for comparison purposes in the simulation

setup, and it is inapplicable in practice.

The number and variety of alternative models are too large to allow a comprehensive, all-

encompassing comparison. Our goal is to show the effectiveness, robustness and sensitivity of the

proposed method, and thus we only chose certain representative models for illustration. Based on

Models (I)-(III), we considered the following three out-of-control models.

• Model (I)-OC: Yi(u) were generated by Model (I); Setμ1(u) = 0, μ22(u) = cIδ cos(4πu),

μ23(u) = cIδ sin(4πu) for u ∈ [1/4,3/4] andμ21(u) = μ24(u) = 0.

• Model (II)-OC: Yi(u) were generated by Model (II); Setμ1(u) = 0, μ22(u) = cIIδ cos(4πu),

μ23(u) = cIIδ sin(4πu) for u ∈ [1/4,3/4] andμ21(u) = μ24(u) = 0.

• Model (III)-OC: Yi(u) were generated by Model (III); Setμ1(u) = 0, μ21(u) = cIII δ exp(−u),

μ23(u) = cIII δ sin(4πu) for u ∈ [0,1] andμ22(u) = μ24(u) = 0.

All the simulations were conducted with two different change-points ofτ = 25 andτ = 50 and one

sample size ofm= 100.
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From Theorem 1 given in the supplementary material, we know that the power of the proposed

test mainly depends on the quantity
∑d

k=1

�1

0
μT

2(u)υk(u)duΣ−1
k

�1

0
μ2(u)υk(u)du, which measures

the distance between the null and the alternative hypothesis. Therefore, it seems that is not directly

comparable across the three models even with the sameμ2(u). To make magnitudes of the shift

parameterδ comparable across Models (I)-(III), we setcI = 1, cII = 1.5 andcIII = 0.3, which were

found through simulations. The averages of 50 curves generated from these three models (δ = 1)

along with the true OC functions are depicted in the right column of Figure 2. We observe that

the average curves could roughly capture the pattern of true functions, though it is clearly that 50

curves cannot produce sufficiently accurate estimation.

Figure 3 presents the boxplots of the observed eigenvalues across the 2,500 replicates of the

simulation under these three models withδ = 2. With these results, the choice ofd is clear and

our method that choosesd automatically with the explained cumulative percentage variance would

work well.

Figures 4–6 respectively illustrate the detection power curves of MFPCA, VFPCA, IFPCA,

NoPCA-I and NoPCA-II against different shift magnitudes (δ) for OC Models (I)-(III). All plots

indicate that the proposed MFPCA method has superior efficiency, as expected. Also, the IFPCA

outperforms the VFPCA because the latter breaks the structure of the original data by reshaping

them into vectors but the former only incurs partial loss of the information. The two non-PCA

methods are not as efficient as the PCA-based methods in the considered settings which are in favor

of dimension-reduction-based methods. Of course, the poor performance of PCA-based methods

can be expected when dimension reduction by PCA is not successful under some other model

assumptions such as with-profiles correlations are ignorable. Moreover, we consider the cases that

measurement errors exist, sayYi(ut) = Ỹi(ut) + σεi(ut), whereỸi(ut) is generated through OC

Models (I)-(III) andεi(u)’s are i.i.d p-dimensional standard normal random vectors. The results

withσ = 0.25 are given in Figures A.2-A.4 in the supplementary material. All the other settings are

the same as those in Figures 4-6 in the revision. From those figures, we can see that the advantage

of the proposed MFPCA-based method is still clear in all the cases.

Next, we evaluate the performance of the proposed approach in estimating the change-point

after the null hypothesis is rejected. Again, the IFPCA and VFPCA methods were included as

the benchmarks and OC Models (I)-(III) were considered in simulations. To compare these meth-

ods, various accuracy and precision criteria including the bias and standard deviation (Sd) of the
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change-point estimates, the relative square root of MSE of estimates between benchmarks and our

proposed method (RSM), and Pr(|τ̂−τ| ≤ 1) and Pr(|τ̂−τ| ≤ 3) (denoted asP1 andP3, respectively)

were reported in Table 3.

As can be seen from Table 3, for a relatively small shiftδ = 1, all three estimators appear

to be considerably biased in estimating the true change-point in the case ofτ = 25. However,

our proposed estimator ˆτ outperforms the other two estimators in terms of the five accuracy and

precision criteria reported in the table in most such cases. Other simulation results in the table for

various other parameter combinations also demonstrate that ˆτ appears to be the best in estimating

τ.

Finally, to evaluate the effectiveness of the proposed diagnostic procedure, the probabilities

of detecting the correct set of changed profile channels, Pr( ˆs = sT), were calculated under OC

Models (I)-(III) with m = 100, wheresT represents the true fault isolation model that contains all

the indices of the variables that have changed their means atτ. These values, reported in Table 4,

indicate that the estimate ˆs is fairly accurate and the diagnosis accuracy quickly increases as the

shift magnitude gets larger.

4 Case Study: Phase-I Monitoring and Diagnosis of Multichan-

nel Tonnage Profiles

In this section, the proposed methodology is used for phase-I monitoring of multichannel tonnage

profile data collected in a multi-operation forging process. In this process, a forging machine

(shown in Figure 1a) is comprised of multiple dies, each assigned to perform one operation during

a stroke. Figure 7a shows intermediate workpieces after each operation of the forging process.

In order to monitor the performance of the process, four strain gauge sensors, each mounted on

one column of the forging machine, measure the exerted tonnage force of the press uprights. This

results in a four-channel tonnage profile in each cycle of operation, in which the length of each

profile channel is 1200 (See Figure 1b). A sample of 496 multichannel profiles was collected

under different experimental settings. This sample includes 151 in-control profiles collected under

the normal production condition, and 5 groups of 69 out-of-control profiles. Each group of out-of-
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control (faulty) profiles corresponds to a faulty operation condition in which one part is missing in

an operation station shown in Figure 7a. For example, the Fault-4 group contains profiles measured

when a part is missing in Station 4 (i.e., piercing). Each faulty condition may have different

effect on the individual profile channels, depending on the proximity of the station to the sensors

measuring profiles. For the illustration purpose, the average profiles of these six groups are shown

in Figure 7b.

The tonnage profile dataset was used in previous research by Lei et al. (2010) and Paynabar

et al. (2013). However, as discussed earlier, both of these studies used a subset of labeled profiles

to train, and another subset to test their models. Differently, in this case study, we focus on con-

structing a phase-I monitoring method and thus, we do not use the information of profile classes

(i.e., normal, fault 1, etc.) in estimating our model. Using this dataset, we define five subsets, each

of which includes the in-control profiles followed by one of the five out-of-control profile groups.

Thus, each subset includes 151 in-control and 69 out-of-control profiles. To reduce the measure-

ment noise of profile channels, we first use the non-overlapping moving average function with the

window size of 6, which reduces the length of each profile to 200. Then, we apply the MFPCA

to each subset and calculate the first 15 eigen-functions whose corresponding eigenvalues account

for more than 85% of the profiles’ total variation. The reason for choosing 15 eigen-functions is

that the absolute differences of consecutive eigenvalues are infinitesimal after the 15th eigenvalue.

Next, the eigen-functions are used to construct the change-point model for phase-I monitoring. The

control limit for type-I error rate of 0.05 is computed to be 203.32 by the procedure discussed in

Section 2.4. It should be noted that the control limit may slightly be underestimated as the number

of profiles in each subset (m = 220) is not large enough ford = 15, which requiresm to be around

400.

Our analysis shows that in all subsets, the proposed MFPCA-based change-point model is able

to detect the change and accurately estimate the time of change(i.e.,τ̂ = 151). Furthermore, using

Subset 4 (normal data followed by Fault 4 data), we compare our method with two benchmarks

commonly used for analyzing the dataset. The reason for the use of Subset 4 is that as can be

seen in Figure 7b, profile samples corresponding to Fault 4 and the normal operation are very

similar, thus difficult to separate. In Method 1, FPCA is applied on aggregated profiles averaged

over 4 channels, then the eigen-functions are utilized for process monitoring using the discussed

change-point model. In Method 2, each profile channel is monitored separately. FPCA is applied

on individual profile channels (IFPCA) and, then four change-point models are developed based

19
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 0
9:

38
 2

0 
Fe

br
ua

ry
 2

01
6 



ACCEPTED MANUSCRIPT

on the estimated eigen-functions of the signal channels. The resulting phase I control charts are

plotted in Figure 8. As can be seen from the figure, MFPCA correctly detects the change and the

monitoring statistic is maximized atτ = 151, indicating the time when the process change occurred.

The aggregated method cannot detect the process change. This is because in-control channels can

mask the change in out-of-control channels when they are averaged. Although, the IFPCA for

channels 3 and 4 indicate an out-of-control condition, the estimated time of change (τ̂ = 89 and 36,

respectively)by neither of charts is correct. We also perform a similar analysis for other subsets.

Our analysis results indicate similar conclusions for Subset 5. For other subsets, however, all

methods can correctly detect the change as the difference between the normal and faulty profiles

in those subsets is sufficiently large (See Figure 7b).

Furthermore, we use the Mardia test (Mardia 1970) to check the normality assumption of

η̂lk; k = 1,2, ..., 15. After correcting the significance level of multiple tests using the Bonferroni

correction, the resulting p-values for the Mardia kurtosis and skewness tests indicate no deviation

from the normality assumption except for one case in which the skewness test is rejected. Also,

in order to check the independence assumption between ˆηlk andη̂lk′ , we perform a series of Pear-

son correlation test for all combinations ofk, k′ and the channel numbers. The test results, after

correcting the significance level, indicate that in only 8% of the combinations the independence

assumption is rejected. In short, the normality and independence assumptions of ˆηlk seem to be

reasonable for the tonnage data.

After detecting the change, the fault diagnosis procedure discussed in Section 2.6 was per-

formed to identify out-of-control profile channels. Figure A.5 in the supplementary material re-

ports the BIC values of different channel sets for the fault group 4. As can be seen from the figure,

two sets{4} and {1, 4} have minimum BIC values (around 265), meaning that channels 1 and 4

contributed to the out-of-control alarm. From Figure 1(a), we can see that both sensors 1 and 4

are mounted on the front side of the forging machine where the die for station 4 is located. This is

the reason that the effect of missing parts in station 4 on the tonnage force is mostly picked up by

sensors 1 and 4. Additionally, since station 4 is closer to sensor 4, its corresponding BIC value is

smaller than that of sensor 1.
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5 Concluding Remarks and Future Work

Phase-I analysis of multichannel (multiple) profile monitoring is a challenging problem and it has

not been thoroughly investigated in the literature. In this paper, we proposed an approach that

combines the classical binary segmentation procedure with the MFPCA. The proposed framework

is developed under the assumption that different profile channels have similar structure, i.e., (2).

This assumption allows us to gain strength by borrowing information from all channels. Our

proposed approach effectively incorporates the correlation information of multichannel profiles for

testing their stability and estimating the change-point. The simulation results on empirical type-I

error probabilities indicated that the approximated threshold is reasonably accurate especially for

large sample sizes. Through simulation, we also showed that the proposed monitoring scheme

based on MFPCA outperforms conventional approaches in terms of the change-detection power

and the estimation accuracy of the change-point.

Checking stability with no certainty on the underlying process distribution is quite difficult in

Phase I, especially in the multivariate framework and in presence of complex and autocorrelated

data (Capizzi and Masarotto 2013). An extension of the proposed MFPCA-based method to the

non-normal or autocorrelated case could be a worthwhile and necessary future contribution to the

existing multivariate Phase I methods (Capizzi and Masarotto 2008; Bell et al. 2014).

The model (2) assumes that all the variation in the observed curvesXi(u) is functional vari-

ation, and that “white noise” is negligible. The presence of non-negligible white noise would

adversely affect the model estimation and may consequently result in certain size distortion for the

proposed test. It should also be pointed out our proposal handles only the case of a “single” and

“sustained” change-point in the process mean. Many historical samples may actually contain more

than one change-point in practice. Patterned, oscillatory mean changes (but also in the variance)

can also easily happen and thus it needs to investigate in Phase I the presence not only of multi-

ple change-points but also of several other types of changes. Extension of the proposed scheme

to multiple change-points detection (c.f., Hawkins 2001) for profile monitoring warrants further

research. The proposed modelling method and the MFPCA techniques can be readily extended for

outlier detection (Yu et al. 2012; Zou et al. 2014) and for phase-II profile monitoring as well.
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Table 1: Threshold values ofQm for variousm, p, d andα obtained based on (12) under the
Gaussianassumption.

m p d = 1 d = 2 d = 3 d = 4

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5%10%

50 2 19.0 13.8 11.5 24.2 18.9 16.6 29.1 23.1 20.7 33.8 27.3 24.4

3 22.5 17.2 14.7 31.0 24.6 21.6 37.8 31.1 27.7 43.0 36.3 33.0

4 27.1 20.6 17.9 37.6 29.5 26.4 45.1 37.6 34.1 53.6 45.4 41.6

5 32.2 24.4 21.3 44.0 35.4 32.0 55.4 45.9 41.8 63.9 54.450.1

100 2 18.0 13.4 11.4 24.0 18.6 16.4 27.8 22.6 20.4 31.8 26.5 24.1

3 21.7 16.4 14.4 28.5 23.1 20.6 34.5 28.9 26.3 40.5 34.3 31.5

4 24.8 19.5 17.2 33.8 27.6 24.9 41.0 35.1 32.4 49.6 42.3 38.8

5 27.9 22.4 19.6 38.3 32.3 29.2 48.2 40.8 37.6 57.2 49.946.2

200 2 17.3 13.3 11.5 22.9 18.3 16.2 27.3 22.3 20.2 31.3 26.4 24.1

3 20.3 16.1 14.1 27.7 23.0 20.5 33.5 28.3 25.8 39.6 33.9 31.4

4 23.0 18.6 16.5 32.4 27.0 24.8 39.6 34.1 31.5 46.6 40.8 37.9

5 25.6 21.1 19.0 36.6 31.0 28.6 45.7 39.6 36.6 53.9 47.444.4

400 2 17.4 13.6 11.8 22.4 18.5 16.5 27.1 22.4 20.4 31.5 26.6 24.3

3 20.3 16.4 14.5 27.4 22.9 20.8 33.4 28.3 26.1 38.6 33.4 31.1

4 22.6 18.8 16.7 31.1 26.6 24.4 38.9 33.8 31.2 45.8 40.2 37.5

5 25.4 20.8 18.9 36.2 30.4 28.1 44.2 38.6 36.1 52.8 46.944.0
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Table 2: Empirical sizes (%) of the test using the threshold values given in Table 1

m Model (I) Model (II) Model (III)

1% 5% 10% 1% 5% 10% 1% 5% 10%

50 0.019 0.071 0.130 0.025 0.096 0.171 0.016 0.066 0.115

100 0.016 0.064 0.115 0.024 0.075 0.134 0.011 0.051 0.101

200 0.012 0.054 0.107 0.015 0.072 0.127 0.009 0.053 0.114

400 0.010 0.051 0.099 0.011 0.054 0.110 0.010 0.0500.106
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Table 3:Comparison of the three change-point methods in terms of location estimation under OC Models
(I)-(III) with m= 100. Sd: the the standard deviations of estimators; RSM: the relative square root of MSE
between the other two estimators and our proposed method.P1: Pr(|τ̂ − τ| ≤ 1); P3: Pr(|τ̂ − τ| ≤ 3).

Model δ Method τ = 25 τ = 50

Bias Sd RSM P1 P3 Bias Sd RSM P1 P3

IFPCA 3.62 16.2 1.49 0.361 0.550 0.54 12.5 1.88 0.404 0.617

1.0 VFPCA 18.8 33.7 3.45 0.058 0.113 0.83 31.9 4.79 0.062 0.117

MFPCA 2.00 10.9 − 0.480 0.686 0.03 6.65 − 0.529 0.741

(I)

IFPCA 0.04 1.41 1.60 0.864 0.974 0.02 1.27 1.60 0.879 0.972

2.0 VFPCA 2.65 14.0 16.2 0.564 0.741 0.16 4.12 5.18 0.832 0.924

MFPCA 0.02 0.88 − 0.914 0.994 0.01 0.80 − 0.933 0.995

IFPCA 7.38 22.1 1.40 0.242 0.386 0.31 15.2 1.54 0.313 0.494

1.0 VFPCA 21.9 34.5 2.45 0.047 0.097 0.78 31.6 3.20 0.053 0.112

MFPCA 3.61 16.2 − 0.381 0.559 0.29 9.86 − 0.467 0.658

(II)

IFPCA 0.05 1.61 1.58 0.857 0.965 0.03 1.46 1.73 0.853 0.965

2.0 VFPCA 5.22 18.6 18.9 0.372 0.541 0.24 9.58 11.4 0.516 0.716

MFPCA 0.02 1.02 − 0.909 0.981 0.01 0.84 − 0.935 0.991

IFPCA 11.7 26.4 1.24 0.167 0.289 0.08 21.0 1.09 0.202 0.329

1.0 VFPCA 17.2 31.9 1.95 0.087 0.148 0.02 29.2 2.09 0.106 0.183

MFPCA 9.29 24.2 − 0.200 0.336 0.59 20.1 − 0.233 0.367

(III)

IFPCA 0.18 3.26 1.17 0.678 0.872 0.06 2.61 1.22 0.686 0.888

2.0 VFPCA 2.12 11.7 15.7 0.506 0.697 0.30 6.45 7.48 0.557 0.765

MFPCA 0.17 3.00 − 0.700 0.888 0.00 2.36 − 0.716 0.893
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Table 4:Diagnosis accuracy of the proposed procedure, Pr( ˆs = sT), under OC Models (I)-(III) withm =

100, wheresT represents the true fault isolation model that contains all the indices of the variables that have
changed their means atτ and ŝ is the estimatedone.

δ Model (I) Model (II) Model (III)

τ = 25 τ = 50 τ = 25 τ = 50 τ = 25 τ = 50

1 0.56 0.91 0.52 0.89 0.55 0.90

2 0.78 0.98 0.75 0.96 0.76 0.99

3 0.98 1 0.96 1 0.98 1
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Figure 1: (a)(left panel): A forging machine with four strain gages. (b)(right panel): A sample of
four-channel profiles.
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Figure 2:Left column: The averages of 50 curves of all the four channels generated from IC Models (I)-
(III); Right column: The averages of 50 curves of the changed channels generated from OC Models (I)-(III)
along with the true OC functions whenδ = 1.
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Figure 3: Boxplots of the observed eigenvalues across the 2,500 replicates of the simulation under OC
Models (I)-(III) with δ = 2 andτ = 50
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Figure 4: Size-corrected power comparison among the procedures MFPCA, VFPCA, IFPCA, NoPCA-I
and NoPCA-II under Model (I)-OC: (a)τ = 25; (b)τ = 50
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Figure 5: Size-corrected power comparison among the procedures MFPCA, VFPCA, IFPCA, NoPCA-I
and NoPCA-II under Model (II)-OC: (a)τ = 25; (b)τ = 50
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Figure 6: Size-corrected power comparison among the procedures MFPCA, VFPCA, IFPCA, NoPCA-I
and NoPCA-II under Model (III)-OC: (a)τ = 25; (b)τ = 50
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(a)

(b)

Figure 7: Top panel (a): shape of workpieces at each operation. Bottom left panel (b): Average
profiles of aggregated tonnage profiles for normal and faulty operations. Bottom right panel (b):
Zoomed-in average profiles for angles 200 to 400.
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Figure 8: Phase-I control chart for tonnage profiles including 151 in-control profiles and 69 out-
of-control profiles of Fault 4. True change-point isτ = 151.
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