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Abstract

Statistical process control (SPC) charts are critically important for quality control and man-

agement in manufacturing industries, environmental monitoring, disease surveillance and many

other applications. Conventional SPC charts are designed for cases when process observations

are independent at different observation times. In practice, however, serial data correlation

almost always exists in sequential data. It has been well demonstrated in the literature that

control charts designed for independent data are unstable for monitoring serially correlated

data. Thus, it is important to develop control charts specifically for monitoring serially corre-

lated data. To this end, there is some existing discussion in the SPC literature. Most existing

methods are based on parametric time series modeling and residual monitoring, where the data

are often assumed to be normally distributed. In applications, however, the assumed parametric

time series model with a given order and the normality assumption are often invalid, resulting

in unstable process monitoring. Although there is some nice discussion on robust design of such

residual monitoring control charts, the suggested designs can only handle certain special cases

well. In this paper, we try to make another effort by proposing a novel control chart that makes

use of the restarting mechanism of a CUSUM chart and the related spring length concept. Our

proposed chart uses observations within the spring length of the current time point and ignores

all history data that are beyond the spring length. It does not require any parametric time

series model and/or a parametric process distribution. It only requires the assumption that

process observation at a given time point is associated with nearby observations and indepen-

dent of observations that are far away in observation times, which should be reasonable for many

applications. Numerical studies show that it performs well in different cases.

Key Words: Covariance matrix decomposition; Data correlation; Decorrelation; Process mon-

itoring; Spring length; Statistical process control.
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1 Introduction

Statistical process control (SPC) charts have broad applications in manufacturing industries,

environmental monitoring and improvement, disease surveillance, and more. Traditional SPC

charts, including the Shewhart, cumulative sum (CUSUM), exponentially weighted moving av-

eraging (EWMA), and change-point detection (CPD) charts, are designed for cases when process

observations are independent at different time points (cf., Hawkins and Olwell 1998, Montgomery

2012, Qiu 2014). In practice, however, process observations at different time points are almost

always correlated with each other. It has been well demonstrated in the literature that traditional

SPC charts designed for independent observations are unreliable to use in cases with serially cor-

related data (e.g., Harris and Ross 1991, Johnson and Bagshaw 1974). Therefore, it is important

to develop new control charts that are appropriate for monitoring serially correlated data, which is

the focus of this paper.

In the literature, there has been some discussion on process monitoring of serially correlated

data. Most existing methods on this topic are based on parametric time series modeling and

sequential monitoring of the residuals. See, for instance, Apley and Shi (1999), Apley and Tsung

(2002), Berthouex et al. (1978), Loredo et al. (2002), Montgomery and Mastrangelo (1991),

Runger and Willemain (1995), Vander Wiel (1996), Wardell et al. (1994), and more. One common

limitation of these residual-based charts is that their performance is sensitive to the assumed

parametric time series models. In practice, the assumed parametric time series models could be

invalid, resulting in unreliable process monitoring. Adams and Tseng (1998), Apley and Lee (2003,

2008), Apley and Tsung (2002), Lee and Apley (2011) and some other papers have discussed about

the robustness of the residual-based charts, and some adjustments on the design of certain residual-

based charts have been proposed. For instance, Lee and Apley (2011) suggested adjusting the

control limit of the conventional EWMA chart by accommodating the uncertainty in the estimated

time series models. While these adjustments represent a good research effort to overcome the

major limitation of the residual-based charts, they are still based on the assumed parametric time

series models with fixed orders and would not provide a reliable process monitoring in cases when

the assumed models are invalid. Capizzi and Masarotto (2008) suggested a CPD chart based on

a window-limited generalized likelihood ratio test for monitoring serially correlated data. The

major benefits to use that CPD chart are that (i) the chart can accommodate the uncertainty

about the underlying time series model by using a bootstrap resampling procedure to determine its
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control limit, and (ii) the shift location and magnitude can be estimated immediately after a shift

is detected. However, to specify the likelihood function, that method needs to assume a parametric

time series model (i.e., ARMA) and a parametric process distribution (i.e., normal). Thus, its

performance depends heavily on the validity of these model assumptions. Some researchers describe

the serially correlated data by Gaussian Process (GP) models (e.g., Alshraideh and Khatatbeh

2014). These GP models assume that all process observations by the current time point during

process monitoring has a joint normal distribution with a specific parameterized covariance matrix,

which is difficult to justify in practice. Some other researchers suggested adjusting the control

limits of conventional control charts for monitoring serially correlated data (e.g., Kim et al. 2007,

Runger 2002, Schimd and Schöne 1997). However, proper adjustments of the control limits still

require some prior information about the correlation structure (e.g., a parametric time series model)

in the original data, which is often unavailable in practice. Another control chart suggested for

monitoring stationary serially correlated data was suggested in Zhang (1998), where an EWMA

chart was used and the variability of the charting statistic was estimated from an in-control (IC)

dataset for determining the control limit. This chart was designed as a Shewhart chart in Zhang

(1998), and the serial data correlation was considered only in determining the control limit. In

practice, most processes to monitor are multivariate, and there are many control charts suggested

for monitoring multivariate serially correlated data. See papers such as Bakshi (1998), Komulainen

et al. 2004, Ku et al. (1995), Negiz and Cinar (1997), Rato and Reis (2013), Reis et al. (2008),

Simoglou et al. (1999), Treasure et al. (2004), and more. For monitoring correlated discrete data

(e.g., binary or count data), see papers such as He et al. (2016), Weiß (2015), and the references

cited therein.

In this paper, we try to make another effort in tackling the important SPC problem for monitor-

ing serially correlated data. For simplicity, our method focuses on cases when process observations

are univariate and continuous numerical. In our proposed method, we suggest estimating the cor-

relation structure nonparametrically from an IC dataset, and decorrelating the original process

observations within the spring length of the current observation time before a control chart is ap-

plied, to avoid extensive computation and a large data storage requirement. The spring length is

defined as the time length between the current observation time and the previous time point when a

CUSUM applied to the original process observations is reset to zero (cf., Chatterjee and Qiu 2009).

The concept of spring length is useful here because past observations beyond the spring length of the

current observation time would not provide much useful information for process shift detection and
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thus they can be ignored. After data decorrelation, we apply the conventional CUSUM chart to the

decorrelated data within the spring length of the current observation time. The resulting chart is

equivalent to a CUSUM on the standardized residuals of a collection of autoregressive (AR) models

whose orders are 0, 1, . . . , T̃i−1, respectively, where T̃i−1 is the spring length defined in Section 2. It

should be pointed out that we are not the first one to consider monitoring standardized residuals

of a collection of AR models. As a matter of fact, the autoregressive T 2 control chart proposed in

Apley and Tsung (2002) has that explanation. The differences between the two methods are that:

(i) the highest order of the collection of AR models is fixed in Apley and Tsung (2002), while it is

T̃i−1 here that may change its value over time, and (ii) the chart in Apley and Tsung (2002) is a

Shewhart chart and our proposed chart is a CUSUM chart. Because the spring length T̃i−1 suggests

that the observed data beyong the spring length can be ignored in subsequent process monitoring,

it should be more reasonable to use T̃i−1 as the highest order of the AR models. Another benefit

to decorrelate the original process observations within the spring length can be described as fol-

lows. The decorrelated observation at the current time point is usually a linear combination of the

current and past observations. So, a process mean shift in the original observations would be at-

tenuated during data decorrelation, which is a price to pay for obtaining a sequence of uncorrelated

observations. The shift attenuation will negatively affect the performance of a control chart that

is applied to the decorrelated data, and this negative impact is reduced by using the spring length

because the spring length is usually a small integer number. The only required assumptions of

the proposed method are that the IC process observations are covariance stationary and the serial

autocorrelation among them is short-range in the sense that process observation at a given time

point is correlated with nearby observations only and independent of observations that are quite

far away in observation times, which should be reasonable for many applications.

The remainder of the article is organized as follows. Our proposed method is described in detail

in Section 2. Some numerical studies for evaluating its performance are presented in Section 3. A

real-data example is discussed in Section 4. Some remarks conclude the article in Section 5.
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2 Online Monitoring of Serially Correlated Data

The basic idea of our proposed method is to decorrelate process observations before a control

chart is used, without requiring a parametric time series model and a parametric process distri-

bution. To estimate the serial data correlation structure and other IC properties (e.g., IC mean

and variance) of the underlying process, it is assumed that an IC dataset XIC = {X−m+1, ..., X0}

is available. Then, the IC mean and variance can be estimated by the sample mean and variance

of the IC dataset, respectively, denoted as µ̂0 and σ̂2. Furthermore, it is assumed that the IC

process observations are covariance stationary and the serial correlation exists only when two ob-

servations are within Tmax > 0 in their observation indices. More specifically, it is assumed that

γ(q) = Cov(Xi, Xi+q) only depends on q when i changes, and γ(q) = 0 when q > Tmax, where Xi

and Xi+q are two process observations obtained at times i and i + q when the process is IC. In

practice, the autocorrelation between Xi and Xi+q usually decays when q increases (e.g., stationary

AR models). In such cases, γ(q) is small when q is large, and thus a proper value of Tmax can be

chosen such that γ(q) ≈ 0 when q > Tmax. Therefore, the above assumptions should be reasonable

for most manufacturing applications, as long as Tmax is not chosen too small. Then, γ(q) can be

estimated from the IC data by

γ̂m(q) =
1

m− q

−q∑
i=−m+1

(Xi − µ̂0)(Xi+q − µ̂0), for 1 ≤ q ≤ Tmax.

For convenience in notation, we define γ̂m(0) = σ̂2. Obviously, the IC sample size m should be

larger than Tmax. Note that we do not impose any parametric form on the process distribution.

Thus, the above moment estimation of γ(q) should be reasonable.

Let X1, X2, . . . be the Phase II observations for online monitoring. They are serially correlated

as in the IC dataset. This paper focuses on detection of a mean shift as soon as possible in the

Phase II observations, although detection of a variance shift can be discussed similarly after a proper

variance monitoring chart (e.g., Yeh et al. 2010) substitutes the mean monitoring chart discussed

in this paper. As mentioned above, Phase II observations need to be serially decorrelated before

online monitoring by our proposed control chart. The computing demand in data decorrelation

could be high if every new observation needs to be decorrelated with its previous Tmax observations,

especially when Tmax is chosen large. To overcome this difficulty, we suggest using the concept of

spring length that was first discussed in Chatterjee and Qiu (2009) defined below. Let Xi be the

observation obtained at the current time point i, and Ci is the conventional two-sided CUSUM
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charting statistic defined as

Ci = max{C+
i ,−C

−
i }, (1)

where

C+
i = max

[
0, C+

i−1 + (Xi − µ̂0)/σ̂ − k
]

;

C−i = min
[
0, C−i−1 + (Xi − µ̂0)/σ̂ + k

]
, for i ≥ 1,

C+
0 = C−0 = 0, and k > 0 is an allowance constant. One important feature of the CUSUM

charting statistic Ci is its re-starting mechanism. Namely, it will be reset to 0 each time when the

available observations by the current time point i suggest that there is little evidence of an upward

or downward mean shift in the sense that C+
i−1 + (Xi − µ̂0)/σ̂ ≤ k and C−i−1 + (Xi − µ̂0)/σ̂ ≥ −k

(cf., Chapter 4, Qiu 2014). Then, the spring length at time i is defined as

Ti =

0, if Ci = 0,

b, if Ci 6= 0, . . . , Ci−b+1 6= 0, Ci−b = 0.
(2)

From the definition of Ti, it can be seen that observations that are at least Ti time units before

the current time point i would not provide much helpful information about a future mean shift.

Therefore, they can be ignored in the CUSUM chart (1), and similarly we only need to decorrelate

the current observation Xi with its previous Ti−1 observations. However, the above CUSUM chart

(1) and the subsequent spring length Ti are applied to the original observations, instead of the

decorrelated ones. Also, data decorrelation depends on Ti. To address all these issues, the following

charting procedure is suggested for online monitoring of serially correlated data.

Proposed CUSUM Chart for Monitoring Serially Correlated Data

• In the case when i = 1, define the standardized observation at t1 to be e1 = (X1−µ̂0)/
√
γ̂m(0).

Then, the charting statistic at t1 is defined to be

C̃1 = max{C̃+
1 ,−C̃

−
1 }, (3)

where C̃+
1 = max{0, e1 − k̃}, C̃−1 = min{0, e1 + k̃}, and k̃ > 0 is an allowance constant. If

C̃1 = 0, then define T̃1 = 0. Otherwise, define T̃1 = 1.

• In the case when i ≥ 2, we consider the following two cases:
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i) If T̃i−1 = 0, then calculate C̃i and T̃i in the same way as that in the case when i = 1

discussed above.

ii) If T̃i−1 > 0, define

Σ̂i,i =


γ̂m(0) · · · γ̂m(T̃i−1)

...
. . .

...

γ̂m(T̃i−1) · · · γ̂m(0)

 =

Σ̂i−1,i−1 σ̂i−1

σ̂T
i−1 γ̂m(0)

 ,

where σ̂i−1 = (γ̂m(T̃i−1), . . . , γ̂m(1))T . Define

ei =
Xi − µ̂0 − σ̂T

i−1Σ̂
−1
i−1,i−1e

∗
i−1

di
,

where d2
i = γ̂m(0)− σ̂T

i−1Σ̂
−1
i−1,i−1σ̂i−1, and e∗i−1 = (X

i−T̃i−1
− µ̂0, . . . , Xi−1− µ̂0). Then,

according to Li and Qiu (2016), ei is asymptotically uncorrelated with ei−1, ei−2, . . ..

This result was actually derived from the Cholesky decomposition of the covariance

matrix Σ̂i,i. Now, define the charting statistic to be

C̃i = max{C̃+
i ,−C̃

−
i }, for i ≥ 2, (4)

where

C̃+
i = max{0, C̃+

i−1 + ei − k̃}, C̃−i = min{0, C̃−i−1 + ei + k̃}.

If C̃i = 0, then define T̃i = 0. Otherwise, define T̃i = min(T̃i−1 + 1, Tmax).

• The CUSUM chart defined in (3) and (4) gives a signal of mean shift when

C̃i > h̃, for i ≥ 1, (5)

where h̃ > 0 is a control limit.

In the above CUSUM chart (3)-(5), serial data decorrelation and computation of the spring

length Ti are implemented simultaneously, and the charting statistic C̃i is computed from the

decorrelated data. Because each decorrelated observation ei is a linear combination of the original

data, its distribution would be closer to normal under some regularity conditions (cf., Wu 2011),

compared to the original data. So, the CUSUM chart (3)-(5), which has some optimal properties

under the normality and independent observation assumptions (cf., Chapter 4, Qiu 2014), should

be more effective for monitoring the serially decorrelated data {ei} than for monitoring the original
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data {Xi}. It should be pointed out that the quantity ei defined above can be regarded as the

standardized residual of an AR time series model of order T̃i−1, estimated by the Yule-Walker

equations (cf., Kedem and Fokianos 2002). Thus, the CUSUM chart (3)-(5) is actually a CUSUM

on the standardized residuals of a collection of AR models with orders 0, 1, . . . , T̃i−1, respectively.

As a comparison, the charting statistic of the autoregressive T 2 chart suggested by Apley and

Tsung (2002) equals the sum of squares of the standardized residuals of a collection of AR models

with orders 0, 1, . . . , p − 1, respectively, where p is a constant chosen beforehand. So, one major

difference between the two methods is that the chart (3)-(5) uses T̃i−1 as the highest order of the

collection of AR models, which may change its value over time, while the autoregressive T 2 chart

in Apley and Tsung (2002) uses a constant p. Intuitively, it should be beneficial to use the spring

length T̃i−1 here because it has been discussed above that process observations beyond the spring

length can be ignored in subsequent process monitoring, which will be confirmed by some numerical

examples in Section 3.

In the chart, the allowance constant k̃ is usually specified in advance, and the control limit

h̃ can then be determined such that a pre-specified IC average run length (denoted as ARL0) is

reached. Because the distribution of the decorrelated data may not be exactly normal, we suggest

determining h̃ from the IC data. To this end, we suggest using the following bootstrap procedure

that is modified from the one in Capizzi and Masarotto (2008). First, an ARMA modelXi = Θ(B)
Φ(B)ai,

for i ≥ 1, is fitted from the IC data, where B is a backward shift operator, Φ(B) = 1−φ1B−φ2B
2−

· · ·−φpBr1 is an autoregressive polynomial of order r1, Θ(B) = 1− θ1B− θ2B
2−· · ·− θqBr2 is the

moving averaging polynomial of order r2, and the orders r1 and r2 are determined by BIC. Define

âi = Θ̂−1(B)Φ̂(B)Xi, for i ≥ 1, as the residuals of the estimated ARMA model. Then, we draw

with replacement a sample of size M from the set of residuals {âi, i = 1, 2, . . . ,m}, where M > 0

is a large enough number (e.g., M = 10, 000 in the examples of Section 3). The drawn sample is

denoted as {â∗i , i = 1, 2, . . . ,M}. Then, the bootstrap sample of process observations is defined as

{X∗i = Θ̂(B)

Φ̂(B)
â∗i , i = 1, 2, . . . ,M}. The CUSUM chart (3)-(5) with the control limit h̃ is then applied

to the bootstrap sample to obtain a run length (RL) value. This bootstrap resampling procedure

is repeated for B times and the B resulting RL values are averaged to obtain the ARL0 value

at the given h̃ value. Then, the h̃ value can be searched by a bisection algorithm or its modified

versions (Capizzi and Masarotto 2016) so that the assumed ARL0 value is reached. Note that this

bootstrap procedure is used for determining the control limit of the proposed chart before online

process monitoring; it will not add much computing burden to the proposed method. Also, note that

8



an ARMA model is used in the above bootstrap procedure, which is reasonable because the IC data

are assumed to be a short-range covariance stationary time series and thus can be approximately

described by an ARMA model according to the Wold Representation Theorem (cf., Bierens 2004).

Unlike online process monitoring in which large-sample approximation results usually do not apply,

determination of the control limit h̃ is finished before online process monitoring and h̃ is searched

from a given IC dataset. As long as the size of the IC dataset is reasonably large, the ARMA model

approximation should work reasonably well, which has been confirmed in our simulation (cf., Table

1 in Section 3). The above bootstrap procedure is different from the one in Capizzi and Masarotto

(2008) in that it does not require the IC data to follow a normal distribution while the bootstrap

samples in Capizzi and Masarotto (2008) were generated from normal distributions.

In the simulation study in Section 3, the impact of the IC data size m and the maximum

time range of serial autocorrelation Tmax on the performance of the control chart (3)-(5) will be

discussed in different scenarios. Based on the related results, we can see that the performance of

the chart is stable when m ≥ 2, 000 and Tmax ≥ 5.

3 Simulation Study

In this section, we present some simulation results regarding the performance of the proposed

CUSUM chart (3)-(5) for monitoring serially correlated data. Besides the proposed CUSUM chart,

denoted as NEW, we also consider the following five charts for comparison purpose.

(i) The conventional CUSUM chart, denoted as CCUSUM, has the charting statistic defined in

(1). The chart gives a signal when Ci > h, where h > 0 is a control limit that is determined

by the conventional bootstrap procedure (cf., Efron and Tibshirani 1993) from the IC data.

(ii) The modified EWMA chart suggested by Zhang (1998), denoted as EWMA-Z, has the charting

statistic

Ei = (1− λ)Ei−1 + λXi, for i ≥ 1, (6)

where E0 = µ̂0, and λ ∈ (0, 1] is a weighting parameter. The chart gives a signal when

Ei > µ̂0 + Lσ̂E or Ei < µ̂0 − Lσ̂E , where

σ̂2
E =

λ

2− λ
γ̂m(0)×

{
1 + 2

M∑
k=1

γ̂m(j)

γ̂m(0)
(1− λ)j

[
1− (1− λ)2(M−j)

]}
,
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{γ̂m(j), 1 ≤ j ≤ M} are defined in Section 2, M > 0 is a pre-specified integer and chosen to

be 25, as recommended by the author.

(iii) The residual-based chart suggested by Lee and Apley (2011), denoted as EWMA-LA, assumes

that the IC process observations follow an ARMA model Xi = Θ(B)
Φ(B)ai, for i ≥ 1, where B

and other notations are defined in the second last paragraph in Section 2. Define êi =

Θ̂−1(B)Φ̂(B)Xi, for i ≥ 1, as the residuals of the estimated ARMA model. Then, the

charting statistic of EWMA-LA is defined by (6), after Xi is replaced by êi. The control

limits of the chart are chosen to be µ̂0 ± L
√
E[σ2

E |γ̂], where the estimated parameters γ̂ =

[φ̂1, φ̂2, · · · , φ̂r1 , θ̂1, θ̂2, · · · , θ̂r2 ]T are obtained from the IC dataset, and the parameter L is

chosen such that the pre-specified ARL0 is reached when
√
E[σ2

E |γ̂] is replaced by σ̂E =

σ̂
√
λ/(2− λ) in its control limits and σ̂ is obtained from the IC data as discussed at the

beginning of Section 2.

(iv) The CPD chart based on a window-limited generalized likelihood ratio test by Capizzi and

Masarotto (2008), denoted as GLRW, is constructed based on an ARMA model with the

normal distribution assumption. Its control limit is determine by a bootstrap procedure,

similar to the one described in Section 2, with the bootstrap sample size being 10,000, except

that the residuals {â∗i } used for generating the bootstrap samples are generated from a zero-

mean normal distribution in Capizzi and Masarotto (2008).

(v) The autoregressive T 2 chart suggested by Apley and Tsung (2002), denoted as T2, considers

the sequence of p-dimensional vectors Xi = (Xi−p+1, Xi−p+2, . . . , Xi)
′, for i ≥ p. Its Shewhart

charting statistic is T 2
i = (Xi − µ0)′Σ−1

X (Xi − µ0), where µ0 = (µ0, µ0, . . . , µ0)′ and ΣX are

the IC mean and covariance matrix of Xi that can be estimated from the IC data. It was

shown in Apley and Tsung (2002) that T 2
i was the sum of the squared standardized residuals

of a collection of AR models of orders 0, 1, . . . , p − 1, respectively. The control limit of the

chart is chosen to be the 1 − α percentile of the chi-square distribution with p degrees of

freedom, where α is a false alarm probability.

In all six control charts discussed above, we assume that ARL0 = 200. Their IC parameters are

estimated from an IC data of size m = 2000. For each chart, its actual ARL0 value is computed as

follows. First, an IC dataset is generated, and the IC parameters (e.g., µ0, γ(q)) are calculated from

the IC data. Second, with the estimated IC parameters obtained in step 1, the average run length
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(ARL) is calculated from 10,000 replicated simulations of Phase II process monitoring. Third, the

previous two steps are repeated for 100 times, and the average of the 100 ARL values is used as the

calculated actual ARL0 value. The standard error of the calculated actual ARL0 value can also be

computed. In the chart NEW, we fix Tmax to be 20. In EWMA-Z and EWMA-LA, the constant

L can be obtained from Table 5.1 in Qiu (2014) or the R package spc so that the related EWMA

charts have the nominal ARL0 value of 200. In GLRW, the window size is set to be 20, as in the

simulation in Capizzi and Masarotto (2008). For both NEW and GLRW, the bootstrap sample size

is chosen to be 10,000 when determining their control limits. For T2, the parameter p is chosen

to be 20, and α is determined by the equation log(ARL0) = 2.364 − 0.871 log(α), as suggested in

Apley and Tsung (2002). The following six cases of data correlation are considered:

Case I Observations X1, X2, . . . are i.i.d. when the process is IC, and the IC process distribution

is N(0, 1);

Case II Process observations follow the AR(1) model Xi = 0.5Xi−1 + εi, for i ≥ 1, where X0 = 0

and {εi, i ≥ 1} are i.i.d. with the distribution N(0, 1);

Case III Process observations follow the AR(2) model Xi = 0.4Xi−1 + 0.2Xi−2 + εi, for i ≥ 2,

where X0 = X1 = 0 and {εi, i ≥ 1} are i.i.d. with the distribution t(5);

Case IV Process observations follow the model Xi = 1.5ξi + εi, for i ≥ 1, where {εi, i ≥ 1} are

i.i.d. with the distribution N(0, 1), and {ξi, i ≥ 1} is a two-state Markov point process with

the initial state being 0 and the transition matrix between the two states of {0, 1} being 0.8, 0.2

0.2, 0.8

;

Case V Process observations follow the MA(2) model Xi = εi + 0.85εi−1 + 0.7εi−2, for i ≥ 2,

where X1 = X2 = 0 and {εi, i ≥ 1} are i.i.d. with the distribution N(0, 1);

Case VI Process observations follow the ARMA(3,1) model Xi = 0.83Xi−1−0.57Xi−2+0.4Xi−3+

εi − 0.5εi−1, for i ≥ 4, where X1 = X2 = X3 = 0, {εi, i ≥ 1} are i.i.d. with the distribution

χ2
3.

For each of the above six cases, the process distribution is centralized and re-scaled properly so

that the IC process mean is 0 and the IC process standard deviation is 1. So, the conventional

assumptions that the IC process observations are i.i.d. and normally distributed are valid in Case I.
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In Case II, process observations follow the AR(1) model. So, the model assumptions in EWMA-LA

and GLRW are satisfied. But, the assumptions in CCUSUM are violated. In Case III, it is assumed

that the specified model in EWMA-LA is AR(1), which is violated, although the true autoregressive

model is still an ARMA. This case is considered here to study the performance of EWMA-LA when

its autoregressive model is mis-specified. In this case, the ARMA model assumption in GLRW is

valid. However, the normal distribution assumption in CCUSUM, EWMA-LA, GLRW, and T2

is violated. The true data correlation model in Case IV is not an ARMA model. So, the model

assumptions in CCUSUM, EWMA-LA and GLRW are violated. In Case V, the model assumptions

in EWMA-LA and GLRW are valid, but the model assumptions in CCUSUM are violated. In

Case VI, although the time series model is an ARMA, but the error distribution is χ2
3, which is

skewed. So, the normal distribution assumption in EWMA-LA, GLRW and T2 are violated. In all

six cases, the stationary autocorrelation assumption in EWMA-Z, NEW, and T2 are satisfied. The

short-range correlation assumption is also valid or approximately valid.

IC performance. We first study the IC performance of the related charts in the six cases

described above when no mean shifts are present and the nominal ARL0 value of each chart is 200.

In the two CUSUM charts CCUSUM and NEW, the allowance constants k and k̃ are chosen to be

0.1, 0.25 or 0.5. The weighting parameter λ in the two EWMA charts EWMA-Z and EWMA-LA is

chosen to be 0.05, 0.1 or 0.2. The orders of the ARMA model assumed in EWMA-LA and GLRW

are determined by BIC, except that it is assumed to be AR(1) in case III for EWMA-LA. The

control limit of each chart is chosen under its assumed model assumptions such that the nominal

ARL0 value of 200 is reached. The actual ARL0 value of a chart is calculated by applying the chart

to the IC process observations generated in each of the six cases considered, as described earlier.

The calculated actual ARL0 values and their standard errors of the six charts are presented in

Table 1. From the table, we can make the following conclusions. (i) The conventional CUSUM

chart CCUSUM has a reliable IC performance in Case I, but its IC performance is not reliable in

Cases II-VI, which is intuitively reasonable, because its model assumptions are satisfied in Case I

only and violated in all Cases II-VI. (ii) The chart EWMA-Z has a good performance in Case I,

is conservative in cases II-V, and unreliable in Case VI. (iii) The IC performance of EWMA-LA

is good in Cases II and V when its assumptions are valid, reasonably good in Case I when its

assumptions are valid but the true data are independent, and unreliable in Cases III, IV and VI

when its model assumptions are invalid. (iv) The chart GLRW is good in Cases I, II and V when

its model assumptions are valid, and not that good in cases III, IV and VI when its time series
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model and/or the normal distribution assumption are violated. (v) The overall IC performance of

T2 is similar to that of GLRW, while it performs better than GLRW in Case IV when the true

data correlation does not follow an ARMA model. As a comparison, the proposed chart NEW has

a reliable IC performance in all cases considered.

Table 1: Calculated actual ARL0 values and their standard errors (in parentheses) of six control

charts in Cases I-VI.

CCUSUM EWMA-Z EWMA-LA NEW GLRW T2

Cases k ARL0 λ ARL0 λ ARL0 k̃ ARL0 ARL0 ARL0

I 0.1 202(1.73) 0.05 194(3.42) 0.05 185(2.63) 0.1 180(2.32)

0.25 198(2.26) 0.1 192(4.32) 0.1 186(2.89) 0.25 184(2.45) 188(2.48) 191(3.14)

0.5 203(2.41) 0.2 203(4.45) 0.2 184(2.75) 0.5 182(2.27)

II 0.1 51(0.25) 0.05 240(5.64) 0.05 195(3.87) 0.1 196(2.29)

0.25 44(0.20) 0.1 281(7.58) 0.1 196(3.71) 0.25 198(2.23) 204(2.75) 205(3.11)

0.5 49(0.29) 0.2 319(8.02) 0.2 204(3.90) 0.5 199(2.35)

III 0.1 44(0.24) 0.05 252(5.08) 0.05 129(2.15) 0.1 207(2.36)

0.25 35(0.26) 0.1 296(6.34) 0.1 122(2.39) 0.25 210(2.30) 164(2.33) 147(2.36)

0.5 37(0.35) 0.2 312(6.29) 0.2 119(2.10) 0.5 196(2.28)

IV 0.1 65(0.30) 0.05 259(5.17) 0.05 258(4.32) 0.1 194(2.26)

0.25 60(0.31) 0.1 364(8.83) 0.1 277(4.88) 0.25 197(2.31) 328(5.80) 221(3.61)

0.5 62(0.43) 0.2 470(11.98) 0.2 357(6.11) 0.5 196(2.40)

V 0.1 51(0.36) 0.05 235(5.89) 0.05 197(3.47) 0.1 193(2.34)

0.25 47(0.33) 0.1 287(8.04) 0.1 204(3.59) 0.25 192(2.39) 193(2.61) 208(3.49)

0.5 45(0.30) 0.2 308(7.98) 0.2 198(3.33) 0.5 195(2.42)

VI 0.1 484(21.88) 0.05 160(3.04) 0.05 151(2.11) 0.1 197(2.53)

0.25 290(8.40) 0.1 136(2.41) 0.1 132(1.88) 0.25 201(2.58) 133(1.60) 124(2.25)

0.5 128(3.65) 0.2 112(1.64) 0.2 114(1.52) 0.5 196(2.49)

OC performance. Next, we study the OC performance of the related charts in the six

different cases discussed above. In each case, a shift is assumed to occur at the beginning of Phase

II process monitoring, with the shift size being δσX and δ changing among 0, 0.25, 0.5, 0.75 and

1.0 (the process is actually IC when the shift size is 0). To make the comparison among different

charts fair, we have adjusted the control limits of all charts so that their actual ARL0 values

are 200 when δ = 0. First, we compute the optimal ARL1 values of the four charts CCUSUM,
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EWMA-Z, EWMA-LA and NEW for detecting each shift, where the optimal ARL1 value of a chart

is obtained by changing the allowance constant k or k̃ in the two CUSUM charts CCUSUM and

NEW or the weighting parameter λ in the two EWMA charts EWMA-Z and EWMA-LA, such that

the ARL1 value is minimized for detecting each shift while the actual ARL0 value is maintained at

200. Because the charts GLRW and T2 do not have such a smoothing parameter to choose, they

are not included in this comparison. Otherwise, the comparison would be unfair to GLRW and T2.

The optimal ARL1 values are considered here to make the comparison among the four charts as

fair as possible. Otherwise, the OC performance of CCUSUM with k = 0.1 may not be comparable

to the OC performance of EWMA-LA when λ = 0.1, and so forth. The calculated optimal ARL1

values of the four charts are presented in Table 2. From the table, it can be seen that (i) the four

charts perform similarly in Case I, (ii) EWMA-LA is slight better than the other three charts in

Cases II and V, and (iii) the proposed chart NEW is uniformly better than the other three charts

in Cases III, IV and VI, except that it performs slightly worse than EWMA-Z in Case IV when

δ = 0.75. The conclusion (ii) is reasonable because the assumed parametric time series model and

the normality assumption in EWMA-LA are valid in Cases II and V. So, EWMA-LA would be

more efficient than the other three charts in such cases. In cases III, IV and VI, the performance

of EWMA-LA is unsatisfactory because its parametric time series model is mis-specified in Case

III, invalid in Case IV, and its normality assumption is invalid in Cases III and VI. The values of

the smoothing parameters k, k̃ and λ at which the optimal ARL1 values in Table 2 are reached are

presented in Table 3. It can be seen that indeed different charts should choose different values of

their smoothing parameters.

Next, we compare the OC performance of all six control charts by specifying the smoothing

parameters k, k̃ and λ in the four charts CCUSUM, EWMA-Z, EWMA-LA and NEW to be 0.1,

0.25 and 0.5, the window parameter in GLRW to be 20 (as in the simulation examples in Capizzi

and Masarotto (2008)), p = 20 in T2, and other setups are kept the same as those in the example

of Table 2. The results are presented in Table 4. From the table, it seems that (i) T2 performs

relatively poor in all cases considered because it is a Shewhart chart and other charts are either

CUSUM or EWMA charts, (ii) all charts, except T2, perform reasonably well in Case I, (iii) the

chart EWMA-LA has an overall better performance in Cases II and V when its model assumptions

are satisfied, and (iv) the chart NEW has an overall better performance in the remaining three

cases III, IV and VI. These conclusions are consistent with those in Table 2.
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Table 2: Calculated optimal ARL1 values and their standard errors of the four charts when ARL0 =

200 and the shift size δ changes among 0.25, 0.5, 0.75 and 1.0. The optimal ARL1 value of a chart

is obtained by changing the allowance constant k or k̃ in the two CUSUM charts CCUSUM and

NEW or the weighting parameter λ in the two EWMA charts EWMA-Z and EWMA-LA, such that

the ARL1 value is minimized for detecting each shift while the actual ARL0 value is maintained

at 200. Numbers in bold are the smallest ones in individual rows.

Cases δ CCUSUM EWMA-Z EWMA-LA NEW

I 0.25 58.63(0.40) 59.13(0.38) 60.17(0.40) 58.81(0.39)

0.50 23.90(0.14) 24.58(0.14) 24.83(0.13) 24.33(0.14)

0.75 13.36(0.07) 13.48(0.07) 13.97(0.08) 13.48(0.07)

1.00 8.62(0.04) 9.02(0.04) 9.44(0.04) 8.58(0.04)

II 0.25 106.95(0.73) 103.63(0.81) 92.66(0.65) 99.24(0.76)

0.50 50.58(0.33) 49.58(0.32) 44.77(0.26) 47.34(0.28)

0.75 29.19(0.20) 29.62(0.16) 26.31(0.14) 28.66(0.18)

1.00 18.82(0.11) 18.62(0.11) 18.43(0.09) 18.36(0.10)

III 0.25 110.63(0.81) 114.96(0.90) 160.06(1.39) 98.25(0.63)

0.50 57.31(0.38) 59.26(0.43) 81.08(0.58) 53.29(0.35)

0.75 34.56(0.24) 35.78(0.25) 45.80(0.31) 32.30(0.22)

1.00 23.36(0.14) 24.16(0.12) 31.55(0.15) 23.12(0.14)

IV 0.25 101.58(0.84) 96.16(0.81) 90.87(0.64) 82.19(0.57)

0.50 40.59(0.33) 38.27(0.30) 40.14(0.27) 35.54(0.30)

0.75 20.79(0.18) 20.14(0.16) 21.56(0.13) 20.26(0.16)

1.00 12.88(0.10) 12.75(0.09) 14.39(0.09) 12.30(0.10)

V 0.25 116.54(0.88) 113.41(0.86) 92.10(0.68) 95.18(0.66)

0.50 52.81(0.38) 50.05(0.36) 44.29(0.28) 47.20(0.29)

0.75 30.22(0.19) 27.93(0.18) 26.37(0.17) 27.05(0.18)

1.00 19.51(0.12) 18.69(0.12) 17.89(0.11) 18.28(0.13)

VI 0.25 41.24(0.19) 38.43(0.20) 37.92(0.18) 33.53(0.16)

0.50 18.78(0.08) 16.35(0.07) 16.85(0.06) 14.58(0.07)

0.75 11.91(0.04) 10.88(0.04) 11.05(0.04) 9.10(0.03)

1.00 8.49(0.03) 7.62(0.03) 8.12(0.03) 6.49(0.03)
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Table 3: Values of the smoothing parameters k, k̃ and λ at which the optimal ARL1 values in Table

2 are reached.

CCUSUM EWMA-Z EWMA-LA NEW

Cases δ k λ λ k̃

I 0.25 0.125 0.02 0.01 0.15

0.50 0.25 0.05 0.05 0.25

0.75 0.375 0.1 0.1 0.35

1.00 0.5 0.2 0.2 0.5

II 0.25 0.1 0.02 0.01 0.1

0.50 0.25 0.03 0.02 0.15

0.75 0.4 0.05 0.035 0.25

1.00 0.5 0.1 0.05 0.35

III 0.25 0.15 0.01 0.02 0.05

0.50 0.25 0.025 0.03 0.1

0.75 0.4 0.04 0.05 0.15

1.00 0.5 0.06 0.08 0.2

IV 0.25 0.25 0.05 0.025 0.1

0.50 0.5 0.1 0.05 0.3

0.75 0.75 0.2 0.1 0.5

1.00 1.0 0.25 0.2 0.75

V 0.25 0.2 0.02 0.01 0.1

0.50 0.3 0.04 0.03 0.2

0.75 0.4 0.07 0.06 0.3

1.00 0.5 0.1 0.1 0.4

VI 0.25 0.1 0.025 0.025 0.05

0.50 0.2 0.05 0.05 0.2

0.75 0.3 0.075 0.1 0.4

1.00 0.4 0.1 0.2 0.6
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The three charts EWMA-LA, GLRW and NEW are all based on serial data decorrelation,

through either a time series model estimation (for methods EWMA-LA and GLRW) or estimation

of the covariance function γ(q) (for method NEW). Because the decorrelated observation at the

current time point is usually a difference between the original observation at that time point and a

linear prediction based on all prior original observations (cf., the formula for computing ei before

Expression (4)), a true shift would be more and more difficult to detect based on the decorrelated

data if it cannot be detected early. To investigate this aspect of the charts, the positive rates of the

three charts obtained from 10,000 replicated simulations in Case III are calculated and presented in

Table 5, where the charts are in the same set up as that of Table 2. In this example, only the signals

given within the first 50 time points after the shift occurrence are counted, because all charts will

eventually give signals in any simulation run. From the table, it can be seen that the true positive

rates (i.e., those when δ > 0) of NEW are uniformly higher than those of the other two charts,

while its false positive rate (i.e., the one when δ = 0) is lower. So, NEW performs better in this

regard.

Table 5: False and true positive rates of the three charts EWMA-LA, GLRW and NEW in Case III

under the same set up as that of Table 2. The positive rates are computed from 10,000 replicated

simulations and only the signals given within the first 50 time points after the shift occurrence are

counted.

Methods δ = 0 0.25 0.5 0.75 1

EWMA-LA 0.157 0.186 0.482 0.772 0.938

GLRW 0.185 0.204 0.489 0.778 0.943

NEW 0.139 0.227 0.497 0.789 0.945

Impact of m and Tmax. The performance of the proposed CUSUM chart NEW would depend

on the IC sample size m and the assumed maximum time range of autocorrelation Tmax. In this

part, we study such potential impact. First, in the setup of Table 2, we fix Tmax at 20 as in

previous examples, and let m change among 500, 1,000, 2,000, and 5,000. The calculated optimal

ARL1 values of NEW are shown in Figure 1. From the plots in the figure, we can see that: (i) the

performance of NEW would improve when m increases, (ii) the performance is stable in Cases IV-

VI when m ≥ 1, 000, and (ii) the performance improvement can almost be ignored when m ≥ 2, 000

in all cases considered. This example shows that the proposed chart NEW would perform stably
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when the IC sample size is as large as 2,000. This result is consistent with that found in Jones et

al. (2001).

Next, we study the impact of Tmax on the performance of the proposed chart NEW. In the

setup of Table 2, we fix m at 2,000, and let Tmax change among 2, 5, 10, and 20. The calculated

optimal ARL1 values of NEW are shown in Figure 2. From the plots, we can see that: (i) the

performance of NEW does not change much when Tmax changes in Case I, (ii) in Cases II, V

and VI, the performance of NEW when Tmax = 2 is slightly worse and its performance is almost

identical when Tmax = 5, 10 and 20, (iii) in Cases III and IV, the performance of NEW can improve

when Tmax increases, but the improvement is very small when Tmax ≥ 5. This example shows

that the proposed chart NEW would perform stably when the assumed maximum time range of

autocorrelation Tmax is chosen to be 5 or larger.

4 Real Data Application

In this section, we demonstrate our proposed method using a real dataset obtained from the

the Climate Prediction Center of the USA (http://www.cpc.ncep.noaa.gov/). This dataset contains

observations of the sea surface temperature (SST) in the Nino 3 Region. The Nino 3 Region is

within 90W-150W in longitude and 5S-5N in latitude. This region is commonly used by scientists

to classify the intensity of El Niño phenomenon. Developing countries that are dependent upon

agriculture and fishing, particularly those bordering the Pacific Ocean, are usually most affected by

El Niño. So, it is very important to monitor the intensity of El Niño in that region. If something

unusual happens (e.g., warming of the ocean surface), the nearby countries should take actions

quickly to avoid natural disaster. The dataset can be found in the R package tseries. It contains

598 monthly SST observations of the Nino 3 Region in degrees Celsius, collected from January 1950

to October 1999. The data are shown in Figure 3. We use the first 350 observations as the IC

dataset, and the remaining observations for Phase II process monitoring. The two parts of the data

are separated by a vertical line in the plot. From Figure 3, it can be seen that the IC data look

quite stable and the phase II observations seem to have an upward shift around the 390th month.

The Augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test for stationarity of the

IC dataset both give a p-value of 0.01, suggesting that the stationary assumption of the IC dataset

is valid in this data.
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Figure 1: Calculated optimal ARL1 values of the proposed chart NEW when ARL0 = 200, Tmax =

20, the shift size is δσX with δ changing among 0, 0.25, 0.5, 0.75 and 1.0, and the IC sample size

m changes among 500, 1,000, 2,000, and 5,000.
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Figure 2: Calculated optimal ARL1 values of the proposed chart NEW when ARL0 = 200, m =

2, 000, the shift size is δσX with δ changing among 0, 0.25, 0.5, 0.75 and 1.0, and the assumed

maximum time range of autocorrelation Tmax changes among 2, 5, 10, and 20.
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Figure 3: Original observations of the sea surface temperature dataset, where the vertical solid

line separates the two parts of the data used as the IC dataset and the Phase II observations,

respectively.

Next, we construct the six control charts to monitor the Phase II observations of SST. In all

control charts, ARL0 is assumed to be 200. The allowance constants k and k̃ in CCUSUM and

NEW and the weighting parameter λ in EWMA-Z and EWMA-LA are all chosen to be 0.2. The

window size in GLRW is chosen to be 20 as in the numerical examples in Capizzi and Masarotto

(2008). The parameter p in T2 is fixed at 20, as in the simulation examples. To ensure a robust

IC performance of the conventional CUSUM chart CCUSUM, its control limit is obtained by the

bootstrap procedure in a similar way to that for the proposed chart NEW. The other five charts are

set up in the same way as that in the simulation examples. Figure 4 shows the six control charts,

where the solid horizontal lines denote the related control limits. From the plots, it can be seen that

the proposed chart NEW gives the first signal at the 46th observation (i.e., the 396th observation

of the whole dataset). As a comparison, the CCUSUM, EWMA-Z and T2 charts give their first

signals at the 48th observation, the EWMA-LA chart gives the first signal the 49th observation,

and the chart GLRW gives the first signal at the 47th observation. This example shows that the

proposed method NEW is effective in detecting the mean shift in SST, the other five charts are also

quite effective in detecting the mean shift, although the signal by GLRW is one month later, the

signals by CCUSUM, EWMA-Z and T2 are two months later, and the signal by EWMA-LA is three

months later. From the plots in Figure 4, it seems that the evidence of a shift is less convincing in
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the charts of EWMA-Z, EWMA-LA and GLRW, because their signals disappear quite fast in the

charts.

5 Concluding Remarks

Process control for serially correlated data is an important research topic because observed data

in SPC applications are often serially correlated. There have been some existing research efforts

to tackle this problem. Most existing methods use a parametric time series model to describe the

data correlation and a parametric form to describe the data distribution. These methods may

not be able to provide a reliable process monitoring when their assumed time series models and

the parametric distributions are invalid. In this paper, we try to make another effort to solve

this challenging process monitoring problem. A flexible CUSUM chart has been suggested for

monitoring serially correlated data. It makes use of the spring length concept by ignoring all

history data that are beyond the spring length. It does not require any parametric time series

model and/or a parametric process distribution. Numerical studies have shown that it has a

reliable IC performance and is effective in detecting process mean shifts in different situations

considered. There are still some issues about the proposed method to address in our future research.

For instance, in the current proposed chart NEW, we apply the conventional CUSUM chart to

the serially decorrelated data. Remember that the conventional CUSUM chart has some optimal

properties only when the process observations are independent and normally distributed. The

decorrelated observations are linear combinations of the original observations. Their distributions

should be closer to normal in many cases, compared to the distributions of the original observations.

But, these distributions may still be quite different from normal. In such cases, it is unknown to us

whether some more effective control charts can be developed. Also, this paper focuses on univariate

processes with continuous numerical observations only. In practice, many processes have multiple

quality characteristics involved. Some quality characteristics might take count or categorical values.

Thus, online monitoring of serially correlated multivariate processes with numerical or categorical

observations requires much future research.
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Figure 4: Four control charts applied to the sea surface temperature (SST) data: NEW (upper-left),

CCUSUM (upper-right), EWMA-Z (lower-left), and EWMA-LA (lower-right). The horizontal solid

lines are the related control limits of the charts.
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Supplementary Materials

ComputerCodesAndData.zip: This zip file contains Matlab source code of our proposed

method and the real data used in the paper.
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