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Abstract

Dynamic Screening problems arise from a variety of applications where we need to sequen-

tially monitor the performance of individuals to detect any malfunction as early as possible.

These applications have stimulated much recent research in the literature and a new methodol-

ogy called dynamic screening system (DySS) has been developed. By comparing the longitudinal

performance of a given individual with that of well-functioning individuals and by sequentially

monitoring their difference, DySS can detect their significant difference early so that the poten-

tial damage to the given individual can be avoided or reduced. This paper aims to introduce

recent research on DySS in different cases, including cases with univariate or multivariate per-

formance variables and cases with independent or correlated observations.

Key Words: Correlation; Dynamic screening; Longitudinal data; Process monitoring; Sequen-

tial monitoring; Statistical process control.

1 Introduction

Dynamic screening (DS) problems encompass a wide range of applications where some performance

variables (e.g., variables measuring the quality of a product, or risk factors of a disease) need to be

sequentially monitored for early detection of faults and/or diseases. The DS problems are important

because early detection of faults and/or diseases can warrant timely interventions so that adverse
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consequences (e.g., airplane crashes, occurrence of stroke or other deadly diseases) can be prevented

or detected at early stages.

To solve the DS problems, one simple method is to construct pointwise confidence intervals of

the mean performance variables from observed data of some well-functioning individuals. Then,

the longitudinal performance of a given individual can be detected as abnormal if its observations

of the performance variables are beyond the confidence intervals. In the longitudinal data analysis

(LDA) literature, there has been some discussion about construction of such confidence intervals

(e.g., Ma et al. 2012, Yao et al. 2005, and Zhao and Wu 2008). However, this confidence interval

approach cannot monitor the given individual in a sequential way, and thus the history data cannot

be used efficiently by this approach. Another potential approach to handle the DS problems is

related to statistical process control (SPC). By a SPC control chart, we can sequentially monitor

the longitudinal performance of an individual (cf., Hawkins and Olwell 1998, Montgomery 2009,

Qiu 2014). But, this approach usually does not compare an individual with other individuals

regarding their longitudinal performance, and it usually assumes that the observation distribution

is unchanged over time when the longitudinal performance of an individual is in-control (IC) or

satisfactory, which is often invalid in the DS problems. As an example, the distribution of our

blood pressure readings would change when we get older even in cases when we are healthy and do

not have any serious cardiovascular diseases. Therefore, both the confidence interval approach and

the traditional SPC charts cannot solve the DS problems effectively.

Motivated by the SHARe Framingham Heart study, Qiu and Xiang (2014) suggested a so-called

dynamic screening system (DySS) for solving the DS problem in univariate cases. The DySS method

combines the strengths of LDA and SPC approaches by comparing the longitudinal performance

of a given individual with that of some well-functioning individuals and by sequentially monitoring

their difference. This method is designed mainly for cases when observations at different time points

are independent. In recent several years, several alternative DySS methods have been proposed

for cases when the observations at different time points are correlated and when observations are

multivariate. In the next two sections, we will introduce these different versions of the DySS method

in details. Some remarks about certain future research problems on this topic will conclude the

article in the last section.
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2 DySS Methods When Observations are Independent

In this section, we introduce some recent DySS methods for cases when process observations col-

lected at different time points are assumed independent. Univariate cases are discussed in Subsec-

tion 2.1, multivariate cases are discussed in Subsection 2.2, and an improved version is discussed

in Subsection 2.3.

2.1 Univariate cases

Qiu and Xiang (2014) suggested the first DySS method for univariate cases. This method was

mainly discussed in cases when process observations collected at different time points were assumed

independent, although correlated data cases were also briefly discussed. The method consists of

the following three steps:

(i) Estimate the regular longitudinal pattern of the performance variable y from an observed

longitudinal dataset of a group of m well-functioning individuals. This dataset is called IC

dataset hereafter.

(ii) For a new individual to monitoring, standardize his/her observations using the estimated

regular longitudinal pattern obtained in step (i).

(iii) Monitor the standardized observations of the new individual, and give a signal as soon as all

available data suggest a significant shift in his/her longitudinal pattern from the estimated

regular pattern.

These three steps will be briefly described below.

Assume that the longitudinal observations of the m well-functioning individuals included in

the IC dataset follow the model

y(tij) = µ(tij) + σ(tij)ǫ(tij), for j = 1, 2, . . . , ni, i = 1, 2, . . . ,m, (1)

where tij ∈ [0, T ] are observation times, y(tij) is the jth observation of the ith individual, µ(·)

and σ2(·) are the mean and variance functions of the performance variable y(·), and ǫ(·) is the

standardized noise with mean 0 and variance 1. Based on the local pth-order polynomial kernel
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smoothing, Qiu and Xiang (2014) suggested a four-step procedure for estimating µ(·) and σ2(·) in

model (1). Their estimators are denoted as µ̂(·) and σ̂2(·), respectively.

For a given individual to monitor, assume that his/her observations are obtained at times

t∗j ∈ [0, T ], for j = 1, 2, . . .. When the performance of that individual is IC, his/her observations

should follow model (1). So, we define the standardized observations of that individual as

ǫ̂(t∗j ) =
y(t∗j )− µ̂(t∗j )

σ̂(t∗j )
, for j ≥ 1. (2)

When the performance of the given individual is IC, the standardized observations {ǫ̂(t∗j ), j ≥ 1}

should be independent of each other with the same mean 0 and the same variance 1. If the lon-

gitudinal performance of that individual becomes out-of-control (OC), e.g., his/her mean response

starts to deviate from the IC mean function µ(·), then this will be reflected in the distribution of

the standardized observations.

Assume that we are interested in detecting an upward mean shift in the original performance

variable y for the given individual, then we can apply a conventional control chart for detecting up-

ward mean shifts to the standardized observations. In Qiu and Xiang (2014), an upward cumulative

sum (CUSUM) chart was selected. This chart has the charting statistic defined as

C+
j = max(0, C+

j−1 + ǫ̂(t∗j )− k), for j ≥ 1, (3)

where C+
0 = 0 and k > 0 is an allowance constant. Then, the chart gives a signal of an upward

mean shift when

C+
j > hC , (4)

where hC > 0 is a control limit. For detecting a downward or arbitrary shift, a downward or

two-sided CUSUM chart can be used. For such CUSUM charts and other alternative control charts

that can also be considered here, read Chapters 3–6 in the book Qiu (2014).

The performance of a control chart, such as the one defined by (3)-(4), is usually measured by

the IC and OC average run lengths (ARLs). However, these measures are appropriate only in cases

when the observation times are equally spaced, which is often invalid in the DS applications. To

overcome that difficulty, Qiu and Xiang (2014) suggested using the average time to signal (ATS)

measure, described as follows. Let ω be a basic time unit, which is the largest time unit that all

observation times are its integer multiples. Then, we define

n∗

j = t∗j/ω, for j = 1, 2, . . .,
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where n∗

0 = t∗0 = 0. For an individual whose longitudinal performance is IC, assume that a signal

is given at the sth observation time. Then, the expected value of n∗

s, (i.e., E(n
∗

s)) is called the

IC ATS, denoted as ATS 0. Similarly, for an individual whose longitudinal performance starts to

deviate from the regular longitudinal pattern at the time point τ , the value E(n∗

s|n
∗

s ≥ τ) − τ is

called OC ATS, denoted as ATS 1. Then, for the control chart (3)-(4), the value of ATS 0 can be

specified beforehand, and the chart performs better for detecting a shift of a given size if its ATS 1

value is smaller. For the chart (3)-(4), the value k is often pre-specified, a large k value is good

for detecting large shifts, and a small k value is good for detecting small shifts. Commonly used

k values include 0.1, 0.2, 0.5 and 1.0. Once k is pre-specified, the value of hC can be chosen such

that a given value of ATS 0 is reached.

2.2 Multivariate cases

Qiu and Xiang (2015) proposed a multivariate DySS method. In multivariate cases, we have

multiple performance variables that are included in the q-dimensional vector y. In such cases, the

model corresponding to the univariate model (1) becomes

y(tij) = µ(tij) + Σ1/2(tij , tij)ǫ(tij), for j = 1, 2, . . . , ni, i = 1, 2, . . . ,m,

where y(tij) = (y1(tij), y2(tij), . . . , yq(tij))
′ is the q-dimensional observation at time tij , µ(tij) =

(µ1(tij), µ2(tij), . . . , µq(tij))
′ and Σ(tij , tij) are the mean and covariance matrix of y(tij), and

ǫ(tij) = (ǫ1(tij), ǫ2(tij), . . . , ǫq(tij))
′ is the q-dimensional error term with mean 0 and variance

Iq×q. By the estimation procedure proposed in Xiang et al. (2013), we can obtain estimators of

µ(t) and Σ(t, t) that are denoted as µ̂(t) and Σ̂(t, t), respectively.

For a new individual to monitor, assume that its observations are obtained at t∗j ∈ [0, T ], for

j ≥ 1. Then, similar to (2), his/her standardized observations are defined as

ǫ̂(t∗j ) = Σ−1/2(t∗j , t
∗

j )
[
y(t∗j )− µ̂(t∗j )

]
.

Any mean shifts in y(t∗j ) will be reflected in ǫ̂(t∗j ) and we can use a multivariate control chart to

monitor {ǫ̂(t∗j )} in order to detect distributional shifts in {y(t∗j )}.

Qiu and Xiang (2015) adopted the multivariate exponentially weighted moving average (MEWMA)

chart for monitoring {ǫ̂(t∗j )}. The charting statistic of this chart is

Ej = λǫ̂(t∗j ) + (1− λ)Ej−1, for j ≥ 1,
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where E0 = 0 and λ ∈ (0, 1] is a weighting parameter. It gives a signal when

E′

jΣ
−1
Ej

Ej > hE ,

where hE > 0 is a control limit, and ΣEj
is the covariance matrix of Ej . Since Var(ǫ(t∗j )) is

asymptotically Iq×q and observations at different time points are assumed independent, ΣEj
is

approximately λ
2−λ [1 − (1 − λ)2j ]Iq×q, or

λ
2−λ when j is large. So, the above expression can be

replaced by
2− λ

λ[1− (1− λ)2j ]
E′

jEj > hE ,

or 2−λ
λ E′

jEj > hE for large values of j. When the dimensionality q is large, Qiu and Xiang (2015)

suggested using the multivariate control charts that was based on variable selection and discussed

in several papers, including Capizzi and Masarotto (2011), Wang and Jiang (2009), and Zou and

Qiu (2009).

2.3 An improved version

As mentioned earlier, the observation times are often unequally spaced in the DS problems. In

the DySS methods described above, we have accommodated the unequally spaced observation

times in the performance evaluation metrics ATS0 and ATS1. However, the construction of the

control charts (cf., (3)-(4)) has not accommodated the unequally spaced observation times yet. To

overcome this limitation, Qiu, Zi and Zou (2017) proposed a control chart that takes into account

the unequally spaced observation times in its construction, which is introduced below.

To detect mean shifts in the standardized observations {ǫ̂(t∗j ), j ≥ 1}, let us consider the

following hypothesis testing problem: for a given j ≥ 1,

H0 : µǫ̂(t∗j )
= 0 versus Ha : µǫ̂(t∗j )

= g(t∗j ) 6= 0.

At the current time point j, let us consider the following local constant kernel estimation procedure:

argmin
a∈R

j∑

ℓ=1

[ǫ̂(t∗ℓ )− a]2 (1− λ)t
∗

j−t∗
ℓ , (5)

where λ ∈ (0, 1] is a weighting parameter. The solution to a is the local constant kernel estimator

of g(t∗j ), which has the expression

ĝλ(t
∗

j ) =

∑j
ℓ=1wℓ(t

∗

j )ǫ̂(t
∗

ℓ)∑j
ℓ=1wℓ(t

∗

j )
,
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where wℓ(t
∗

j ) = (1−λ)t
∗

j−t∗
ℓ . In (5), we estimate g(t∗j ) using all observations collected at or before the

current time t∗j , they receive different weights at different time points, and the weights exponentially

decay when the related observation times move away from t∗j . From the weight formula wℓ(t
∗

j ) =

(1− λ)t
∗

j−t∗
ℓ , it can be seen that unequally spaced observation times have been taken into account.

By considering a weighted generalized likelihood ratio test (WGLR), if we define

QHa(t
∗

j ;λ) =

j∑

ℓ=1

[
ǫ̂(t∗ℓ )− ĝ(t∗j )

]2
wℓ(t

∗

j )

QH0
(t∗j ;λ) =

j∑

ℓ=1

[ǫ̂(t∗ℓ )]
2wℓ(t

∗

j ),

then the WGLR test statistic for testing hypotheses in (5) is

Wλ(t
∗

j ) = QH0
(t∗j ;λ)−QHa(t

∗

j ;λ) =

j∑

ℓ=1

[2ǫ̂(t∗ℓ )− ĝ(t∗ℓ )] ĝ(t
∗

ℓ )wℓ(t
∗

j ).

A signal could be triggered at t∗j if Wλ(t
∗

j ) is large. By noticing the fact that the sequence

{(Wλ(t
∗

j ), ĝ(t
∗

j )), j = 1, 2, . . .} forms a two-dimensional Markov chain given the design points, the

test statistic Wλ(t
∗

j ) can be computed recursively in the following way:

Wλ(t
∗

j ) = wj−1(t
∗

j )Wλ(t
∗

j−1) +
[
2ǫ̂(t∗j )− ĝ(t∗j )

]
ĝ(t∗j ),

ĝ(t∗j ) =
[
αj−1ĝ(t

∗

j−1) + ǫ̂(t∗j )
]
/αj ,

where αj =
∑j

ℓ=1wℓ(t
∗

j ) = wj−1(t
∗

j )αj−1+1. Since the distribution of Wλ(t
∗

j ) is changing over time,

it usually requires a quite long time for it to reach a steady state. Thus, the following standardized

statistic would be preferred here:

W ∗

λ (t
∗

j ) = [Wλ(t
∗

j )− Eλ(t
∗

j )]/
√
Vλ(t

∗

j ),

where Eλ(t
∗

j ) and Vλ(t
∗

j ) are respectively the mean and variance of Wλ(t
∗

j ). A recursive algorithm

for calculating Eλ(t
∗

j ) and Vλ(t
∗

j ) can also be found in Qiu, Zi and Zou (2017). Then the chart gives

a signal when

W ∗

λ (t
∗

j ) > hW ,

where hW > 0 is a control limit. Proper selection of the parameter λ and the computation of hW

were discussed in Qiu, Zi and Zou (2017).
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3 DySS Methods When Observations are Correlated

The DySS methods described in the previous section are for cases when process observations are

independent of each other. In cases when process observations are correlated, they can still be used

if their control limits are chosen properly from an IC dataset using numerical approaches such as

the bootstrap algorithms. However, they may not be as effective as we would expect because the

data correlation is not taken into account in their construction. In this section, we introduce some

recent DySS methods proposed specifically for cases when process observations are correlated.

In model (1), assume that the covariance function of the longitudinal response y(t) is V (s, t) =

Cov(y(s), y(t)), for s, t ∈ [0, T ]. By the four-step model estimation procedure in Qiu and Xiang

(2014), we can obtain an estimator of V (s, t) from an IC dataset, denoted as V̂ (s, t). For a new

individual to monitor, we assume that his/her observations are obtained at times {t∗j , j = 1, 2, . . .},

as in Section 2. Instead of monitoring the original observations {y(t∗j ), j = 1, 2, . . .}, Li and Qiu

(2016) suggested monitoring their de-correlated values as follows. Let t∗j be the current time point.

The covariance matrix of yj = (y(t∗1), y(t
∗

2), . . . , y(t
∗

j ))
′ can then be estimated by

Σ̂j,j =




V̂ (t∗1, t
∗

1) · · · V̂ (t∗1, t
∗

j )
...

. . .
...

V̂ (t∗j , t
∗

1) · · · V̂ (t∗j , t
∗

j )


 .

By the Cholesky decomposition, we have

ΦjΣ̂j,jΦ
′

j = D2
j ,

where Φj is a j×j lower triangular matrix with all diagonal elements being 1, andDj = diag{d1, . . . , dj}

is a diagonal matrix with all diagonal elements positive. Let ε̂j = (ε̂(t∗1), . . . , ε̂(t
∗

j ))
′ and ε̂(t∗ℓ ) =

y(t∗ℓ )−µ̂(t∗j ), for ℓ = 1, 2, . . . , j. Then, if we define e∗j = D−1
j Φj ε̂j , we have Var(e

∗

j ) = Ij×j . The last

element of e∗j is denoted as e∗(t∗j ). Then, values in the sequence {e∗(t∗1), e
∗(t∗2), . . .} are uncorrelated

with each other, and they have the common mean 0 and the common variance 1. Li and Qiu (2016)

suggested monitoring this sequence using a CUSUM chart. For instance, to detect an upward mean

shift in the original observations, we can use the CUSUM chart

C+
j = max(0, C+

j−1 + e∗(t∗j )− k),

where C+
0 = 0 and k > 0 is an allowance constant, and the chart gives a signal when

C+
j > h,
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where h > 0 is a control limit. In Li and Qiu (2016), it has been shown that the data de-correlation

described above can be achieved by a recursive computation, which can speed up the computation

significantly.

The above data-decorrelation procedure has several limitations, including i) extensive com-

putation when j is large because computation of a large inverse matrix is involved at each time

point, ii) requirement of a relatively large data storage, and iii) attenuation of a possible process

mean shift as a price to pay for obtaining un-correlated observations. To partially overcome these

limitations, You and Qiu (2017) proposed a modified version of the data de-correlation procedure.

The main idea of the modified version is that instead of de-correlating all history data, we only

de-correlate a small portion of the history data observed after the previous time that the related

CUSUM chart re-starts its charting statistic. Thus, the unnecessary de-correlation for the majority

portion of the history data is avoided in this algorithm. To this end, You and Qiu used the concept

of sprint length that was originally defined in Chatterjee and Qiu (2009) as follows:

Tj =





0, if C+
j = 0,

k, if C+
j 6= 0, . . . , C+

j−k+1 6= 0, C+
j−k = 0.

Then, we only need to de-correlate the current residual ε̂(t∗j ) with residuals within the sprint length

Tj of the current time point t∗j . It has been shown that the computation of this modified version is

much faster than that of the original method.

A multivariate extension of the data decorrelation method discussed in Li and Qiu (2016)

was discussed in Li and Qiu (2017). Again, this multivariate data decorrelation method can be

simplified using the sprint length idea described above, which has not been discussed yet in the

literature.

4 Conclusions

We have introduced some recent methodologies for solving the DS problems in different cases,

including the ones with univariate or multivariate performance variables and the ones with in-

dependent or correlated process observations. Because the DS problems have broad applications

in industries, public health, medical studies, and many other areas, the introduced DySS meth-

ods should have a great potential to provide a major statistical tool for properly handling these
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applications.

The research topic on DySS is still new, and there are many open research problems. For

instance, the classical performance measures for control charts, including ARL and ATS (see the

related discussions in Section 2), accommodates the signal times well. But, they cannot reflect the

overall false positive and false negative performance of the DySS methods. On the other hand, the

regular false positive rate (FPR) and false negative rate (FNR) cannot accommodate the signal

times well. So, a new performance metric is needed for the DySS methods. Also, there could be

different covariates involved in the DS problems in practice. The existing DySS methods discussed

in this paper have not accommodated such covariates properly yet.
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