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Abstract

“Big data” is a buzzword these days due to an enormous amount of data-rich applications

in different industries and research projects. In practice, big data often take the form of data

streams in the sense that new batches of data keep being collected over time. One fundamental

research problem when analyzing big data in a given application is to monitor the underlying

sequential process of the observed data to see whether it is longitudinally stable, or how its

distribution changes over time. To monitor a sequential process, one major statistical tool is

the statistical process control (SPC) charts, which have been developed and used mainly for

monitoring production lines in the manufacturing industries during the past several decades.

With many new and versatile SPC methods developed in the recent research, it is our belief

that SPC can become a powerful tool for handling many big data applications that are beyond

the production line monitoring. In this paper, we introduce some recent SPC methods, and

discuss their potential to solve some big data problems. Certain challenges in the interface

between the current SPC research and some big data applications are also discussed.

Key Words: Correlation; Covariates; Data-rich applications; Dynamic processes; Feature ex-

traction; Image data; Nonparametric methods; Spatio-temporal data.

1 Introduction

Sensors, mobile devices, satellites, and many other modern technologies make data acquisition more

and more convenient. Consequently, data-rich applications are common in practice. Computer

scientists, informaticians, statisticians, and other data scientists have developed many tools for

handling such applications (cf., e.g., Maheshwari 2019, Siegel 2016). In this paper, we introduce

some recent methods in the research area of statistical process control (SPC), which should be

fundamentally important to many big data applications but have not got much attention from the
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big data communities yet. Related discussions on similar topics can be found in Megahed and

Jones-Farmer (2015) and Reis and Gins (2017).

Let us first discuss several data-rich applications. The Landsat project of the US Geological

Survey (USGS) and NASA has launched 8 satellites since 1972 to continuously provide scientifically

valuable images of the Earth’s surface. These images can be freely accessed by researchers around

the world (cf., Zanter 2016). The 47-year archive of the Landsat images has become a major data

resource for scientific research about the Earth’s surface in different scientific disciplines and re-

search areas, including the land use research, forest science, climate science, agriculture forecasting,

ecological and ecosystem monitoring, fire science, water resources, biodiversity conservation, and

more. As a demonstration, the top-left panel of Figure 1 shows two images of the Las Vegas area in

Nevada taken in 1984 and 2007, respectively. These two images clearly show the increasing urban

sprawl in the Las Vegas area during the 23-year time period. Consequently, the environment in that

region has changed quite dramatically in that time period. For instance, Lake Mead on the border

of Nevada and Arizona has shrunk, due mainly to the increasing demand for water resource. The

two images in the top-right panel of Figure 1 show an area of the tropical dry forest lying northeast

of Santa Cruz de la Sierra of Bolivia in 1986 and 2000, respectively. The deforestation in that area

during the 15-year time period is clearly seen in the images. The current satellite of the Landsat

project (i.e., the Landsat 8) can deliver a new image of a given region roughly every 16 days. It

is therefore fundamentally important to sequentially monitor the image data stream of the given

region, and give a signal for further scientific research each time that a significant difference is de-

tected between the current image and the images taken in the past. In the manufacturing industry,

images have been used widely for quality control purposes, partly because they are convenient and

economic to acquire. See plots in the second row of Figure 1 for an example. Applications of image

monitoring in industry include stress and strain analysis of products (Patterson and Wang 1991),

defect inspection of rolling processes (Jin et al. 2004), inspection of composite material fabrication

(Sohn et al. 2004), and more. Many data-rich applications involve data from different sources. As

an example, the Landsat image data mentioned above are often used together with meteorological

data (Hausner et al. 2018), Moderate Resolution Imaging Spectroradiometer (MODIS) data (e.g.,

Weng et al. 2014), and data from other sources. In medical studies, data from different sources,

including administrative claim records, clinical registries, electronic health records, biometric data,

patient-reported data, medical imaging data, biomarker data, and more, are often used together

2



for developing effective new medical treatments (e.g., Lee and Yoon 2017). In many cases, data

from different sources would have different modes, formats, scales, or even quality. It is therefore

challenging to integrate them and analyze the integrated data properly.

Figure 1: Two Landsat images of the Las Vegas area (top-left) taken in 1984 and 2007, two images

of a forest area in Bolivia (top-right) taken in 1986 and 2000, an imaging system for detecting

steel surface defects (low-left), the camera used by the system (low-middle), and an observed steel

surface image (low-right).

One common feature of many big data applications is that observations of one or more longitu-

dinal processes are collected sequentially over time and take the form of data streams in the sense

that new batches of data keep coming over time. For such applications, one fundamental question

to answer is whether the underlying longitudinal processes are temporally stable, or how their

distributions change over time. As an example, by comparing satellite images of a specific region

taken at different times, scientists can study the temporal change of important Earth resources and

Earth environment, such as the land cover (e.g., Vittek et al. 2014), water resource (e.g., Frazier

and Page 2000), land surface temperature (e.g., Parastatidis et al. 2017), and many more.

To sequentially monitor a longitudinal process, a major statistical tool is SPC (Hawkins and

Olwell 1998, Montgomery 2012, Qiu 2014). Traditional SPC concepts and methods are developed

mainly for monitoring production lines in the manufacturing industry, to detect any special cause

variation (e.g., process mean shift or drift) in the observed data. In cases when the data variation

is mainly due to random noise, it is often called common cause variation, and the process under

monitoring is considered to be in statistical control, or simply in-control (IC). When a process
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has a special cause variation present, the process is considered to be out-of-control (OC). An SPC

chart will give a signal and claim the process to be OC once special cause variation is detected.

After the signal, the process needs to be stopped immediately for us to figure out the root causes

of the detected special cause variation, and the process needs to be adjusted accordingly before

it is re-started. When a production process is first started, we do not know much about its

performance yet. In such cases, we usually let the process produce a small number of products

and then analyze the observed data to see whether they meet the designed requirements. If the

answer is “no”, then the process should be adjusted accordingly. This adjust-and-control step

is usually repeated several times until the quality of the production process meets the designed

requirements. This phase of SPC is often called Phase I SPC. After Phase I SPC, we let the

production process keep produce products, monitor its quality at the same time by periodically

sampling the products and analyzing the observed quality variables of the sampled products using

a control chart, and give a signal once the distribution of the observed data is found to be different

from the IC distribution of the quality variables that has been estimated during Phase I SPC.

This phase of SPC is often called Phase II SPC or online process monitoring. For a nice discussion

about these concepts and terminologies, see Woodall (2000). Traditional SPC charts can be roughly

divided into four categories: Shewhart charts (Shewhart 1931), cumulative sum (CUSUM) charts

(Page 1954), exponentially weighted moving average (EWMA) charts (Roberts 1959), and change-

point detection (CPD) charts (Hawkins et al. 2003). Some of them are designed for monitoring

multiple quality variables (e.g., Hawkins 1991, Lowry et al. 1992), or quality variables taking binary,

count or categorical values (e.g., Gan 1993, Megahed et al. 2011). To use these control charts,

there are many issues that need to be properly addressed regarding their design and implementation.

For instance, a Phase II control chart often requires certain IC process parameters to be estimated

beforehand from an IC dataset collected during or immediately after Phase I SPC. The impact of

the IC data size on the performance of the Phase II control chart has been discussed extensively

in the literature. See, for instance, Jeske (2016), Zwetsloot and Woodall (2017) and the references

cited therein.

Traditional SPC charts mentioned above are based on the assumptions that process observa-

tions are independent and identically distributed (i.i.d.) with a common parametric distribution

(e.g., normal) when the process in concern is IC. While SPC has found more and more applications,

these assumptions can hardly be satisfied in many of these applications, especially those involving
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big data. To meet the need of such applications, many new SPC charts have been developed in

recent decades, which work well in cases when one or more of these assumptions are violated. Some

new SPC methods have been developed specifically for data-rich applications. In this paper, we

introduce some recent SPC concepts and methods that are flexibly designed and some others that

are proposed for big data applications. Some challenges in the interface of existing SPC methods

and certain big data applications will also be discussed.

The remainder of the article is organized as follows. Some recent SPC charts that are flexibly

designed are discussed in Section 2. Several recent SPC charts that are developed specifically for

big data applications are described in Section 3. Some challenges to handle big data applications

using SPC methods are discussed in Section 4. Finally, several remarks conclude the article in

Section 5.

2 Recent SPC Research for Monitoring Processes with Compli-

cated Data

The four types of basic SPC charts discussed in Section 1 are based on the assumptions that IC

process observations at different time points are i.i.d. and follow a parametric distribution (e.g.,

normal). In practice, these assumptions would hardly be valid, especially in data-rich applications.

In the literature, it has been well demonstrated that the basic SPC charts are unreliable to use

when one or more of their model assumptions are violated (Hawkins and Olwell 1998, Qiu 2014).

So, much recent SPC research focuses on developing new control charts that are appropriate to

use without these assumptions. In this section, we introduce some representative recent SPC

methodologies that are developed to handle cases when one or more conventional assumptions are

invalid. For simplicity of presentation, our introduction focuses mainly on Phase II SPC. For recent

research on Phase I SPC, see papers such as Capizzi and Masarotto (2013), Graham et al. (2010),

Jones-Farmer et al. (2009, 2014), and Ning et al. (2015).

2.1 Serially correlated data monitoring

In practice, process observations at different time points are usually correlated with each other

(Apley and Tsung 2002). In the literature, there has been some discussion about process monitoring
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of serially correlated data. Many existing methods are based on parametric time series modelling

of the observed data, and on sequential monitoring of the residuals obtained from the time series

modelling. For instance, it is assumed in Capizzi and Masarotto (2008) that IC process observations

{Xn, n ≥ 1} follow the ARMA(p,q) model

Xn = µ0 +

p∑
j=1

φj(Xn−j − µ0) + εn −
q∑
j=0

θjεn−j , (1)

where µ0 is the IC mean, {εn} are i.i.d. random errors with the distribution N(0, σ2), and {φj}

and {θj} are coefficients. Then, after the ARMA(p,q) model (1) is estimated from an IC dataset,

residuals of the Phase II process observations can be computed. Capizzi and Masarotto then

suggested a CPD chart for monitoring the residuals. For related discussions, see Apley and Shi

(1999), Apley and Tsung (2002), Berthouex et al. (1978), Lee and Apley (2011), Loredo et al.

(2002), Montgomery and Mastrangelo (1991), Runger and Willemain (1995), Vander Wiel (1996),

Wardell et al. (1994), and more.

Recently, Qiu et al. (2019) suggested a more flexible approach, described briefly below. Instead

of using a parametric time series model (e.g., (1)), it is assumed that γ(q) = Cov(Xi, Xi+q) depends

only on q when i changes, and γ(q) = 0 when q > Tmax, where Xi and Xi+q are two process

observations obtained at times i and i + q when the process is IC, and Tmax is an integer. The

first assumption says that the covariance among process observations is stationary, which should be

reasonable in most applications and is true when the ARMA(p,q) model (1) is valid. The second

assumption says that serial data correlation exists only when two observations are within Tmax > 0

in their observation indices, which should be (approximately) true in many applications, as long as

Tmax is not chosen too small. Then, the covariance structure described by γ(q) can be estimated

from an IC dataset, the Phase II process observations can be de-correlated using the estimated

covariance structure, and a CUSUM chart can be applied to the de-correlated data for process

monitoring. Li and Qiu (2019) suggested a self-starting version of this approach, where estimates

of the IC parameters could be updated recursively during Phase II process monitoring. In this

modified version, the charting statistic is based on data categorization, and thus it is more robust

to the IC process distribution. An alternative nonparametric CUSUM chart based on wavelet

transformations was proposed recently in Li et al. (2019a) for monitoring autocorrelated processes.

Monitoring of autocorrelated count data was discussed in Fu and Jeske (2014), Xu and Jeske (2017),

and Weib and Testik (2009).
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2.2 Dynamic process monitoring

For many longitudinal processes, their distributions could change over time, even when their perfor-

mance is considered IC. One example is about our medical indices, such as blood pressure readings

and cholesterol levels. Distributions of these indices would change when people get older. To mon-

itor such dynamic processes, the traditional SPC charts are obviously inappropriate to use because

they require the IC process distribution to be unchanged over time, and they would give false

signals when the (cumulative) difference between the IC process observations and the estimated

IC distribution exceeds their control limits. In the past several years, we have developed a new

method, called dynamic screening system (DySS), for sequential monitoring of dynamic processes

(e.g., Li and Qiu 2016, 2017, Qiu and Xiang 2014, 2015, Qiu et al. 2018, Qiu et al. 2019, You and

Qiu 2019, 2020), which is briefly described below.

The DySS method will be introduced using the example to early detect stroke by sequentially

monitoring a person’s total cholesterol level readings. It consists of the following three main steps:

(i) Estimation of the regular longitudinal pattern: We first estimate the IC longitudinal

pattern of the total cholesterol level from the observed total cholesterol level data of a set of

non-stroke people.

(ii) Cross-sectional comparison: For a specific person to monitor, we standardize her/his

total cholesterol level observations using the estimated regular longitudinal pattern obtained

in step (i).

(iii) Sequential monitoring: Apply a conventional control chart to the standardized data ob-

tained in step (ii) for sequential process monitoring.

Each of these three steps will be briefly described below using a dataset from the SHARe

Framingham Heart Study (Qiu and Xiang 2014). In the dataset, there are 1,028 non-stroke patients

and 27 stroke patients. Each patient is observed at seven follow-up times at which observations

of the total cholesterol level are collected. So, the observed data of the 1,028 non-stroke patients

can be used as an IC dataset for estimating the regular longitudinal pattern of the total cholesterol

level y, and they are assumed to follow the nonparametric longitudinal model

y(tij) = µ(tij) + ε(tij), for i = 1, 2, . . . , 1, 028, j = 1, 2, . . . , 7, (2)
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where tij is the jth observation time of the ith non-stroke patient, µ(tij) is the mean of y(tij), and

ε(tij) is the error term. For simplicity, observation times are re-scaled to be in the design interval

[0, 1]. For any s, t ∈ [0, 1], the covariance function of ε(·) is denoted as V (s, t) = Cov(ε(s), ε(t)). In

model (2), observations of different people are assumed to be independent. Then, by the four-step

model estimation procedure described in Qiu and Xiang (2014), the estimates of µ(t) and σy(t) can

be obtained, denoted as µ̂(t) and σ̂y(t), respectively. The pointwise 95% confidence band of µ(t),

defined as µ̂(t)±1.96σ̂y(t), is shown in Figure 2 by the bold-dashed curves, along with the estimated

mean µ̂(t) (bold-solid curve) and the observed data of the 27 stroke patients (thin curves). For
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Figure 2: The 95% pointwise confidence band of the mean total cholesterol level µ(t) (bold-dashed

curves), the point estimator µ̂(t) of µ(t) (bold-solid curve), and the observed total cholesterol levels

of the 27 stroke patients (thin curves).

a specific patient to monitor, assume that his/her observations of y are y(t∗j ), for t∗j ∈ [0, 1] and

j ≥ 1. Then, the standardized observations are defined as

ε̂(t∗j ) =
y(t∗j )− µ̂(t∗j )

σ̂y(t∗j )
, for j ≥ 1.

By using the standardized observations, the observed data of the specific patient have actually been

compared to the observed data of the non-stroke patients cross-sectionally at different observation

times {t∗j}. In cases when the observations {y(t∗j )} are independent at different time points and

their distributions are normal, we can define the upward CUSUM charting statistic to be

C+
j = max

[
0, C+

j−1 + ε̂(t∗j )− k+C
]
, for j ≥ 1,

where C+
0 = 0 and k+C > 0 is a constant. The upward CUSUM charting statistic C+

j is used here

because the upward mean shifts are our main concern in this example about the total cholesterol
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level. Then, a signal is given by the chart when C+
j is larger than a properly chosen control limit.

In the setting considered in Qiu and Xiang (2014), the control charts for monitoring the 27 stroke

patients are shown in Figure 3, from which 22 patients get signals from the charts. The cases

when the observations {y(t∗j )} are serially correlated, multivariate, and/or their distributions are

non-Gaussian have been discussed in the literature. See, for instance, Li and Qiu (2016, 2017), Qiu

et al. (2018) and the references cited therein.
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Figure 3: CUSUM charts for monitoring the 27 stroke patients in the setup considered in Qiu and

Xiang (2014). The dashed horizontal lines denote the control limit.

2.3 Nonparametric SPC

Classic control charts, such as those introduced in Section 1, are based on the assumption that

process observations follow a normal or another parametric distribution, which is rarely valid in

practice. It has been well demonstrated that the classic control charts are unreliable to use when

their distributional assumption is violated (e.g., Qiu and Hawkins 2001). So, nonparametric SPC

has been in rapid development in recent years, and many nonparametric control charts have been
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developed. For recent overviews on this topic, see Chakraborti and Graham (2019) and Qiu (2018).

In this part, some representative nonparametric control charts will be introduced.

Let us first discuss the univariate case. Many existing univariate nonparametric control charts

are based on the ranking information within different batches of process observations. Assume

that process observations at the nth time point are Xn1, Xn2, . . . , Xnm, for n ≥ 1, where m is the

batch size. For the nth batch of observations, let Rnj be the rank of |Xnj − µ̃0| in the sequence

{|Xn1 − µ̃0|, |Xn2 − µ̃0|, . . . , |Xnm − µ̃0|}, where µ̃0 is the IC median of the process distribution.

Then, the sum of the Wilcoxon signed-ranks is

ψn =
m∑
j=1

sign (Xnj − µ̃0)Rnj , (3)

where sign(u) is the sign function defined to be -1, 0, 1, respectively, when u < 0,= 0, > 0.

Intuitively, a mean shift in the process observations would be reflected in the value of ψn. For

instance, an upward mean shift would make the value of ψn positively large, and a downward shift

would make it negatively large. Thus, the classic control charts discussed in Section 1 can be applied

to {ψn} to make the resulting charts robust to the IC process distribution. Many nonparametric

control charts have been developed in this way. See, for instance, Chakraborti et al. (2015),

Graham et al. (2011), Hawkins and Deng (2010), Li et al. (2010), and Zou and Tsung (2010).

An alternative nonparametric CUSUM chart based on kernel density estimation was developed by

Ambartsoumian and Jeske (2015).

In multivariate cases, process observations {Zn = (Zn1, Zn2, . . . , Znp)
′, n ≥ 1} are vectors,

where p > 1 is the number of dimensions and Zn1, Zn2, . . . , Znp are observations of p quality

variables. Without loss of generality, assume that these observations have been standardized to

have mean 0 and variance Ip×p. In practice, the IC mean and variance could be estimated from

an IC dataset for data standardization. In this setting, Qiu and Hawkins (2001) suggested a

multivariate nonparametric SPC chart, based on cross-component ranking of the observed data. To

be more specific, for the observed vector Zn, the first anti-rank An1 is defined to be the index of the

smallest component of Zn that takes its values in (1, 2, . . . , p), the last anti-rank Anp is the index of

the largest component, and so forth. Unlike the p ranks of the components of Zn that are equally

important in detecting mean shifts in Zn, the first anti-rank is particularly sensitive to downward

mean shifts in one or a small number of components of Zn, and the last anti-rank is particularly

sensitive to upward mean shifts in one or a small number of components of Zn. In cases when no
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prior information is available about the direction of a future shift, the first and last anti-ranks can

be used jointly. Then, a nonparametric CUSUM chart was proposed in Qiu and Hawkins (2001)

based on the anti-ranks, which was robust to the original process distribution. Qiu (2018) pointed

out that “In cases when the joint distribution of Zn is not normal, its marginal distributions and

the relationship between any two subsets of the components of Zn could be complicated, which

explains the main reason why multivariate non-Gaussian distributions are difficult to describe.”

To overcome this difficulty in monitoring multivariate non-Gaussian data, Qiu (2008) proposed

a general scheme to construct multivariate nonparametric SPC charts, by first categorizing the

original data Zn and then describing the joint distribution of the categorized data using a log-

linear model (Agresti 2002). A nonparametric control chart can then be constructed based on the

difference between the categorized Phase II observed data and the IC distribution of the categorized

data that can be estimated from an IC dataset. A univariate version of this approach was discussed

in Qiu and Li (2011). It has been shown in that paper by several large simulation studies that this

approach performs favorably, compared to some representative nonparametric charts based on data

ranking. Besides the multivariate nonparametric SPC charts described above, alternative charts

based on data depth, spatial sign, and spatial rank can be found in Holland and Hawkins (2014),

Li et al. (2013), Liu (1995), Zou and Tsung (2011), and Zou et al. (2012).

3 Recent SPC Research for Handling Data-Rich Applications

In recent years, SPC has found many data-rich applications, including those involving a large num-

ber of quality variables, processes with image or network data, and more. To properly handle such

applications, many new SPC methods have been developed in the literature. Some representative

ones are described below.

3.1 Sequential monitoring of high-dimensional multivariate processes

Semiconductor manufacturing is a complicated process with a series of steps, which can be roughly

divided into the following four groups: blank wafer creation, diffusion and deposition, photolithog-

raphy, and etching and metallization (May and Spanos 2016). See Figure 4 for a demonstra-

tion. At each step, observations of many quality variables are collected and monitored, regard-
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ing the physical or electronic properties of a product or its components, such as film thickness,

film uniformity, and electronic resistance. As an example, in a real semiconductor manufacturing

dataset maintained by the University of California at Irvine (UCI) Machine Learning Repository

(http://archive.ics.uci.edu), observations of a total of 590 quality variables are collected. Produc-

tion of many other products, especially durable products (e.g., cars, airplanes), all consists of many

steps, with a large number of quality variables being monitored. For such high-dimensional mul-

tivariate processes, it is important to develop effective and efficient SPC charts for quality control

purposes.

Figure 4: Demonstration of a semiconductor manufacturing process.

Early multivariate SPC charts were designed mainly for monitoring multivariate processes with

a relatively small number of quality variables (e.g., Hawkins 1991, Lowry et al. 1992). These charts

would become ineffective when the number of quality variables is large, partly because all quality

variables are treated equally and monitored jointly in these charts and thus they cannot react

promptly to shifts in a small number of quality variables in such cases. Also, their computation

when monitoring high-dimensional processes is so intensive that they become inappropriate for such

applications. Almost at the same time, Zou and Qiu (2009) and Wang and Jiang (2009) proposed

two multivariate control charts for monitoring high-dimensional processes. The major idea behind

these control charts is that shifts in high-dimensional processes often occur in a small number of

quality variables in practice. Thus, it could improve the effectiveness of a multivariate control

chart if the quality variables that most probably have shifts at the current time point can first be
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identified by a variable selection procedure and then the control chart can just focus on the selected

quality variables. Let {Xn, n ≥ 1} be observations of a p-dimensional process, where p is large,

and let Xn be the sample mean of {X1,X2, . . . ,Xn}. Then, Zou and Qiu (2009) considered the

following adaptive LASSO penalized likelihood function:

PL(δ) = n
(
Xn − µ0 − δ

)′
Σ−10

(
Xn − µ0 − δ

)
+ nγ

p∑
j=1

1

|Xnj − µ0,j |
|δj |,

where µ0 and Σ0 are the IC mean and the IC covariance matrix of the process, Xnj , µ0,j and δj are

the j-th components of Xn, µ0 and δ, respectively, and γ > 0 is a smoothing parameter. Let the

solution of the minimization procedure minδ PL(δ) be denoted as δ̂γ . Then, by the oracle property

of the adaptive LASSO procedure, if a given quality variable does not have a mean shift by the

time point n, then the corresponding component of δ̂γ should be 0. Thus, process monitoring can

just focus on the non-zero components of δ̂γ . It has been shown in Zou and Qiu (2009) that the

resulting control chart would be much more effective than some traditional multivariate control

charts, especially in cases when p is large but the number of components having shifts is small.

In the approach discussed in Wang and Jiang (2009), an L0 penalty was recommended for the

penalized likelihood function, while the penalty in PL(δ) defined above is L1. Several modifications

and generalizations have been proposed. See, for instance, Capizzi and Masarotto (2011), Yan et

al. (2018), and Zou et al. (2015). One good property of such multivariate control charts based

on variable selection is that the shifted components can be easily specified after the related chart

gives a signal. Recent discussions on post-signal diagnostics when monitoring high-dimensional

processes can be found in Li et al. (2019b) and the references cited therein. Process monitoring

and post-signal diagnostics about the semiconductor manufacturing dataset mentioned above were

discussed in Zou et al. (2015) and Li et al. (2019b).

Another type of control charts that are potentially useful for monitoring high-dimensional mul-

tivariate processes is based on machine learning approaches. A key component of a control chart is

an appropriate decision rule to decide whether the process under monitoring is IC or not at each

observation time point. So, the process monitoring problem could be regarded as a classification

problem in which the process status should be classified into either the IC or the OC status af-

ter the process observations at a given time point are analyzed properly by a control chart. To

develop a classification rule from a training dataset, usually it requires that the training dataset

contains both IC and OC process observations. Namely, the training data can be denoted as

{(Xt, yt), t = 1, 2, . . . ,m}, where Xt are observations of the p-dimensional quality vector X and
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yt ∈ {−1, 1} are group labels with “yt = −1” denoting the IC group and “yt = 1” the OC group.

In SPC applications, however, we usually have an IC dataset only, obtained before Phase II process

monitoring. Thus, the above mentioned labelled data are often unavailable. To overcome this diffi-

culty, Tuv and Runger (2003) proposed the idea of artificial contrasts. By this idea, some artificial

observations of X can be generated from a given distribution (e.g., the distribution of each compo-

nent of X is assumed Uniform in a range and all components of X are assumed to be independent).

Then, these artificial observations can be used as OC observations. A classification rule can then be

obtained from the training dataset that consists of the original IC data and the artificial OC data

by a machine learning approach, such as support vector machines (SVM), random forests (RF),

multiple additive regression trees (MART), and more. For generalizations and improvements of

the original artificial contrasts idea, see Deng et al. (2012) and the references cited therein. To

accommodate the fact that only IC data are available before Phase II process monitoring, Sun

and Tsung (2003) suggested a multivariate control chart based on one-class classification. More

specifically, a boundary curve (or surface) of the IC data can be first specified using the SVM

algorithm for one-class classification. To increase the flexibility of the boundary curve (or surface),

a kernel-distance is used when measuring the distance from a given data point to the center of

the IC data. Then, a Phase II process observation is claimed to be OC if it is located outside the

boundary curve (or surface). Some modifications of this approach can be found in He and Zhang

(2011), Ning and Tsung (2013) and the references cited therein.

There are also some multivariate SPC charts based on the principal component analysis (PCA).

See, e.g., Ferrer (2007), Jachson (1991), Kourti and MacGregor (1996), and the references cited

therein. PCA is a popular statistical tool for reducing the dimensionality of an observed dataset

(Johnson and Wichern 2007). The first principal component of the p-dimensional random vector X

is defined to be the linear combination Y1 = a′1X with the largest variance, where a1 is a coefficient

vector with unit length, the second principal component is defined to be the linear combination

Y2 = a′2X with the largest variance, where a2 is a coefficient vector with unit length that is

orthogonal to a1 (i.e., a′1a2 = 0), and so forth. In practice, the principal components can be obtained

from the eigenvalue-eigenvector decomposition of the covariance matrix Σ of X, where Σ can be

estimated from an IC data. By using the first several principal components, majority variability

in the original distribution of X can be preserved. Thus, the dimension can be reduced. For the

observed p-dimensional process observations {Xn, n ≥ 1}, if q principal components are used, where
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q is often much smaller than p, then we can simply monitor {Yn = (a′1X,a
′
2X . . . ,a′qX)′, n ≥ 1}.

However, some existing PCA-based multivariate SPC charts depend on the normality assumption

in their chart designs. Also, process shifts in the directions that are orthogonal to the directions

of the adopted principal components cannot be detected effectively by such control charts. In

the literature, there are also some multiscale control charts developed for monitoring multivariate

processes (e.g., Bakshi 1998, Ganesan et al. 2004, Guo et al. 2012, Reis and Saraiva 2006).

These charts are usually based on the wavelet transformations (Donoho and Johnstone 1994) of the

original process observations. The wavelet coefficients at different scales are used for constructing

control charts for detecting process mean and/or variance shifts. In the construction of the control

charts, PCA is often applied to the wavelet coefficients to reduce dimensionality (e.g., Reis and

Saraiva 2006).

3.2 Sequential monitoring of univariate and multivariate profiles

All the control charts discussed in the previous parts are for monitoring observations of a single or

multiple quality variables of a sequential process. In many applications, performance of a process is

reflected by the relationship between a set of response variables and a set of predictors. Observations

of the response variables versus the predictors are called profiles in the SPC literature. As an

example, the deep reactive ion etching (DRIE) process is critical to the output wafer quality in

semiconductor manufacturing and requires careful control and monitoring. In the DRIE process,

the desired etching profile is the one with smooth and straight side walls and flat bottoms. Ideally,

the side walls of a trench should be perpendicular to the bottom of the trench with a certain degree

of smoothness around the corners, as shown by the plot in the middle of the top panel of Figure

5. Various other profile shapes, such as the positive and negative ones shown in the top panel

of Figure 5 due to underetching and overetching, are considered to be unacceptable (Rauf et al.

2002). The lower-left panel of Figure 5 shows a multi-operation forging machine with progressive

dies. In the forging processes, tonnage force exerted on all dies are measured by four strain sensors

mounted at four corners. The lower-right panel of Figure 5 shows the profile data recorded by the

four strain sensors during one forging process.

To monitor the DRIE process automatically, observed data of each etching profile can be

acquired by the scanning electron microscope (SEM). Because the etching profiles are usually

symmetric, we can focus on one half of each profile (e.g., the left half). To make that part of the
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Figure 5: Several etching profiles of a deep reactive ion etching process (upper panel), a multi-

operation forging machine (lower-left panel), and profile data recorded by the four strain sensors

of the forging machine during one forging process (lower-right panel).

profile convenient to describe by a mathematical function, it can be rotated by 45 degrees along a

given reference point in a pre-specified coordinate system, before profile readings are collected by

SEM. Then, the observed profile data can be described by the following model:

yij = g(xij) + εij , for j = 1, 2, . . . , ni, i = 1, 2, . . . , (4)

where g(x) is the mean profile function, {(xij , yij), j = 1, 2, . . . , ni} are observations of the ith

profile, and {εij} are random errors. When a profile is IC, its mean profile function is denoted

as g0(x). This function and other IC quantities can usually be estimated from an IC dataset

that consists of a number of observed IC profiles. Then, Phase II profile monitoring is mainly

for detecting any systematic deviation of the observed profiles from the IC profile pattern that is

described by g0(x) and other IC quantities. For instance, if our main concern is about the mean

profile function, then our goal is to detect any deviation of the actual mean profile function of a

future profile from the IC mean profile function g0(x). Early profile monitoring methods assume

that g(x) = a + bx, where a and b are regression coefficients (e.g., Kang and Albin 2000, Kim

et al. 2003, Zou et al. 2006). In such cases, a and b can be estimated from observations of

individual profiles, and then the sequence of estimated values of each coefficient can be monitored

by a conventional control chart. For an overview on this topic, see Woodall (2007). More recent

research on profile monitoring does not require any parametric form for describing g(x), and the
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within-profile data correlation can also be accommodated in some methods (e.g., Qiu et al. 2010,

Zou et al. 2008). For a discussion about monitoring of real DRIE profile data by a nonparametric

approach, see Zou et al. (2009). In the forging process monitoring problem shown by the two

lower panels of Figure 5, four univariate profiles need to be monitored simultaneously. This is the

multivariate profile monitoring problem discussed in the SPC literature. For Phase I and Phase

II methods on multivariate profile monitoring, see Paynabar et al. (2016), Ren (2019) and the

references cited therein. Some methods for monitoring profiles with multiple predictors will be

discussed in the next subsection.

3.3 Sequential monitoring of spatial data

The top-left panel of Figure 6 shows a 3D printed product. For this product, we are mainly

concerned about the shape of its top surface. To monitor its top surface, a laser scanner shown in

the top-middle panel of Figure 6 can scan the top surface and record the positions of the points

on the top surface. The recorded data of the top surface of one product are shown in the top-right

panel of Figure 6. In such recorded data, the number of scanned points on one top surface is about

150,000 and their (x, y) positions in the coordinate system may deviate from regularly spaced rows

and columns. The two lower panels of Figure 6 show the incidence rates of an infectious disease

in Florida on 06/01/2012 (a summer time) and 12/01/2012 (a winter time). Because of the great

threat of infectious diseases to the public health, some global, national or regional disease reporting

and surveillance systems have been established to collect disease occurrence data (often on a daily

basis), and the collected data are then monitored continuously in these systems for detecting disease

outbreaks early. The observed data shown in Figure 6 can be regarded as spatial profile data, since

the data at each time point describe the relationship between a response variable (i.e., the surface

height and the disease incidence rate in the two examples) and the location variables x and y.

In the two applications shown in Figure 6, a sequence of spatial data needs to be monitored

in order to monitor the production of the 3D printed products or the infectious disease incidence

rates. This is the so-called spatio-temporal process monitoring problem in the literature, and its

major goal is to check whether the spatial data have a significant distributional shift over time.

Besides the two applications shown in Figure 6, spatio-temporal process monitoring has many

other important applications, including environmental monitoring (e.g., temporal monitoring of

the spatial PM 2.5 readings), weather surveillance, and many more. In many applications, it is

17



��

��

��

��

��

��

�	


�� 
�� 
�� 
�� 
��

�������

�������

�����	�

�����	�

�������

�������

��

��

��

��

��

��

�	


�� 
�� 
�� 
�� 
��

�������

�������

�����	�

�����	�

�������

�������

Figure 6: Top panels: A 3D printed product (left), a laser scanner (middle), and the observed data

of the product’s top surface. Bottom panels: Incidence rates of an infectious disease in Florida on

06/01/2012 (left) and 12/01/2012 (right).

often reasonable to assume that the true spatial mean function of an individual spatial profile is

a continuous function. But, the spatio-temporal data are often spatio-temporally correlated, with

observations closer in time and/or location are more correlated. Also, the distribution of the spatial

data often changes over time even when the process is IC, due to seasonality and other reasons.

These features make the spatio-temporal data challenging to analyze and monitor properly. In a

national or regional disease reporting system, some conventional control charts, such as the CUSUM

and EWMA charts, are usually included. However, the spatio-temporal data correlation and the

time-varying nature of the IC longitudinal pattern of the spatial profiles are usually ignored by

them (Chen et al. 2010, Kite-Powell et al. 2010). In the epidemiology literature, there are

some existing methods for detecting spatial or spatio-temporal disease clusters based on the Knox

or scan statistic (e.g., Knox and Bartlett 1964, Kulldorff 1997). These methods, however, are

all retrospective, and they require certain restrictive distributional assumptions (e.g., the disease

incidence follows a Poisson or Negative Binomial distribution). Some control charts for prospective

disease surveillance have been developed based on the Knox or scan statistic (e.g., Marshall et al.

2007, Woodall 2006). But, the spatio-temporal data correlation and the time-varying nature of

the IC longitudinal pattern of the spatial profiles are also ignored in these methods. There are

some other discussions about prospective online monitoring of spatial data, motivated mainly by

certain manufacturing applications where it is reasonable to assume that the IC distribution of the

observed spatial data does not change over time. For instance, Jiang et al. (2011) suggested a
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likelihood-ratio-based control chart for monitoring spatial data, by assuming the spatial data are

jointly normally distributed. Colosimo et al. (2014) and Wang et al. (2014) suggested control

charts based on the Gaussian process modelling framework. Zang and Qiu (2018a,b) suggested

control charts for both Phase I and Phase II monitoring of spatio-temporal data obtained from a

3D printing production process (cf., Figure 6) by using the nonparametric local linear kernel surface

estimation procedure, where the spatio-temporal data correlation was ignored. For monitoring the

disease incidence rates, Zhang et al. (2015, 2016) suggested monitoring the observed data in

individual regions of different scales. The suggested methods in these papers can accommodate the

time-varying nature of the IC process distribution. But, they do not monitor the observed disease

incidence rates in different regions simultaneously. So far, we could not find any existing methods

for monitoring spatio-temporal data that can properly accommodate both the spatio-temporal data

correlation and the time-varying IC longitudinal pattern of the spatial profiles. Therefore, much

future research is needed on this topic.

Due to a rapid progress in image acquisition techniques, images have become a basic data

format in many applications. The images shown in the top panels of Figure 1 are taken by the

satellite of the Landsat project (cf., Section 1 for a related discussion). By monitoring the sequence

of such images of a given region, we can study longitudinal changes of Earth’s surface and/or the

environment in that region. Images can also be regarded as spatial profiles because they consist

of many spatially located pixels at which the image intensity values denote the brightness. But,

besides data correlation and time-varying IC longitudinal pattern of the spatial profiles mentioned

above, images have some special data structures, including the two major ones described below.

First, images usually have edges, and the corresponding image intensity surfaces would have jumps

and other singularities involved. Second, the geometric locations in a sequence of images of a given

object (e.g., a specific region in the satellite images shown in Figure 1) are often misaligned, due to

the relative move between the camera and the object at different image acquisition times. Therefore,

the observed images in the sequence need to be geometrically aligned before process monitoring.

Otherwise, the process monitoring results could be unreliable. To this end, image registration

methods for image geometric alignment become critically important (e.g., Qiu and Xing 2013). To

demonstrate the importance of image registration, Figure 7 shows the satellite images of the San

Francisco bay area taken in 1990 and 1999, respectively, their difference before image registration,

and their difference after image registration. It can be seen that the pattern in the image of the

19



difference between the two original images is mainly due to a geometric misalignment, and this

pattern mostly disappears after the image registration.

Figure 7: Two satellite images taken at the San Francisco bay area in 1990 and 1999, respectively,

their difference before image registration, and their difference after image registration (from left to

right).

It should be pointed out that image registration cannot solve all the problems caused by

geometric misalignment. To make this point clear, let us consider a toy example shown in Figure

8. Plots (a) and (b) in the figure are two original images to compare. By checking the edge curves

in the two images, it can be seen that their positions are different. For instance, the right end of

the edge curve in plot (b) is higher than that in plot (a). After image registration, assume that

the image in plot (b) becomes the one in plot (c). If we compare the images in plots (a) and (c)

carefully, then we can see that the original difference between (a) and (b) has been mostly removed

by image registration. But, the discrepancy is not completely removed yet, which can be seen from

the pixelwise difference between the images in (a) and (c) that is shown in plot (d). It can be seen

that the pixelwise differences around edge locations are large. In such cases, comparison based on

such differences would likely lead to a false conclusion that, besides the geometric misalignment, the

two original images are significantly different. This example shows that edge pixels and pixels in the

continuity regions play quite different roles in image comparison. Thus, they should be considered

separately. Based on these considerations, Feng and Qiu (2018) suggested several approaches for

comparing two images of a same object, using either the observed image intensities around the

detected edges, or the observed image intensities in the estimated continuity regions, or both. The

methods were demonstrated using the steel surface example shown in Figure 1.

There is some existing research on sequential monitoring of image data, mainly in the chemical

and industrial engineering literatures because images have been widely used in manufacturing

industry in recent years (e.g., Megahed et al. 2011, Prats-Montalban 2014, Yan et al. 2015). Some

existing methods for image monitoring proceed in two main steps. They first extract some features
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Figure 8: (a) First original image, (b) second original image, (c) second original image after image

registration, and (d) pixelwise difference between (a) and (c).

from each observed image using methods such as the PCA, and then monitor the extracted features

by a conventional control chart (e.g., Duchesne et al. 2012, Lin et al. 2008). Some other methods

focus on certain pre-specified regions, called regions of interest (ROIs), in individual images, and

then monitor the images by a control chart constructed based on a summary statistic (e.g., the

average image intensity) of the ROIs (e.g., Jiang et al. 2011, Megahed et al. 2012). The first type

of methods mentioned above have not taken into account the spatial data structure of the observed

images, while the second type considers the spatial data structure partially by specifying ROIs in

advance. All these methods do not take into account the edges and other complicated structure

of the image intensity surfaces. They have not properly accommodated the possible geometric

misalignment among different observed images and possible data correlation either. Therefore,

much future research is needed for proper monitoring of image data.

3.4 Sequential monitoring of network data

The Enron email corpus is a well-known dataset in social network research. After the bankruptcy

of the Enron Corporation in October 2001, all emails to and from the Enron employees during

the period from 1998 and 2002 were made public by the ruling of the Federal Energy Regulatory

Commission. A subset of this data is shown in Figure 9 as a network, which describes how all

people in the dataset are connected by emails. For a network, people usually use the tool of graph

theory to describe its status at a given time point or within a given time period, where discrete

objects (i.e., employees in the Enron email example) are called nodes or vertices, and the pairwise

relationship among nodes is described by edges. In the Enron email example, the name of an

employee is attached to the corresponding node. Such nodes are called labeled nodes. The edges

are denoted by directed lines to specify the email senders and recipients. The amount of emails
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between a pair of employees is denoted by the line thickness of an edge. Two employees are not

connected by an edge if they have no email conversations during the specific time period of the

data. In practice, the relationship among nodes in a network often changes over time, the related

network process is called a dynamic network process. For a dynamic network process, it is often

our interest to detect any distributional changes of the network data over time. In many cases,

the temporal distributional changes are related to one or more sub-networks, which are also called

anomalies in the literature (e.g., Savage et al. 2014).

Figure 9: Network of a subset of the Enron email corpus.

There have been some existing SPC methods for monitoring a network process. These methods

usually apply SPC charts to aggregated measures of the topological characteristics (e.g., density,

degree, clustering coefficient, and scan statistic) of the entire network or relevant sub-networks (e.g.,

McCulloh and Carley 2011, Neil 2013). Some of them are based on parametric modelling while

the others are nonparametric. For instance, Zou and Li (2017) suggested a network monitoring

approach based on network state-space modelling. Dong et al. (2019) suggested a approach for

monitoring multi-layer networks, using the so-called multi-layer weighted stochastic block modelling

that was based on the assumption of a multivariate zero-inflated Poisson distribution for describing

the correlated multi-layer interactions among knots. For other recent research on network modelling

and monitoring, see Jeske et al. (2018), Savage et al. (2014), Woodall (2017), Yu et al. (2019), and

the references cited therein. The Enron email corpus data shown in Figure 9 have been analyzed

in many papers, including Dong et al. (2019).
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4 Interface Between Big Data and SPC

When data get larger, they often have a more complicated structure. Consequently, proper analysis

of them becomes more challenging. In this part, we discuss some challenging issues that are quite

common to various big data monitoring problems, with the hope that they can be properly addressed

in the future research.

Feature-based process monitoring. Because of the big data size in certain process moni-

toring problems, people tend to simplify the observed data, by first extracting certain features of

the observed data and then monitoring the extracted features. One example is about image moni-

toring discussed in Section 3.3. Instead of monitoring a sequence of whole observed images, some

authors suggest monitoring one or more types of image features. Commonly used image features

include landmarks, edges, corners, regions, centroids, (functional) principal components, and more

(Qiu and Nguyen 2008). By properly monitoring chosen features, the process monitoring problem

and the involved computation are simplified. In such cases, a key question to answer is whether

the original goals of process monitoring can still be achieved by using the simplified data. In some

cases, the answer is unfortunately negative. As an example, principal components are commonly

used in image monitoring. While these quantities ignore most spatial structures (e.g., edges) in the

observed images, they are not sensitive to certain specific shifts as well. For instance, assume that

the first principal component of a sequence of images has the expression

Y1n = a′1Xn, for n ≥ 1,

where Xn is a long-vector of the observed image intensities of the nth image, and a1 is a coefficient

vector. Then, by monitoring the sequence of the first principal component {Y1n, n ≥ 1}, it is impos-

sible to detect all mean shifts δ satisfying a′1δ = 0. Therefore, there are several important questions

to answer before a feature-based big data monitoring method can be considered, which include:

i) what kind(s) of features are appropriate to use for a specific big data monitoring problem, ii)

how many features should be extracted for process monitoring, and iii) whether the original goals

of process monitoring have been substantially compromised by using the selected features. These

questions, however, have not been properly addressed yet in the literature. Instead of extracting

features to simplify the original observed data and then monitor the extracted features, an alterna-

tive approach is to monitor the original process observations and use distributed parallel computing

(cf., Chen et al. 2018) and other fast computing algorithms to handle the heavy computing burden.
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More future research is needed in that direction.

Accommodation of complicated data structure. Big data often have complicated data

structures. One such structure concerns data correlation. Usually, quality variables are correlated

with each other, and their observations at different time points are also serially correlated. Such

data correlation is often a reflection of the impact of certain confounding variables, such as weather

and geographical conditions in the Landsat image example (cf., Figure 1). Because the impact

of the confounding variables is often difficult to describe, the correlation in the observed data is

difficult to describe as well. In some existing methods for monitoring images, networks, and other

data streams with complicated structures, the observed data are assumed to be either independent

or following some specific parametric models (e.g., ARMA models). These assumptions are rarely

satisfied in practice, making the related methods unreliable or ineffective to use (Qiu et al. 2019).

Process observations have many other complicated structures, especially when the data are big.

For instance, images usually have edges and other spatial structures, and network graphs may have

clusters involved. Proper accommodation of such data structures is also important to make the

related process monitoring methods effective.

Accommodation of covariates. In practice, performance of a process is often affected

by various covariates. Observations of some covariates could be available to us. Therefore, we

should make use of the helpful information in covariates when monitoring the related process.

As an example, the sequence of Landsat images of a given region may depend on the weather

and geographical conditions of the region, and observations of these conditions can be obtained

from the databases managed by the National Weather Service, National Centers for Environmental

Information, US Census Bureau, and more. However, it has not been well discussed in the SPC

literature yet regarding the proper use of the helpful information in covariates. Intuitively, the

observed data of the process under monitoring and the covariates can be monitored jointly. But,

this would not be a good plan because a signal from the joint monitoring scheme could be triggered

by the covariates, and it is often inconvenient to distinguish this scenario from the one that the

signal is actually triggered by the performance of the process itself. The alternative idea to first

regress the quality variables of a process on the covariates and then monitor the resulting residuals

would suffer the same limitation. Also, data from different sources could have different observation

times, different data contamination types or levels, different data quality, and so forth, which would

make it harder for us to use helpful information in covariates.
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Dynamic process monitoring. As discussed in Section 2.2, many processes to monitor in

practice are dynamic processes in the sense that their IC distributions would change over time.

Although dynamic process monitoring by DySS provides a reasonable solution to this important

process monitoring task, there are still some fundamentally important issues to address. First, we

need to determine a time period from the history data of the process under monitoring, in which the

performance of the process is believed to be IC. In some applications, there are existing scientific

discussions about this issue. For instance, in the infectious disease surveillance literature, if all

observed incidence rates of a given disease are below a specific level, then it can be concluded that

there is no disease outbreak (e.g., Bie et al. 2010). Such scientific discussions should be helpful

for us to determine an IC time period and/or an IC dataset for process monitoring. In some other

applications, however, it is difficult to have this kind of scientific standards for defining IC perfor-

mance of a process, or a standard does not even exist (e.g., Earth’s surface and the environment

keep changing over time in the Landsat image example). For such applications, probably we can

simply specify a time period as a baseline time period and compare the future performance of a

process with its performance in the baseline time period. When time goes by, the baseline time

period can be re-specified as appropriate. In practice, many dynamic processes cannot be stopped

once a signal is given by a control chart, although certain interventions can still be implemented

(e.g., occurrence of an infectious disease). For such processes, what will be an appropriate strategy

to detect the next process shift after a signal is obtained from a control chart? How can we evaluate

the performance of the control chart in detecting multiple shifts? These issues need to be addressed

properly in our future research.

5 Concluding Remarks

Many big data in practice are in the form of data streams, and they are sequential observations of

certain underlying longitudinal processes. To study the patterns of these processes over time, SPC

is a relevant statistical tool. In the previous sections, we have introduced some recent SPC methods

for monitoring processes with complicated data and for handling some data-rich process monitoring

problems. These SPC methods should be useful for many big data applications. However, the

complicated data structure involved in certain big data applications raises many new challenging

issues that the existing SPC methods cannot yet handle properly (cf., the related discussion in
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Section 4). Therefore, much future research is needed to modify existing SPC charts or develop

new SPC methods in order to address them adequately.
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