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Abstract

In practice, we often need to sequentially monitor the performance of individual subjects

or processes, so that interventions can be made in a timely manner to avoid unpleasant conse-

quences (e.g., strokes or airplane crashes) once the longitudinal patterns of their performance

variables deviate significantly from the regular patterns of well-functioning subjects or processes.

Some statistical methods are available to handle this dynamic screening (DS) problem. Because

the performance of the DS methods is related to their signal times, the conventional false positive

rate (FPR) and false negative rate (FNR) cannot be effective in measuring their performance.

So far, there is no existing metrics in the literature for properly measureing the performance of

DS methods. In this paper, we aim to fill this gap by proposing a new performance evaluation

approach, called process monitoring ROC curve, which properly combines the signal times with

(FPR,FNR). Numerical examples and theoretical justifications show that this approach provides

an effective tool for measuring the performance of DS methods.

Key Words: Dynamic screening; Longitudinal data; Online monitoring; Performance measure;

Sequential diagnostics; Statistical process control.

1 Introduction

The SHARe Framingham Heart Study of the National Heart, Lung and Blood Institute (cf.,

Cupples et al. 2007) recruited many residents at Framingham MA to the study. Each recruited

person was followed a number of times, and her/his medical indices, including the total cholesterol

level (mg/100ml), blood pressures, smoking status, and more, were recorded during each followup.

One main purpose of the study was to identify major risk factors of cardiovascular diseases (CVDs),

including stroke. Such risk factors are called performance variables in this paper. After the major

performance variables are identified, the next important question is how we can identify people with

irregular longitudinal patterns of the performance variables as early as possible, so that interventions

1



can be made in a timely manner to avoid any unpleasant consequences (e.g., stroke). Besides the

applications for disease early detection mentioned above, this dynamic screening (DS) problem

has many other applications. For instance, airplanes, cars, and other durable products need to

be checked regularly or occasionally about their performance variables. If the observations of the

performance variables of a given product are significantly worse than the values of a typical well-

functioning product of the same age, then some proper adjustments or interventions are desirable.

In the literature, there are some existing methods that are relevant to the DS problem. One

group of methods is in the area of longitudinal data analysis (LDA). By an LDA method, we can

construct confidence intervals for the mean values of the performance variables at different time

points based on an observed dataset of some well-functioning subjects, called an in-control (IC)

dataset hereafter. Then, a new subject can be identified as the one who has an irregular longitudinal

pattern if his/her observations of the performance variables fall outside the confidence intervals.

Some existing methods for constructing such confidence intervals include Chen and Jin (2005), Li

(2011), Liang and Zeger (1986), Lin and Carroll (2000), Ma et al. (2012), Wang (2003), Xiang et

al (2013), and Zhao and Wu (2008). However, the confidence interval approach is not sequential

and thus may not be efficient in handling the DS problem, mainly because it does not make use

of all history data of a subject when making a decision about his/her performance at the current

time point. For instance, when we are interested in monitoring a patient’s total cholesterol level

over time, if her/his total cholesterol levels are consistently above the mean total cholesterol levels

of healthy people for a long time period, then that patient should be identified as one who has an

irregular total cholesterol level pattern, even if the observed total cholesterol level at any given time

point is within the related confidence interval. Obviously, the confidence interval approach cannot

achieve that goal. Another group of methods relevant to the DS problem belongs to the research

area of statistical process control (SPC) (cf., Hawkins and Olwell 1998, Qiu 2014). By a SPC control

chart, we can monitor each subject sequentially, and a signal could be given once the chart detects a

shift in the longitudinal pattern of the performance variables from an IC status to an out-of-control

(OC) status (i.e., the monitored pattern deviates significantly from the regular pattern). However,

a conventional SPC chart cannot be applied to the DS problem directly because it requires the

assumption that the distribution of the performance variables is unchanged over time when their

longitudinal pattern is IC. In most applications of the DS problem, however, such distributions

would change over time (e.g., the mean total cholesterol level of healthy people would change
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with age). To overcome this limitation, Qiu and Xiang (2014,2015) recently proposed a method,

called the dynamic screening system (DySS), for monitoring the longitudinal pattern of a subject

sequentially while allowing the IC distribution of the performance variables varying over time. By

the DySS method, a person will receive a signal once DySS detects a significant difference by the

current observation time between the person’s longitudinal pattern of the performance variables

and the regular longitudinal pattern of a typical non-diseased person. For modified versions of the

DySS method, see papers such as Li and Qiu (2016, 2017), Qiu et al. (2018) and You and Qiu

(2019). This method has been shown effective in solving the DS problem.

To evaluate the performance of the methods for solving the DS problem, the conventional false

positive rate (FPR), false negative rate (FNR) and the related receiver operating characteristic

(ROC) curve approaches (e.g., Obuchowski 2003, Pepe 2003, Qiu and Le 2001, Zhou et al. 2002)

may not be good enough because these metrics/methods only consider the proportions of correct or

incorrect decisions regarding whether or not a diseased (healthy) person receives a signal from a DS

method, but they do not take into account the signal time when the abnormality in the longitudinal

pattern of the performance variables is first detected. As a demonstration, assume that there are

two DS methods, both of them can perfectly identify all people with a specific disease, but the

first one can detect the disease at quite early times while the second one detects the disease quite

late. Obviously, the first one performs better than the second one in this rather extreme case. But,

such a difference cannot be distinguished by the conventional FPR and FNR. In the literature,

another related approach is the time-dependent ROC approach proposed for handling cases when

disease status of a subject changes over time in a given time interval (e.g., Heagerty et al. 2000,

Heagerty and Zheng 2005, Saha and Heagerty 2010). However, this approach is not for handling

sequential monitoring problems. Instead, it is discussed mainly for cases when the disease status of

each subject is known at any time point in an interval, and the diagnostic marker is either a time-

independent covariate or a time-dependent covariate that its value at any time point is completely

specified. In such cases, an ROC curve can be obtained at each time point in the interval. In

the current DS problem, we sequentially monitor each person by taking observations of her/his

performance variables at a sequence of observation time points, and the observation time points of

different people can be all different. We usually make judgments whether the longitudinal pattern

of a person’s performance variables is IC or not at the observation times only. Therefore, the

number of people who have observations available at a given observation time point could be too
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small to construct a meaningful ROC curve. For instance, in the stroke data example discussed in

Section 4, there is usually 0 or 1 stroke patient who has observation at a specific time point. Also,

the time-dependent ROC curves are mainly for evaluating a diagnostic method at different time

points. It is not obvious how to use them for evaluating the overall performance of a diagnostic

method. In the SPC literature, the performance of a sequential monitoring chart is often measured

by the IC and OC average run lengths (ARLs), which take into account the signal time of the

chart. These metrics are appropriate to use in the conventional SPC problem, in which only one

sequential process is under monitoring. In the current DS problem, if the longitudinal pattern of the

performance variables of a subject is considered a sequential process, then many sequential processes

are involved because a DS method would be used for monitoring the performance variables of many

subjects. In such cases, the conventional IC and OC ARLs cannot reflect the overall performance

of the DS method regarding its false positive and false negative rates. Therefore, there is no

appropriate metrics in the literature so far for measuring the performance of DS methods. This

paper aims to fill this gap by proposing a new method for evaluating the overall performance of

the DS methods. This method, called the process monitoring ROC (PM-ROC) curve, combines

the signal times with the conventional (FPR,FNR) metrics in a reasonable way. Thus, it takes into

account both the accuracy and the speed of the decisions made by the DS methods.

The remaining part of the paper is organized as follows. Our proposed method is described in

detail in Section 2. Some of its statistical properties are discussed in Section 3. Some simulation

examples regarding its performance are presented in Section 4. Then, this method is applied to a

stroke dataset from the Framingham heart study in Section 5. Several remarks conclude the article

in Section 6.

2 Process Monitoring ROC Curve

2.1 The DS problem

For simplicity, let us assume that there is only one performance variable y involved in the DS

problem, and an IC dataset contains m subjects whose observations of y follow the model

yi(t
∗
ij) = µ0(t∗ij) + εi(t

∗
ij), t∗ij ∈ [0, 1], for j = 1, 2, . . . , J∗i , i = 1, 2, . . . ,m, (1)

4



where t∗ij is the jth observation time of the ith subject, yi(t
∗
ij) is the observed value of y at t∗ij ,

µ0(t∗ij) is the mean of yi(t
∗
ij), and εi(t

∗
ij) is the error term with mean 0 and variance σ2

y(t
∗
ij). At

each t ∈ [0, 1], the error term is assumed to have the expression ε(t) = ε0(t) + ε1(t), where ε0(t)

is a random process with mean 0 and covariance function E[ε0(s)ε0(t)] = V (s, t), for s, t ∈ [0, 1],

denoting the impact of all covariates that may affect the response but are not included in the

model, ε0(t) denotes a zero-mean pure measurement error satisfying the condition that ε0(s) and

ε0(t) are independent when s 6= t ∈ [0, 1], and ε0(t) and ε1(t) are independent. Without imposing

any parametric forms on µ0(t), V (s, t) and the distribution of ε(t), Qiu and Xiang (2014) suggested

nonparametric estimates of µ0(t) and V (s, t), denoted as µ̂0(t) and V̂ (s, t). From V̂ (s, t), we can

define the estimate of σ2
y(t) to be σ̂2

y(t) = V̂ (t, t). The expressions of µ̂0(t) and V̂ (s, t) are given in

an appendix.

Now, for a new subject to monitor, assume that its observations of y(t) are obtained at times

t1, t2, . . . , tJ in [0, 1]. Then, we can monitor its standardized observations

ε̂(tj) =
y(tj)− µ̂0(tj)

σ̂y(tj)
, j = 1, 2, . . . , J. (2)

If the new subject is IC, then ε̂(tj) would have an asymptotic mean of 0 and an asymptotic

variance of 1. To sequentially monitor the sequence {y(t1), y(t2), . . . , y(tJ)} to see whether it

follows the regular longitudinal pattern described by (1), we can monitor its standardized version

{ε̂(t1), ε̂(t2), . . . , ε̂(tJ)} to see whether the mean of each ε̂(tj) is close to 0 and the variance is close

to 1. To this end, we can consider using the cumulative sum (CUSUM) chart with the charting

statistic

C+
j = max

(
0, C+

j−1 + ε̂(tj)− k
)
, j = 1, 2, . . . , J, (3)

where C+
0 = 0, and k > 0 is the allowance constant. The chart signals an upward mean shift at tj

if

C+
j > ρ, (4)

where ρ > 0 is a control limit. If a downward or two-sided mean shift is a concern in a specific

application, then the corresponding CUSUM chart can be constructed accordingly. See the related

discussion in Chapter 4 of Qiu (2014) for details. The sequential monitoring scheme (1)–(4) is the

DySS procedure discussed in Qiu and Xiang (2014). Its multivariate version is discussed in Qiu

and Xiang (2015). In (3)–(4), the conventional CUSUM chart is used. In cases when the data

distribution is believed to be quite different from a normal distribution, a nonparametric control
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chart can also be used (Qiu 2018). See some related discussion and a numerical example in Section

3.

Note that construction of the DySS procedure (1)–(4) has not taken into account the data

correlation. When the data correlation is assumed to follow an AR(1) model, Qiu and Xiang

(2014) modified the CUSUM statistic C+
j accordingly. In cases when such parametric time series

models are unavailable or invalid, we suggested choosing the control limit ρ in (4) by a block

bootstrap procedure from the IC data to reach a pre-specified IC ATS value (see its definition in

the next subsection). Li and Qiu (2016) proposed an alternative approach to handle correlated

data in a DySS system. Since construction of an appropriate control chart is not the focus of the

current paper, interested readers are referred to Qiu and Xiang (2014) and Li and Qiu (2016) for

more detailed discussions.

2.2 Performance measure of the DS methods

The DySS procedure (1)–(4) is just one example of the existing statistical methods for handling

the DS problem, as discussed in Section 1. However, all these methods share a similar structure

that a time-dependent statistic (e.g., C+
j in (3)) is compared to a threshold value to determine

whether a given subject is IC or not at a specific time point. In this part, we describe our proposed

method for evaluating the performance of DS methods. For convenience, our description is made

for the DySS procedure only, but the new method can actually measure the performance of other

DS methods.

To evaluate the performance of the DySS procedure (1)–(4), let D denote the true performance

status of a given subject in the entire monitoring time period [0, 1], with “D = 0” denoting IC in

[0, 1] and “D = 1” denoting OC in [0, 1]. If we define

Y ∗1 = max
j=1,2,...,J

C+
j , (5)

then the true positive rate (TPR) (or, sensitivity), and the false positive rate (FPR) (or, 1-

specificity) of the DySS procedure are defined by

FPR(ρ) = P (Y ∗1 > ρ|D = 0) , (6)

TPR(ρ) = P (Y ∗1 > ρ|D = 1) . (7)
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The ROC curve is generated by the pair (FPR(ρ),TPR(ρ)) when ρ changes in (0,∞) (cf., Pepe

2003). The ROC curve provides a general tool for comparing the overall performance of two

diagnostic methods. If the ROC curve of one method is completely above the ROC curve of the

other method, then we conclude that the former gives a more accurate diagnosis than the latter. If

the two curves cross each other, then we can use their summary statistics for comparison purposes.

One commonly used summary statistic is the area under the curve (AUC) defined as

AUC =

∫ 1

0
ROC(t)dt, (8)

where ROC(t) = TPR(FPR−1(t)). By this summary statistic, the larger its value, the better.

The conventional ROC curve evaluates the overall false positive and false negative rates of a

diagnosis method. In the current DS problem, however, diagnosis is made in a sequential manner,

and signal times of irregular longitudinal pattern should be taken into account when evaluating

the performance of a DS method, which cannot be achieved by the conventional ROC curve. In

the SPC literature, the average time to signal (ATS) is often used to measure the performance of

a sequential monitoring procedure (Qiu 2014). Let

T(ρ) =

 min{tj : C+
j > ρ}, if Y ∗1 > ρ

1, otherwise

be the signal time of the DS method with the control limit ρ. Then, the IC and OC ATS values

are defined, respectively, by

ATS0(ρ) = E (T(ρ)|D = 0) , (9)

ATS1(ρ) = E (T(ρ)|D = 1) . (10)

It’s easy to see that ATS0(ρ) and ATS1(ρ) are both non-decreasing functions of ρ. So, we can define

T 0,r = lim
ρ→∞

ATS0(ρ), T 0,l = lim
ρ→0

ATS0(ρ),

T 1,r = lim
ρ→∞

ATS1(ρ), T 1,l = lim
ρ→0

ATS1(ρ).
(11)

It can be checked that T 0,r = T 1,r = 1, but T 0,l and T 1,l could take any values in [0, 1] because C+
j

could be 0 at any time points (cf., its definition in (3)). Ideally, we hope that the value of ATS1(ρ)

can be small and the value of ATS0(ρ) can be large. But, for a given ρ, it is easy to check that

ATS1(ρ) will be larger if ATS0(ρ) is set larger, which is similar to the relationship between the

type-I and type-II error probabilities in the hypothesis testing setup. So, in practice, we often set

the value of ATS0(ρ) at a given level, and then make ATS1(ρ) as small as possible.
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The metrics ATS0(ρ) and ATS1(ρ) measure the signal times of a DS method. Their values,

however, cannot reflect the overall false positive and false negative rates of the DS method. As a

demonstration, assume that there are 50 non-diseased people and 50 diseased people involved in a

study. One DS method gives signals to all 50 non-diseased people at quite late time points, and

does not signal for the 50 diseased people. Another DS method gives signals to 25 non-diseased

people at quite early time points, and does not give signals to the remaining 25 non-diseased people

and all 50 diseased people. In such cases, the second method is better than the first method in

terms of the false positive and false negative rates. But, it is the other way around in terms of

ATS0(ρ) and ATS1(ρ). Therefore, both the conventional ROC curve and the conventional metrics

of ATS0(ρ) and ATS1(ρ) cannot properly describe the performance of DS methods.

In this paper, we aim to develop a new performance evaluation system which takes into account

both the signal times and the conventional false positive and false negative rates in a reasonable

way. To this end, let us define the dynamic false positive rate (DFPR) (or, dynamic 1-specificity)

to be

DFPR(ρ) =

[
1−

ATS0(ρ)− T 0,l

1− T 0,l

]
× FPR(ρ), (12)

and the dynamic true positive rate (DTPR) (or, dynamic sensitivity) to be

DTPR(ρ) =

[
1−

ATS1(ρ)− T 1,l

1− T 1,l

]
× TPR(ρ). (13)

In (12) and (13), both quantities 1− (ATS0(ρ)−T 0,l)/(T 1,r−T 1,l) and 1− (ATS1(ρ)−T 1,l)/(T 1,r−

T 1,l) decrease from 1 to 0 when ρ increases from 0 to ∞. So, DFPR(ρ) and DTPR(ρ) have the

following properties:

(i) Both DFPR(ρ) and DTPR(ρ) change from 1 to 0 when ρ increases from 0 to ∞,

(ii) DFPR(ρ) is smaller if ATS0(ρ) is larger or FPR(ρ) is smaller, and

(iii) DTPR(ρ) is larger if ATS1(ρ) is smaller or TPR(ρ) is larger.

The property (i) guarantees that the pair (DFPR(ρ), DTPR(ρ)) changes from (0,0) to (1,1) when

ρ changes in [0,∞). The resulting curve {(DFPR(ρ),DTPR(ρ)), ρ ∈ [0,∞)} is called process

monitoring ROC (PM-ROC) curve hereafter. The properties (ii) and (iii) make the quantities

DFPR(ρ) and DTPR(ρ) legitimate metrics for measuring the longitudinal performance of the DS
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method, because its performance would be better when ATS0(ρ) and/or TPR(ρ) are larger or when

FPR(ρ) and/or ATS1(ρ) are smaller, which is intuitively reasonable.

The random variable Y ∗1 in (5) provides us useful information about the overall evidence in the

observed data of a subject under monitoring regarding whether or not s/he is IC in [0, 1]. Therefore,

Y ∗1 is closely related to the conventional FPR(ρ) and TPR(ρ) defined in (6) and (7) and to the

conventional ROC curve as well. By Theorem 2 in Section 3 below, we can find another random

variable Y ∗2 that is independent of Y ∗1 and has the following properties:

P(Y ∗2 ≤ ρ|D = 0) =
ATS0(ρ)− T 0,l

1− T 0,l

, (14)

P(Y ∗2 ≤ ρ|D = 1) =
ATS1(ρ)− T 1,l

1− T 1,l

, (15)

where T 0,l and T 1,l are defined in (11). From (14) and (15), it can be seen that Y ∗2 is related to

the signal time. Now, let us define

Y ∗ = min(Y ∗1 , Y
∗

2 ). (16)

Then, we have

P(Y ∗ > ρ|D = 0) = P(Y ∗1 > ρ, Y ∗2 > ρ|D = 0)

= P(Y ∗1 > ρ|D = 0)P(Y ∗2 > ρ|D = 0) = DFPR(ρ), (17)

P(Y ∗ > ρ|D = 1) = P(Y ∗1 > ρ, Y ∗2 > ρ|D = 1)

= P(Y ∗1 > ρ|D = 1)P(Y ∗2 > ρ|D = 1) = DTPR(ρ). (18)

Therefore, from (16), the random variable Y ∗ combines information about both the signal time

(through Y ∗2 ) and the false positive and true positive rates (through Y ∗1 ). From (18), DTPR(ρ)

can be interpreted as the conditional probability that the combined information of a shift is above

the control limit ρ for all diseased people. Similarly, from (17), DFPR(ρ) can be interpreted as the

conditional probability for all non-diseased people.

2.3 Estimation of the PM-ROC curve

To compute DFPR(ρ) and DTPR(ρ) defined in (12) and (13), assume that there are nD non-

diseased people (group 1) and nD diseased people (group 2) in a training dataset. Observations of

these people follow the following model

yi(tij) = µi(tij) + εi(tij), tij ∈ [0, 1], i = 1, 2, . . . , n, j = 1, 2, . . . , J, (19)
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where n = nD +nD, µi(t) = µ0(t) for i = 1, 2, . . . , nD, µi(t) = µ0(t) + δiI{t>τi} for i = nD + 1, nD +

2, . . . , n, τi > 0 is a mean shift time, and δi 6= 0 is the mean shift size. Let us further assume

that the DySS procedure (1)–(4) with the control limit ρ detects n1(ρ) people in group 1 and n2(ρ)

people in group 2. Then, the conventional FPR(ρ) is n1(ρ)/nD, and the conventional TPR(ρ) is

n2(ρ)/nD. The quantities ÂTS0(ρ) and ÂTS1(ρ) are calculated by averaging the signal times of the

DySS procedure in groups 1 and 2, respectively. For the DySS procedure, T 0,r = T 1,r = 1, and T 0,l

and T 1,l can be estimated by ATS0(0) and ATS1(0), respectively, which can be computed easily

from the training dataset. To estimate the PM-ROC curve, we need to determine a sequence of ρ

values. To this end, let the values of the charting statistic in (3) of people in the training data be

{C+
ij , i = 1, 2, . . . , n, j = 1, 2, . . . , J}. Then, the ρ values can be chosen to be the order statistics of

{C+
ij , i = 1, 2, . . . , n, j = 1, 2, . . . , J}.

For the PM-ROC curve, we can construct its pointwise 100(1 − α)% confidence interval by

the bootstrap resampling method as follows. First, randomly select nD non-diseased people with

replacement from group 1 of the training data and nD diseased people from group 2 of the training

data. Observations of the selected n = nD + nD people constitute a bootstrap sample. Second,

at each ρ value, DFPR(ρ) and DTPR(ρ) can be estimated from the bootstrap sample. Third, the

first two steps are repeated for B times, and B sets of estimates of (DFPR(ρ),DTPR(ρ)) can be

obtained. Then, the α1-th and (1 − α2)-th quantiles of the B estimates of DFPR(ρ) form the

100(1 − α)% confidence interval for DFPR(ρ), where α1 + α2 = α. The 100(1 − α)% confidence

interval for DTPR(ρ) can be constructed similarly. To construct the 100(1 − α)% confidence

interval for (DFPR(ρ),DTPR(ρ)), for each estimate of (DFPR(ρ),DTPR(ρ)) from a bootstrap

sample, compute its Euclidean distance from (D̂FPR(ρ), D̂TPR(ρ)) which are obtained from the

original training data. Then, the B Euclidean distances obtained from the B bootstrap estimates

of (DFPR(ρ),DTPR(ρ)) can be ordered. The bootstrap estimates corresponding to the α1-th and

(1 − α2)-th quantiles of the B Euclidean distances form a 100(1 − α)% confidence interval for

(DFPR(ρ),DTPR(ρ)). In practice, we can simply choose α1 = α2 = α/2.

2.4 Some statistical properties

In this part, we discuss some statistical properties of the estimated PM-ROC curve. The

consistency of the estimated PM-ROC curve is established in Theorem 1. Existence of a random

variable Y ∗2 so that (14) and (15) are valid is confirmed in Theorem 2. Finally, area under the
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PM-ROC curve is discussed in Theorem 3.

Theorem 1. In model (19), assume that (i) the observation times {tij , i = 1, 2, . . . , n, j =

1, · · · , J} for each person follows a distribution with a continuous density function f(t) in [0, 1],

(ii) observed data of different people are independent, and (iii) both the nD diseased people and the

nD non-diseased people are simple random samples from the population of diseased people and the

population of non-diseased people, respectively. Then, we have

ÂTS0(ρ)
p−→ ATS0(ρ), F̂PR(ρ)

p−→ FPR(ρ), for each ρ ∈ R+, as nD →∞; (20)

ÂTS1(ρ)
p−→ ATS1(ρ), T̂PR(ρ)

p−→ TPR(ρ), for each ρ ∈ R+, as nD →∞; (21)

̂PM-ROC(ρ)
p−→ PM-ROC(ρ), for each ρ ∈ R+, as nD, nD →∞. (22)

Theorem 2. There exists a random variable Y ∗2 that is independent of Y ∗1 in (5) such that

(14) and (15) are valid.

Similar to AUC defined in (8), we can define the area under the PM-ROC curve as

DAUC =

∫ 1

0
DTPR

(
DFPR−1(t)

)
dt.

For this quantity, we have the following result.

Theorem 3. Let Y ∗D = (Y ∗|D = 1) and Y ∗
D

= (Y ∗|D = 0), where Y ∗ is defined in (16).

Then, we have

DAUC = P(Y ∗
D
≤ Y ∗D). (23)

By (23), the quantity DAUC can be interpreted as the probability of the event {Y ∗
D
≤ Y ∗D}.

The proofs of Theorems 1-3 are given in the appendices.

3 Simulation Study

In this part, we present some simulation results about the proposed PM-ROC approach for

measuring the performance of DS methods. First, let us consider cases when µ0(t) = 1 + 0.3t1/2,

δi = δ and τi = 0, for i = nD + 1, nD + 2, . . . , n, and J = 10 in model (19). In that model, the

random errors {εi(tij)} are generated independently from the distribution N(0, [µ0(tij) + δi]
2), and
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{tij , j = 1, 2, . . . , 10} are equally spaced in [0, 1] for each i. In this setup, the control limit ρ of

the CUSUM chart (3)-(4) is computed based on 1,000 replicated simulations as follows. For given

values of k and ρ, the CUSUM chart is applied to observed data of 1,000 non-diseased people, and

FPR can be estimated by the proportion of non-diseased people who get signals from the chart.

Then, for the given value of k and a given level of FPR, ρ can be determined by searching its

value such that the given level of FPR is reached. In cases when the allowance constant k takes

values in {0, 0.1, 0.2, 0.5, 0.75, 1.0} and FPR takes values in {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, the

computed ρ values are presented in Table 1. From the table, it can be seen that the computed ρ

value is smaller when FPR is larger or k is larger.

Table 1: Computed control limit ρ of the CUSUM chart (3)-(4) for some k and FPR values.

k FPR=0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6

0 8.321 6.269 5.175 4.193 3.448 2.924 2.491 2.169

0.1 7.337 5.571 4.526 3.601 2.966 2.496 2.134 1.851

0.2 6.972 4.824 3.903 3.091 2.615 2.163 1.893 1.617

0.5 5.110 3.181 2.620 2.031 1.690 1.460 1.231 1.033

0.75 3.108 2.295 1.923 1.459 1.187 1.006 0.820 0.657

1.0 2.416 1.751 1.454 1.071 0.849 0.692 0.517 0.356

Now, let us consider an example with the following two cases

Case I: There are 100 diseased people and 100 healthy people. The mean shift size δ changes from

1.5 to 2.5 with a step of 0.1,

Case II: There are 100 diseased people and 100 healthy people. The mean shift size for each

diseased person is two times the one considered in Case I.

In the CUSUM chart (3)-(4), let us choose k = 1 and FPR = 0.01. In such a case, ρ = 2.416 by

Table 1. Then, the computed values of DTPR, TPR and ATS1 of the chart in the two cases are

presented in Figure 1(a). From the plot, it can be seen that the conventional TPR is about the same

in Cases I and II when δ is relative large (e.g., δ > 2.1). So, this criterion cannot distinguish the

different performance of the CUSUM chart in the two cases. As a comparison, the chart performs

much better in Case II by the criterion of ATS1, which is intuitively reasonable because the shift
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size in Case II is larger than the one in Case I. Our proposed criterion DTPR can also distinguish

the performance of the chart in the two cases well.
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Figure 1: (a) Computed values of DTPR (solid line), TPR (dashed line), and ATS1 (dot-dashed

line) of the CUSUM chart (3)-(4) with k = 1 and FPR = 0.01 in Cases I (black color) and II (blue

color). (b) Computed PM-ROC curves (solid lines) and ROC curves (dashed lines) of the chart

(3)-(4) with k = 1 and its control limit ρ varying in Cases I (black color) and II (blue color) when

δ is fixed at 1.5 (i.e., the shift size is 1.5 in Case I, and 3.0 in Case II).

Now, let us fix the value of δ to be 1.5 (i.e., the shift size is 1.5 in Case I, and 3.0 in Case II).

In the CUSUM chart (3)-(4), let us still choose k = 1 and let its control limit ρ vary. In such cases,

the PM-ROC curves and the ROC curves of the chart are shown in Figure 1(b). From the plot, it

can be seen that the ROC curves in the two cases cannot be distinguished when 1-Specificity (i.e.,

FPR) is above 0.3. The two PM-ROC curves, however, are quite different in the entire range of

1-Specificity.

Next, we consider another example with the following two cases:

Case III: There are 100 diseased people and 100 healthy people. The mean shift size δ changes

from 3 to 4 with a step of 0.1,

Case IV: There are 100 diseased people and 100 healthy people. For the first 90 diseased people,

13



the shift size is 2.5δ, where δ is the shift size considered in Case III. For the remaining 10

patients, the shift size is 0.25δ.

The results in this example are shown in Figure 2, in the same setup as that in Figure 1. From

Figure 2(a), it can be seen that the ATS1 values are about the same in Cases III and IV when δ

is in [3, 3.6]. Thus, the criterion ATS1 cannot distinguish the performance of the chart in the two

cases when δ ∈ [3, 3.6]. As a comparison, the chart performs better in Case III than its performance

in Case IV by the conventional TPR criterion, which is intuitively reasonable because most of the

10 diseased people with very small shift sizes in Case IV would not receive signals and almost all

other diseased people in the two cases would receive signals. Our proposed criterion DTPR can

distinguish the different performance of the chart in the two cases well in this example. Figure

2(b) shows the PM-ROC curves and ROC curves of the CUSUM chart (3)-(4) when δ is fixed at

3.0, k = 1 and its control limit ρ changes. This plot shows that both the PM-ROC curves and the

ROC curves can distinguish the performance of the chart in the two cases reasonably well, but the

PM-ROC curves can better distinguish the two cases when 1-Specificity is above 0.3.

As a summary, the above two examples demonstrate the limitations of the conventional per-

formance criteria TPR (i.e., sensitivity) and ATS1 in measuring the performance of DS methods.

While the criterion TPR does not take into account the signal times of the DS methods, the crite-

rion ATS1 cannot reflect the overall true positive rate. So, there are cases when either one of them

cannot distinguish the different performance of the DS methods. As a comparison, our proposed

criterion DTPR can overcome their limitations and distinguish the different performance of the DS

methods in various different cases well.

Next, we study the consistency of the proposed PM-ROC curve. In model (19), assume that

µi(t) = µ0(t) + δiI{t>τi}, µ0(t) = 1 + 0.3t1/2, n = 100, 500 or 1000, {tij , i = 1, 2, . . . , n, j =

0, . . . , J} are generated as in the previous examples, and the random errors are generated i.i.d.

from N(0, 0.52). In the CUSUM chart (3)-(4), assume that we choose k = 1 and FPR = 0.1. So, by

Table 1, ρ = 1.454. Because the PM-ROC curve is based on (DFPR(ρ),DTPR(ρ)), which in turn

depend on ATS0(ρ),FPR(ρ),ATS1(ρ), and TPR(ρ), we study the consistency of their estimates

ÂTS0(ρ), F̂PR(ρ), ÂTS1(ρ), and T̂PR(ρ) next. Let us consider the following six cases regarding

how the mean shift times and sizes {(τi, δi), i = 1, 2, . . . , n} are generated:

Case (a): IC case with δi = 0 for all i.
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Figure 2: (a) Computed values of DTPR (solid line), TPR (dashed line), and ATS1 (dot-dashed

line) of the CUSUM chart (3)-(4) with k = 1 and FPR = 0.01 in Cases III (black color) and IV

(blue color). (b) Computed PM-ROC curves (solid lines) and ROC curves (dashed lines) of the

chart (3)-(4) with k = 1 and its control limit ρ varying in Cases III (black color) and IV (blue

color) when δ is fixed at 3.

Case (b): Case when δi = 0.1 and τi = 0.3 for all i.

Case (c): Case when {δi, i = 1, 2, . . . , n} are generated i.i.d. from the distribution N(1, 0.22) and

τi = 0.3 for all i.

Case (d): Case when {δi, i = 1, 2, . . . , n} are generated i.i.d. from the distribution N(1, 0.22) and

{τi, i = 1, 2, . . . , n} are generated i.i.d. from the distribution N(0.3, 0.22).

Case (e): Case when {δi = 0, i = 1, 2, . . . , n/4} and {δi = 1, τi = 0.3, i = n/4 + 1, . . . , n}.

Case (f): Case when {δi = 0, i = 1, 2, . . . , 3n/4} and {δi = 1, τi = 0.3, i = 3n/4 + 1, . . . , n}.

Obviously, all people in Case (a) are IC and all people in Cases (b)-(d) are OC with either deter-

ministic or random mean shift times and sizes. Cases (e) and (f) consider two cases when some

people are IC and some other people are OC, with Case (f) having more IC people than Case (e).

In Case (a), we focus on the performance of ÂTS0(ρ) and F̂PR(ρ), in Cases (b)-(d) we focus on
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the performance of ÂTS1(ρ) and T̂PR(ρ), and in Cases (e) and (f) we focus on the performance of

ÂTS0(ρ), ÂTS1(ρ) and T̂PR(ρ). The results based on 1,000 replicated simulations are summarized

in Table 2 below. From the table, it can be seen that: i) ÂTS0(ρ) is larger and larger and F̂PR(ρ)

is closer and closer to FPR = 0.1 in Case (a) when n increases, ii) T̂PR(ρ) is larger and larger

in Cases (b)-(d) when n increases, (iii) ÂTS1(ρ) is close to the true value of τi = 0.3 in Cases (b)

and (c), and close to the mean 0.3 of {τi, i = 1, 2, . . . , n} in Case (d), (iv) T̂PR(ρ) is larger when

n gets larger in Cases (e) and (f), (v) ÂTS0(ρ) is larger and ÂTS1(ρ) is smaller in Case (e) than

those in Case (f). Result (v) can be explained by the fact that there are more OC people and less

IC people in case (e), compared to Case (f). Because some IC people will receive signals from the

control chart and these signals could be much later than 0.3, the values of ÂTS1(ρ) in Cases (e)

and (f) are generally larger than those in Cases (b)-(d). All other results are consistent with the

theoretical results discussed in Section 3.

Table 2: Calculated values of ÂTS0(ρ), F̂PR(ρ), ÂTS1(ρ), and T̂PR(ρ) in cases when k = 1 and

FPR = 0.1 (ρ = 1.454 in such cases). Numbers in parentheses are standard errors.

Case Estimate n = 100 500 1000

(a) ÂTS0(ρ) 0.950(0.015) 0.952(0.007) 0.953(0.005)

F̂PR(ρ) 0.110(0.030) 0.098(0.013) 0.099(0.009)

(b) ÂTS1(ρ) 0.352(0.015) 0.350(0.007) 0.348(0.005)

T̂PR(ρ) 0.990(0.010) 0.996(0.003) 0.999(0.001)

(c) ÂTS1(ρ) 0.347(0.015) 0.345(0.007) 0.351(0.005)

T̂PR(ρ) 0.990(0.010) 0.994(0.004) 0.995(0.002)

(d) ÂTS1(ρ) 0.304(0.019) 0.302(0.008) 0.303(0.006)

T̂PR(ρ) 0.990(0.010) 0.992(0.004) 0.995(0.002)

(e) ÂTS0(ρ) 0.978(0.022) 0.930(0.019) 0.955(0.011)

ÂTS1(ρ) 0.476(0.018) 0.484(0.009) 0.481(0.006)

T̂PR(ρ) 0.987(0.013) 0.989(0.005) 0.991(0.004)

(f) ÂTS0(ρ) 0.946(0.023) 0.935(0.010) 0.948(0.007)

ÂTS1(ρ) 0.501(0.023) 0.485(0.014) 0.496(0.011)

T̂PR(ρ) 0.920(0.055) 0.989(0.020) 0.992(0.006)

In all previous examples, the conventional CUSUM chart (3)-(4) is used. Next, we consider
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a nonparametric CUSUM chart suggested by Li et al. (2010). To use that method, a reference

sample is needed. To this end, in each simulation, standardized observations of nR = 100 extra IC

subjects are generated as in Case (f) of the example of Table 2, and they are used as the reference

sample and denoted as R = {ε̃k : k = 1, . . . , JnR}. Then, for the jth standardized observation of

the new subject to monitor (cf., its definition in (2)), let Wj be the rank of ε̂(tj) in the combined

set of ε̂(tj) and R. The nonparametric CUSUM charting statistic for detecting an upward mean

shift is defined by

C̃+
j = max

(
0, C̃+

j−1 + (Wj − µWj )/σWj − k̃
)
,

where C̃+
0 = 0, k̃ > 0 is an allowance constant, µWj = (JnR + 1)/2, and σ2

Wj
= JnR(JnR + 2)/12.

Then, we consider scenarios when the total sample size nD̄+nD = 500 and the ratio nD̄ : nD is 1:1,

10:1, 20:1 or 30:1. In these four scenarios, (nD̄, nD)=(250,250), (455,45), (476,24) and (484,16),

respectively. Under the same simulation setup as that in Table 2, the calculated values of ÂTS0(ρ),

ÂTS1(ρ), and T̂PR(ρ) are shown in Table 3. From the table, it can be seen that when the ratio

nD̄ : nD increases, the calculated values of ÂTS0(ρ), ÂTS1(ρ) and T̂PR(ρ) are quite stable, but

the standard errors of ÂTS1(ρ) and T̂PR(ρ) get larger, which is intuitively reasonable because the

sample size nD of the OC subjects gets smaller in such cases.

Table 3: Calculated values of ÂTS0(ρ), ÂTS1(ρ), and T̂PR(ρ) when nD + nD̄ = 500, the ratio

nD̄ : nD changes among 1:1, 10:1, 20:1 and 30:1, and other setups are the same as those in Case

(f) of Table 2. Numbers in parentheses are standard errors.

nD̄ : nD = 1 : 1 10:1 20:1 30:1

ÂTS0(ρ) 0.946(0.016) 0.947(0.013) 0.947(0.013) 0.946(0.013)

ÂTS1(ρ) 0.534(0.015) 0.534(0.027) 0.537(0.037) 0.535(0.046)

T̂PR(ρ) 0.986(0.008) 0.986(0.018) 0.984(0.025) 0.985(0.030)

4 Application to the Stroke Data

In this section, we apply the proposed new performance measuring method to a dataset ob-

tained from the SHARe Framingham Heart Study mentioned in Section 1. This dataset contains

longitudinal observations of 1055 people, 1028 of them did not have any strokes and the other 27

had at least one stroke during the study. Each person was followed 7 times. Observation times
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(in years) were different for different people in the range [9, 85]. In this study, we use the diastolic

blood pressure as the performance variable, and treat all stroke patients as people in the case group

and all non-stroke patients as people in the control group. Two conspicuous outliers with diastolic

blood pressure being 0 are imputed by the sample median. Following the analysis in Qiu and Xiang

(2014) about this dataset, we first compute the point estimates of µ0(t) and σy(t) in model (1) from

the data of the control group, and then compute the standardized observations (cf., expression (2))

of the entire dataset, including those in the case and control groups.

The CUSUM chart (3)–(4) is then applied to the standardized observations. For some selections

of (k, ρ) in the chart, the computed results of ATS0, ATS1, FPR, TPR, DFPR, DTPR, TPR/FPR,

DTPR/DFPR, and DTPR/DFPR-TPR/FPR are presented in Table 4. The results presented in

the second line of each entry in the table are the 90% confidence intervals (CIs) for the related

parameters, computed by the bootstrap procedure described at the end of Section 2.3. From the

table, it can be seen that 1) ATS1 values are uniformly smaller than ATS0 values, 2) TPR is

uniformly larger than FPR, and 3) DTPR is uniformly larger than DFPR. The first conclusion

says that the average signal time for people in the case group is earlier than that for people in the

control group, which is intuitively reasonable. The second conclusion says that the positive rate in

the case group is generally larger than that of the control group, implying that the performance

variable is effective in diagnosing the disease. The third conclusion takes into account both the

first and second conclusions, and demonstrates the effectiveness of the performance variable better.

To better see this, let us look at the last three columns of the table. We can see that the ratio

DTPR/DFPR is uniformly larger than the ratio TPR/FPR, with quite large margins in most

entries. Consequently, all values of DTPR/DFPR − TPR/FPR shown in the last column of the

table are positive. In the stroke data, there are 1028 non-stroke people and only 27 stroke people

involved. So, the two groups of data are unbalanced in size. This explains why the CIs for ATS1

are generally wider than those for ATS0. The CIs for DTPR/DFPR are generally wider than those

for TPR/FPR because the estimates of DTPR/DFPR involve the estimates of ATS0 and ATS1,

besides the estimates of TPR and FPR. So, the randomness in the estimates of DTPR/DFPR is

generally larger than the randomness in the estimates of TPR/FPR. Now, let us take a look at

the CIs for DTPR/DFPR − TPR/FPR. It can be seen that all these CIs are completely above

0, implying that DTPR/DFPR is significantly larger than TPR/FPR in all cases considered. To

better see this, the estimated value of DTPR/DFPR−TPR/FPR and its 90% confidence intervals
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in cases when k = 0.05, 0.1, 0.2 or 0.5 and the control limit ρ changes from 0 to 3 are presented in

Figure 3. It can be seen from the plots that DTPR/DFPR−TPR/FPR is significantly larger than

0 in all cases, implying the significant benefit to use the proposed performance measures DTPR

and DFPR in comparison with the regular TPR and FPR. The related ROC curves and PM-ROC

curves in cases when k = 0.05, 0.1, 0.2 and 0.5 are shown in Figure 4. From the plots of the figure,

it can be seen that most parts of the PM-ROC curves are above the related ROC curves. It should

also be pointed out that the results in Figure 4 are consistent with those in Table 4. To better see

this, Figure 5 shows the point on the PM-ROC curve (denoted by a dark dot) and the corresponding

point on the ROC curve (denoted by a cross) in each case when the control limit ρ changes among

0.5, 1.0, 1.5 or 2.0 (different columns) and when k equals 0.05, 0.1, 0.2 or 0.5 (different rows). The

slop of the solid (dotted) line connecting the dot (cross) with the origin is actually DTPR/DFPR

(TPR/FPR). So, from the plots in the figure, it can be seen that DTPR/DFPR is always large

than TPR/FPR.

5 Concluding Remarks

This paper proposes new metrics for measuring the performance of the DS methods. The

new metrics combine the conventional (FPR,FNR) with the signal times of the related monitoring

scheme. It has been shown that it provides a more effective evaluation of the DS methods in

various cases, compared to the conventional (FPR,FNR) and (ATS0,ATS1) metrics. Some issues

about the proposed new metrics still need to be addressed in our future research. For instance, we

define GFPR(ρ) and GTPR(ρ) in (12) and (13). The definition of these quantities can actually be

generalized to

DFPR(ρ) = g

(
1−

ATS0(ρ)− T 0,l

T 0,r − T 0,l

,FPR(ρ)

)
DTPR(ρ) = g

(
1−

ATS1(ρ)− T 1,l

T 1,r − T 1,l

,TPR(ρ)

)
,

where g(x, y) is an increasing continuous function of both x and y such that g(0, 0) = 0 and g(1, 1) =

1. In (12) and (13), g(x, y) is chosen to be xy. It can also be chosen to be g(x, y) = αx+ (1−α)y,

where α ∈ [0, 1] is a weight. In our future research, we need to study which specific function for

g(x, y) is more reasonable to use in different cases.
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Figure 3: Estimates of DTPR/DFPR − TPR/FPR (solid lines) when k = 0.05, 0.1, 0.2, 0.5 and ρ

changes from 0 to 3. The 90% bootstrap confidence intervals of DTPR/DFPR − TPR/FPR are

shown by dotted lines.
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Figure 4: PM-ROC curves (solid lines) and ROC curves (dashed lines) in cases when k =

0.05, 0.1, 0.2 and 0.5.

Appendices

A Estimation of µ0(t) and V (s, t)

First, we obtain the following initial estimate of µ0(t) by the regular local linear kernel smooth-

ing procedure:

µ̃0(t) = e′1

(
m∑
i=1

X ′iKih(t)Xi

)−1 ( m∑
i=1

X ′iKih(t)yi

)
,
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Figure 5: Point on the PM-ROC curve (denoted by a dark dot) and the corresponding point on

the ROC curve (denoted by a cross) in each case when ρ changes among 0.5, 1.0, 1.5 or 2.0 and k

changes among 0.05, 0.1, 0.2 or 0.5. The gray solid and dotted curves are the PM-ROC and ROC

curves.

where e1 is a 2-dimensional vector with the first element being 1 and the other elements being 0,

Xi =


1 (t∗i1 − t)
...

...

1 (t∗iJ∗i
− t)

 ,

Kih(t) = diag
{
K
(
(t∗i1 − t)/h

)
/h, . . . ,K

(
(t∗iJ∗i − t)/h

)
/h
}
,

K(·) is a kernel function, h > 0 is a bandwidth, and yi = (yi(t
∗
i1), . . . , yi(t

∗
iJ∗i

))′.

Second, we define residuals

ε̃i(t
∗
ij) = yi(t

∗
ij)− µ̃0(t∗ij), for j = 1, . . . , J∗i and i = 1, . . . ,m,
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and when s 6= t, estimate V (s, t) by

V̂ (s, t) = [A1(s, t)V00(s, t)−A2(s, t)V10(s, t)−A3(s, t)V01(s, t)]/B(s, t),

whereA1(s, t) = S20(s, t)S02(s, t)−S2
11(s, t), A2(s, t) = S10(s, t)S02(s, t)−S01(s, t)S11(s, t), A3(s, t) =

S01(s, t)S20(s, t)− S10(s, t)S11(s, t), B(s, t) = A1(s, t)S00(s, t)−A2(s, t)S10(s, t)−A3(s, t)S01(s, t),

Sl1l2(s, t) =
1

Nh2

m∑
i=1

J∗i∑
j1=1

J∗i∑
j2=1
j2 6=j1

( t∗ij1 − s
h

)l1( t∗ij2 − t
h

)l2
K
( t∗ij1 − s

h

)
K
( t∗ij2 − t

h

)
,

Vl1l2(s, t) =
1

Nh2

m∑
i=1

J∗i∑
j1=1

J∗i∑
j2=1
j2 6=j1

ε̃i(t
∗
ij1)ε̃i(t

∗
ij2)
( t∗ij1 − s

h

)l1( t∗ij2 − t
h

)l2
K
( t∗ij1 − s

h

)
K
( t∗ij2 − t

h

)
,

and N =
∑m

i=1 J
∗
i (J∗i − 1).

Third, estimate V (t, t) by

V̂ (t, t) = e′1

( m∑
i=1

X ′iWiXi

)−1( m∑
i=1

X ′iWiε̃
2
i

)
,

where ε̃2
i = (ε̃2i (t

∗
i1), . . . , ε̃2i (t

∗
iJ∗i

))′, Wi = K
1/2
ih (t)[Ji(t)ΣiJi(t)]

−1K
1/2
ih (t), Ji(t) = diag{I{|t∗i1−t|≤h},

. . . , I{|t∗
iJ∗

i
−t|≤h}}, and I{·} is an indicator function that equals 1 when the event is “true” and 0

otherwise.

Fourth, µ0(t) is estimated by

µ̂0(t) = e′1

( m∑
i=1

X ′iŴiXi

)−1( m∑
i=1

X ′iŴiyi

)
,

where Ŵi = K
1/2
ih (t)[Ji(t)Σ̂iJi(t)]

−1K
1/2
ih (t), and

Σ̂i =


V̂ (t∗i1, t

∗
i1) · · · V̂ (t∗i1, t

∗
iJ∗i

)
...

. . .
...

V̂ (t∗iJ∗i
, t∗i1) · · · V̂ (t∗iJ∗i

, t∗iJ∗i
)

 .

B Proof of Theorem 1

Given observations of nD diseased people {yi(tij), i = 1, 2, . . . , nD, j = 1, 2, . . . , J}, we will show

the results in (21) about ÂTS1(ρ) and T̂PR(ρ). For the i-th diseased person, we can calculate the
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charting statistic values {C+
ij , i = 1, 2, . . . , nD, j = 1, 2, · · · , J} by (3), and the chart gives a signal

at the time

Ti(ρ) =

 inf{tij′ : C+
ij′ ≥ ρ, j

′ = 1, 2, · · · , J}, if a signal is given,

ti,J , otherwise,

where ρ ∈ R+ and i = 1, 2, · · · , nD. Furthermore, we can record whether a signal is actually given

by using the indicator variable

Ii(ρ) =

 1, if a signal is given,

0, otherwise.

Then, it is obvious that

ÂTS1(ρ) =
1

nD

nD∑
i=1

Ti(ρ), (24)

T̂PR(ρ) =
1

nD

nD∑
i=1

Ii(ρ). (25)

By the assumptions given in Theorem 1, for each ρ ∈ R+, Ti(ρ), i = 1, 2, . . . , nD are i.i.d.. So, by

(24) and the law of large numbers we have ÂTS1(ρ)
p−→ ATS1(ρ). Similarly, Ii(ρ), i = 1, 2, . . . , nD

are also i.i.d., and consequently by (25) we have T̂PR(ρ)
p−→ TPR(ρ). Therefore, results in (21)

are valid. Results in (20) can be verified in a similar way.

To prove the result in (22), first we notice that

D̂FPR(ρ) =

[
1−

ÂTS0(ρ)− T̂ 0,l

T̂ 0,r − T̂ 0,l

]
× F̂PR(ρ), (26)

where T̂ 0,r = max
1≤i≤nD̄

ti,J and T̂ 0,l = min
1≤i≤nD̄

ti,J . Similarly,

D̂TPR(ρ) =

[
1−

ÂTS1(ρ)− T̂ 1,l

T̂ 1,r − T̂ 1,l

]
× T̂PR(ρ), (27)

where T̂ 1,r = max
1≤i≤nD

ti,J and T̂ 1,l = min
1≤i≤nD

ti,J . By combining (26)-(27) with the results in (20)

and (21), we have D̂TPR(ρ)
p−→ DTPR(ρ) and D̂FPR(ρ)

p−→ DFPR(ρ). Because ̂PM-ROC(ρ) =

(D̂FPR(ρ), D̂TPR(ρ)) and PM-ROC(ρ) = (DFPR(ρ),DTPR(ρ)), we have ‖ ̂PM-ROC(ρ)−PM-ROC(ρ)‖2 =(
D̂TPR(ρ)−DTPR(ρ)

)2
+
(

D̂FPR(ρ)−DFPR(ρ)
)2

. Thus, by combining the results in the pre-

vious two sentences, we have ̂PM-ROC(ρ)
p−→ PM-ROC(ρ), for each ρ ∈ R+. Therefore, the result

in (22) is valid.
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C Proof of Theorem 2

Without loss of generality, we prove the results in cases when T 0,l = T 1,l = 0. Otherwise, these

quantities can be subtracted from the observation times. Let Ω1 = {ω1|ω1 ∈ R}, B1 be the Borel

σ−algebra on Ω1, and P1 be the probability distribution ATS(ρ)/Tr, where Tr = limρ→∞ATS(ρ).

Then, (Ω1,B1,P1) is a well defined probability space. Let Ω2 = {ω2|ω2 = {y(t), t ∈ [0, Tr]}, B2 be

the Borel σ−algebra on Ω2, and P2 be probability measure generated by {y(t), t ∈ [0, Tr]}. Then,

(Ω2,B2,P2) is another probability space. Now, let us consider the product space Ω = Ω1 × Ω2. In

this space, define the product Borel σ−algebra B = B1 × B2. The probability measure P on the

space Ω is defined in the way that its marginal probability measures on Ω1 and Ω2 are respectively

P1 and P2, and the conditional probability has the property

P̃(A1|ω2) =
T (ρ)

Tr

where A1 = (−∞, ρ] ∈ B1 and ω2 ∈ Ω2. It can be verified that P̃ is a transfer probability on

B1 × Ω2. Namely, given A1 ∈ B1, P̃(A1|ω2) = T (ρ)/Tr is a B2−measurable function, and given

ω2 ∈ Ω2, P̃(A1|ω2) = T (ρ)/Tr is a probability measure on B1. By the Tuclea Theorem, we can

construct a product probability measure based on the transfer probability P̃ and the corresponding

marginal probability P2. Now, it can be verified that this product probability has the marginal

probability measure P1 on Ω1, by noticing∫ ∞
−∞

P̃(A1|ω2)dP2(ω2) =

∫ ∞
−∞

T (ρ)

Tr
dP2(ω2)

=
E(T )

Tr

=
ATS(ρ)

Tr
= P1(A1).

Now, let (Ω(1),B(1),P(1)) and (Ω(2),B(2),P(2)) be two independent copies of the probability

space (Ω,B,P) defined above. By the Fubini theorem, we can construct the probability space

(Ω∗,B∗,P∗) such that Ω∗ = Ω(1) × Ω(2), B∗ = B(1) × B(2), and

P∗(B1 ×B2) = P(1)(B1)× P(2)(B2), for any B1 ∈ B(1) and B2 ∈ B(2).

Now, for any ω∗ = (ω(1), ω(2) = (ω
(1)
1 , ω

(1)
2 , ω

(2)
1 , ω

(2)
2 ) in Ω∗, where ω(1) = (ω

(1)
1 , ω

(1)
2 ) ∈ Ω(1)

and ω(2) = (ω
(2)
1 , ω

(2)
2 ) ∈ Ω(2), we define a random variable Y ∗2 (ω∗) = ω

(2)
1 in the probability

space (Ω∗,B∗,P∗). On the other hand, the random variable Y ∗1 defined in (5) can be regarded
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as a random variable in the same probability space, satisfying Y ∗1 (ω∗) = g∗(ω
(1)
2 ) where g∗ is a

deterministic function. Because Y ∗1 takes the values in Ω(1) only, and Y ∗2 takes the values in Ω(2)

only, they are independent of each other.

Next, we’ll verify that Y ∗2 defined above satisfy Equations (14) and (15). To this end, we first

notice that P(2)(Y ∗2 ≤ ρ|ω
(2)
2 ) = T (ρ)/Tr. By the total expectation formula, we have

P∗(Y ∗2 ≤ ρ|D = 0) = E(P(2)(A|ω(2)
2 )|D = 0)

= E
(
T (ρ)

Tr
|D = 0

)
=

ATS0(ρ)

T 0,r

.

Similarly, we can check that

P∗(Y ∗2 ≤ ρ|D = 1) =
ATS1(ρ)

T 1,r

.

Therefore, Equations (14) and (15) are valid. This concludes the proof.

D Proof of Theorem 3

We have

DAUC =

1∫
0

DTPR
(
DFPR−1(t)

)
dt

=

∞∫
−∞

DTPR(u)dDFPR(y)

=

∞∫
−∞

(1− P(Y ∗ ≤ u|D = 1)) dP(Y ∗ > u|D = 0)

= P(Y ∗
D
≤ Y ∗D).

So, Equation (23) is valid.
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