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Abstract

Effective surveillance of infectious diseases, cancers and other deadly diseases is crit-
ically important for public health and safety of our society. Incidence data of such
diseases are often collected spatially from different clinics and hospitals through a
regional, national or global disease reporting system. In such a system, new batches
of data keep being collected over time, and a decision needs to be made immedi-
ately after new data are collected regarding whether there is a disease outbreak at the
current time point. This is the disease surveillance problem that will be focused in
this paper. There are some existing methods for solving this problem, most of which
use the disease incidence data only. In practice, however, disease incidence is often
associated with some covariates, including the air temperature, humidity, and other
weather or environmental conditions. In this paper, we develop a new methodol-
ogy for disease surveillance which can make use of helpful covariate information to
improve its effectiveness. A novelty of this new method is behind the property that
only those covariate information that is associated with a true disease outbreak can
help trigger a signal. The newmethod can accommodate seasonality, spatio-temporal
data correlation, and nonparametric data distribution. These features make it feasible
to use in many real applications.
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1 INTRODUCTION

Infectious diseases, cancers and other deadly diseases have become a major threat to the public health and safety of our society.
Effective disease surveillance is thus a critically important research problem for minimizing the damage of disease outbreaks.
To this end, some national and regional disease reporting systems have been developed (Chen et al1). However, due to the
complexity of the disease surveillance problem, few existing methods can handle it effectively (Shmueli and Burkom2). This
paper aims to make another effort by developing a new method for disease surveillance.
Our research is motivated by the influenza-like illness (ILI) data that were collected by the Electronic Surveillance System

for the Early Notification of Community-based Epidemics (ESSENCE) of the Florida Department of Health. ILI is a respiratory
infection caused by a variety of influenza viruses, defined as severe respiratory illness with fever (> 100o F), cough, sore throat,
and difficulty in breathing. It is estimated that 15-40% people in US develop illness from influenza each year, among which about
36,000 people die and about 114,000 people have to be admitted to hospital (Fiore et al3). A traditional method to estimate the
incidence rate of ILI infection is to carry out repeated seroprevalence surveys that are resource-intensive and slow. Thus, it is
unfeasible for early detection of disease outbreaks. To overcome this limitation, Florida Department of Health built ESSENCE,
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which is a syndromic surveillance system for collecting near real-time pre-diagnostic data from 229 participating emergency
departments and 35 urgent care centers that are distributed in all counties of Florida. Currently, the data are updated once a
day, and can be accessed by researchers after a proper registration. Such disease incidence data are spatio-temporal (ST) and
often have complex data structures. The complexity of the data is usually reflected in: i) complex spatial data variation across
different spatial locations, ii) dynamic temporal data variation (e.g., seasonality) even in cases with no disease outbreaks, iii) ST
data correlation that is often difficult to describe and estimate, and iv) possible impact of covariates (e.g., weather conditions).
Thus, it is challenging to analyze them properly.
In the literature, there have been some existing methods for disease surveillance. Some early disease surveillance methods

in the statistical and epidemiological literatures include the Knox, local Knox, and k-nearest neighbor methods (e.g., Jacquez,4
Knox and Bartlett,5 Kulldorff and Hjalmars6). They aim to detect disease outbreaks by identifying irregular space-time patterns
in the observed data. However, thesemethods are all retrospective, and not designed for prospective disease surveillance. Another
type of methods are based on the spatial or spatio-temporal scan statistics (e.g., Kulldorff,7 Takahashi et al,8Woodall et al9). They
try to identify spatial or spatio-temporal disease clusters by testing whether the observed disease counts in different windows
of circular or other more flexible shapes are significantly higher than the expected disease counts under the null hypothesis of
no disease outbreaks. These methods are based on the assumption that the observed disease incidence data have a parametric
distribution, such as the normal, Poisson, or negative binomial distribution, which is rarely valid in practice (Zhang et al10,11).
Because disease surveillance is a sequential process monitoring problem and statistical process control (SPC) charts provide a
major statistical tool for sequential process monitoring, there have been some existing discussions about disease surveillance
using the SPC charts (cf., Dassanayake and French,12 Dong et al,13 Yang and Qiu14). By using a SPC chart, we can sequentially
monitor the observed disease incidence data and give a signal each time when a shift from an in-control (IC) status (i.e., the
status without any disease outbreaks) to an out-of-control (OC) status (i.e., the status with a disease outbreak) is detected.
In that direction, a cumulative sum (CUSUM) chart for monitoring observed counts of disease occurrence in multiple spatial
regions was suggested in Dassanayake and French,12 and an exponentially weighted moving average (EWMA) chart that can
accommodate time-varying population sizes was developed in Dong et al.13 These methods assume that i) the observed disease
incidence data have either a normal or Poisson distribution, ii) they are independent of each other at different time points, and
iii) their IC distribution does not change over time. All these assumptions could be violated in practice. To overcome these
limitations, Yang and Qiu14 suggested a CUSUM chart for disease surveillance, which can accommodate the dynamic nature of
the observed disease incidence rates (e.g., seasonality), spatio-temporal data correlation, and nonparametric data distribution.
All these SPC charts are based on the observed disease incidence data only, and they did not use any information in the related
covariates. Thus, there should be room for improvement.
Recently, Yang and Qiu15 suggested an EWMA chart for monitoring univariate sequential processes, which can accommodate

helpful information in covariates. A major feature of this method is that the covariate information is used in choosing the
weighting parameter of the EWMA chart only: it is chosen large when the covariates tend to have a shift and small otherwise.
Because of this feature, the resulting EWMA chart can react to a future shift in the related univariate process quickly in cases
when such a shift is mainly due to the covariates. On the other hand, because the covariate information is used in choosing
the weighting parameter only and the EWMA charting statistic is a weighted average of observations of the related process
performance variable, the chart is sensitive to shifts in the process performance variable only and would not react to any shifts
related to the covariates if such shifts do not result in any shifts in the process performance variable. These properties should
be relevant to disease surveillance, since disease incidence data are usually associated with air temperature, humidity, and other
weather or environmental conditions. Thus, such covariate information should be taken into account during disease surveillance
to make the related methods more effective. On the other hand, the related disease surveillance methods should be robust to
shifts in the covariates if such shifts do not result in any disease outbreaks.
However, the method in Yang and Qiu15, called YQ method hereafter, cannot be applied to disease surveillance directly for

the following reasons. First, the YQ method is designed for monitoring univariate processes only, while the disease surveillance
problem discussed here is for monitoring spatio-temporal data which often involve spatio-temporal data correlation and other
complicated data structure, as discussed above. Second, the YQ method is for the conventional process monitoring problem in
which the IC process distribution is assumed unchanged over time. In the disease surveillance problem, however, the distribution
of the disease incidence data could change over time (e.g., seasonality), even in cases with no disease outbreaks. In that sense,
the disease incidence process is dynamic in nature. Third, a regression model between the process performance variable and
some covariates needs to be built in order to use the YQ method, which is quite straightforward in cases when all variables
are univariate. In the disease surveillance problem, some covariates are spatio-temporal, and it is quite challenging to build a
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regression relationship between the spatio-temporal disease incidence data and the spatio-temporal covariates. In this paper, we
develop a disease surveillance method based on the idea of the YQ method. The new method has all the favorable properties of
the YQ method mentioned above, while it can accommodate the complicated structure of the spatio-temporal disease incidence
data. Numerical studies will show that it performs well in various different cases.
The remainder of the article is organized as follows. Section 2 will describe the proposed method in detail. Section 3 will

study its numerical performance by presenting some simulation results. Section 4 will discuss its application to the Florida ILI
data. Finally, Section 5 will provide some concluding remarks.

2 PROPOSED DISEASE SURVEILLANCE METHOD

Our proposed newmethod consists of several steps that will be described in two subsections below. In Subsection 2.1, a semipara-
metric spatio-temporal model will be fitted from an IC data to estimate the IC spatio-temporal pattern of the disease incidence
rates and build a functional relationship between the disease incidence rates and the related covariates. In Subsection 2.2, a novel
EWMA chart will be developed for effective disease surveillance, in which useful covariate information will be accommodated
properly.

2.1 Estimation of the IC spatio-temporal pattern
2.1.1 IC spatio-temporal model and its estimation
Let {y(ti, sij), j = 1,… , mi, i = 1,… , n} be the observed disease incidence rates in the IC data, where ti ∈ [0, T ] is the ith
observation time, sij ∈ Ω is the jth observation location at time ti, mi is the number of observation locations at ti, and n is the
number of observation times. These observed disease incidence rates are assumed to follow the model

y(ti, sij) = �(ti, sij) + XT
1 (ti)�1 + XT

2 (ti, sij)�2 + "(ti, sij), for j = 1,… , mi, i = 1,… , n, (1)

where X1(t) is a vector of p1 time-dependent covariates, X2(t, s) is a vector of p2 space/time-dependent covariates, �1 and �2
are their regression coefficients, �(t, s) is the mean of y(t, s) after the part explained by X1(t) and X2(t, s) being excluded, and
"(t, s) is a zero-mean random error, for any (t, s) ∈ [0, T ] × Ω. The covariance function of y(t, s) is denoted as

Vy(t, t′; s, s′) = Cov
(

y(t, s), y(t′, s′)
)

, for any t, t′ ∈ [0, T ], s, s′ ∈ Ω.

For convenience, Vy(t, t; s, s) is also denoted as �2y (t, s), for any (t, s) ∈ [0, T ]×Ω. In model (1), no parametric forms are imposed
on �(t, s) and Vy(t, t′; s, s′). Thus, it is quite general. In practice, besides time-dependent and space/time-dependent covariates,
there could be covariates that do not depend on time (they could depend on space) but are associated with the disease incidence
rates. Such covariates, however, would not provide any information about the temporal variation of the disease incidence rates.
So, they are not included explicitly in model (1).
Model (1) can be regarded as a semiparametric model. To estimate a semiparametric model, it is natural to consider an

iterative estimation procedure (e.g., Speckman16), in which the nonparametric and parametric parts can be estimated iteratively.
To this end, let us first assume that � = (�T1 , �

T
2 )

T = 0 in model (1). Then, the resulting model becomes the nonparametric
spatio-temporal regression model considered in Yang and Qiu17, and �(t, s) can be estimated by the following local linear kernel
smoothing (LLKS) procedure:

argmin
�∈ℝ4

n
∑

i=1

mi
∑

j=1

[

y(ti, sij)− �� − �t(ti − t) − �u(su,ij − su) − �v(sv,ij − sv)
]2

×K1
(

(ti − t)∕ℎt
)

K2
(

dE(sij , s)∕ℎs
)

,

(2)

where � = (��, �t, �u, �v)T , s = (su, sv)T , sij = (su,ij , sv,ij)T , ℎt, ℎs > 0 are two bandwidths, K1(⋅) and K2(⋅) are two kernel
functions, and dE(sij , s) is the Euclidean distance between the two spatial locations sij and s. Let Gij = (1, (ti − t), (su,ij −
su), (sv,ij − sv))T and wij = K1((ti − t)∕ℎt)K2

(

dE(sij , s)∕ℎs
)

, for j = 1,… , mi and i = 1,… , n. Then, the solution of (2) to ��
is defined to be the LLKS estimate of �(t, s), which has the expression

�̂(t, s) = eT1
(

GTWG
)−1GTWY, (3)
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where e1 = (1, 0, 0, 0)T , G = (G11,… ,Gnmn)
T , W = diag{w11,… , wnmn}, and Y = (y(t1, s11), …, y(tn, snmn))

T . From (3),
it can be seen that the LLKS estimate �̂(t, s) is a weighted average of all observations in a neighborhood of (t, s), with the
weights determined by the two kernel functions and the neighborhood size controlled by the two bandwidths. The entire iterative
estimation procedure is described below.

Iterative Algorithm for Estimating Model (1)

1) Set � = 0 in Model (1) and obtain an initial estimate of �(t, s) by (3), denoted as �̂(0)(t, s).

2) In the kth iteration, for k ≥ 1, implement the following two steps:

a) Compute the least squares estimate of �, denoted as �̂ (k), from the linear model Z (k)(t, s) = XT
1 (t)�1 +XT

2 (t, s)�2 +
"(t, s), where Z (k)(t, s) = y(t, s) − �̂(k−1)(t, s).

b) Update the estimate of �(t, s) by replacing Y in (3) by Y(k) = (y(k)(t1, s11),… , y(k)(tn, snmn))
T , where y(k)(ti, sij) =

y(ti, sij)−XT
1 (ti)�̂

(k)
1 −XT

2 (ti, sij)�̂
(k)
2 , for j = 1,… , mi and i = 1,… , n. The updated estimate is denoted as �̂(k)(t, s).

3) The iterative algorithm stops when ‖�̂ (k) − �̂ (k−1)‖1∕‖�̂ (k−1)‖1 ≤ &, where & > 0 is a pre-specified small number and
‖a‖1 denotes the summation of the absolute values of all elements in the vector a. Then, �̂ (k) and �̂(k)(t, s) are the final
estimates of � and �(t, s), respectively. These final estimates are also denoted as �̂ and �̂(t, s).

The covariance function Vy(t, t′; s, s′) and the variance function �2y (t, s) can be estimated by moment estimation dis-
cussed in Yang and Qiu,18 which is briefly described below. For any (t, s), (t′, s′) ∈ [0, T ] × Ω, let w�(i, j; t, s) =
K1

(

(ti − t)∕ℎt
)

K2
(

dE(sij , s)∕ℎs
)

and wv(i, j, k, l; t, t′, s, s′) = w�(i, j; t, s)w�(k, l; t′, s′), for 1 ≤ j ≤ mi, 1 ≤ l ≤ mk, and
1 ≤ i, k ≤ n. Then, when (t, s) ≠ (t′, s′), Vy(t, t′; s, s′) can be estimated by

V̂y(t, t′; s, s′) =

∑n
i=1

∑mi
j=1

∑n
k=1

∑mk
l=1 "̂y(ti, sij)"̂y(tk, skl)wv(i, j, k, l; t, t′, s, s′)

∑n
i=1

∑mi
j=1

∑n
k=1

∑mk
l=1wv(i, j, k, l; t, t′, s, s′)

, (4)

where "̂y(ti, sij) = y(ti, sij) − �̂y(ti, sij), �̂y(ti, sij) = �̂(ti, sij) + �̂z(ti, sij) is the estimate of E
(

y(ti, sij)
)

, and �̂z(t, s) is the
estimated mean function of ẑ(t, s) = XT

1 (t)�̂1 + XT
2 (t, s)�̂2 that will be described later in this Subsection. When (t, s) = (t′, s′),

the variance function �2y (t, s) = Vy(t, t; s, s) can be estimated by

�̂2y (t, s) =

∑n
i=1

∑mi
j=1 "̂

2
y(ti, sij)w�(i, j; t, s)

∑n
i=1

∑mi
j=1w�(i, j; t, s)

. (5)

It should be pointed out that the estimate V̂y(t, t′; s, s′) defined in (4) and (5) may not be positive semidefinite to become a
legitimate covariance function. To address this issue, we suggest using the projection-based modification procedure discussed
in Yang and Qiu18 to make the estimate positive semidefinite.
The bandwidths used for estimating �(t, s) and � by the iterative algorithm and those for estimating Vy(t, t′; s, s′) and �2y (t, s)

by (4) and (5) do not need to be the same. As a matter of fact, it has been shown in the literature that they should be chosen
differently for estimating the mean components and the variance/covariance components (cf., Yang and Qiu18). So, in this paper,
they are also allowed to be different for the two different purposes. They are denoted as (ℎt,1, ℎs,1) and (ℎt,2, ℎs,2), respectively,
for the bandwidths used in the iterative algorithm and the estimation procedure (4)-(5).
In the model estimation procedure described above, the two kernel functions K1(u) and K2(u) can both be chosen to be the

Epanechnikov functionKe(u) = 0.75(1−u2)I(|u| ≤ 1), because of its good theoretical properties (cf., Epanechnikov19). Because
the observed data in model (1) are spatio-temporally correlated, the leave-one-out cross-validation (CV) procedure would not
perform well for selecting the bandwidths (ℎt,1, ℎs,1) and (ℎt,2, ℎs,2), since it cannot distinguish the mean structure from the data
correlation structure properly in such cases (cf., Altman,20 Opsomer et al21). In this paper, we suggest using a modified CV
(MCV) score that was adapted from the version by Brabanter et al22 in the univariate regression setup to select (ℎt,1, ℎs,1), and
a spatio-temporal prediction error (PE) score to select (ℎt,2, ℎs,2). Both the MCV score and the PE score are described in detail
in Section A of the supplementary file.
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2.1.2 Estimation of the IC covariate effect
From model (1), the covariates X1(t) and X2(t, s) affect the disease incidence rate y(t, s) through z(t, s) = XT

1 (t)�1 +XT
2 (t, s)�2.

Let ẑ(t, s) = XT
1 (t)�̂1 +XT

2 (t, s)�̂2, where �̂ = (�̂
T
1 , �̂

T
2 )

T is obtained from the iterative algorithm described above. Then, ẑ(t, s)
should be a reasonable estimate of z(t, s). For any (t, s), (t′, s′) ∈ [0, T ] × Ω, define

�z(t, s) = E
(

ẑ(t, s)
)

, Vz(t, t′; s, s′) = Cov
(

ẑ(t, s), ẑ(t′, s′)
)

to be the mean and covariance functions of ẑ(t, s). For simplicity, let �2z (t, s) = Vz(t, t; s, s). Next, we discuss how to estimate
�z(t, s) and Vz(t, t′; s, s′) from the observed data {ẑ(ti, sij), j = 1,… , mi, i = 1,… , n}.
The mean function �z(t, s) can be estimated by the LLKS estimate, denoted as �̂z(t, s), obtained from (3) after Y is replaced

by Ẑ = (ẑ(t1, s11),… , ẑ(tn, snmn))
T . The bandwidths used here, denoted as (ℎt,3, ℎs,3), could be different from (ℎt,1, ℎs,1) that are

used when estimating � and �(t, s). But, (ℎt,3, ℎs,3) can still be chosen by minimizing the MCV score defined in (A.1) in the
supplementary file, after y(ti, sij) and �̂−(ij)(ti, sij) are replaced by ẑ(ti, sij) and �̂z,−(ij)(ti, sij), respectively, where �̂z,−(ij)(ti, sij)
denotes the LLKS estimate of �z(ti, sij) without using the (i, j)th observation ẑ(ti, sij). The covariance and variance functions
Vz(t, t′; s, s′) and �2z (t, s) can still be estimated by (4) and (5), except that the quantities {"̂y(ti, sij)} need to be replaced by
{"̂z(ti, sij) = ẑ(ti, sij) − �̂z(ti, sij)}. Of course, the bandwidths used here, denoted as (ℎt,4, ℎs,4), can also be different from
(ℎt,2, ℎs,2) used in (4) and (5). But, they can still be selected byminimizing the PE score defined in (A.3) of the supplementary file,
after y(ti, sij) and ŷ−(ij)(ti, sij) are replaced by ẑ(ti, sij) and ẑ−(ij)(ti, sij), respectively, where ẑ−(ij)(ti, sij) denotes the predicted
value of ẑ(ti, sij) by the kriging method, defined similarly to that in (A.4) of the supplementary file.

2.1.3 Statistical properties of the estimates
So far, we have discussed estimation of the IC spatio-temporal pattern. Under some mild conditions, the uniform convergence
of the estimates �̂, �̂(t, s), �̂z(t, s), �̂y(t, s) = �̂(t, s) + �̂z(t, s), V̂y(t, t′; s, s′), and V̂z(t, t′; s, s′) can be established, which is
presented in Theorem 1 in the appendix.

2.2 Spatio-temporal disease surveillance by using covariate information
2.2.1 Construction of the proposed method for spatio-temporal disease surveillance
After the IC spatio-temporal pattern of the disease incidence rates is estimated from an IC data, we are ready to describe our
proposed method for disease surveillance. A main feature of the newmethod is that it makes use of helpful covariate information
when detecting disease outbreaks, but its signal can only be triggered by unusual spatio-temporal pattern of the observed disease
incidence rates. To be more specific, assume that the disease incidence rates to monitor at time t∗i ∈ (T ,∞), for i = 1, 2,…, are
observed at spatial locations {s∗ij ∈ Ω, j = 1,… , m∗i }. These observations are denoted as {y(t

∗
i , s

∗
ij)}, and the related observations

of the time-dependent and space/time-dependent covariates are denoted as {X1(t∗i )}, and {X2(t
∗
i , s

∗
ij)}, respectively. To detect

disease outbreaks, let us first consider the following standardized residuals:

êy(t∗i , s
∗
ij) =

y(t∗i , s
∗
ij) − �̂y(t

∗
i , s

∗
ij)

�̂y(t∗i , s
∗
ij)

, for j = 1,… , m∗i , i = 1, 2,… , (6)

where �̂y(t∗i , s
∗
ij) =

√

V̂y(t∗i , t
∗
i ; s

∗
ij , s

∗
ij), and �̂y(t

∗
i , s

∗
ij) and V̂y(t

∗
i , t

∗
i ; s

∗
ij , s

∗
ij) are obtained from the IC data (cf., Subsection 2.1).

It should be noticed that the original estimates �̂y(t, s) and V̂y(t, t; s, s) obtained from the IC data are defined in the time internal
[0, T ] and the spatial domainΩ. However, the observation times {t∗i , i = 1, 2,…} in Expression (6) are in the time interval (T ,∞).
To make this expression well defined, the estimates �̂y(t, s) and V̂y(t, t; s, s) should be extended in the time domain periodically
from [0, T ] to [0,∞) with the period of T in advance. For instance, if t∗i = t̃∗i + lT , where t̃

∗
i ∈ [0, T ] and l ≥ 1 is an integer,

then we define �̂y(t∗i , s
∗
ij) = �̂y(̃t∗i , s

∗
ij), for any s

∗
ij ∈ Ω. In (6), the observed spatio-temporal pattern of the disease incidence

rates has been compared to the estimated IC spatio-temporal pattern described by �̂y(t∗i , s
∗
ij) and �̂y(t

∗
i , s

∗
ij). So, {êy(t

∗
i , s

∗
ij)} can

be used for detecting disease outbreaks: the larger their values, the more likely a disease outbreak.
From model (1), the covariates X1(t) and X2(t, s) affect the disease incidence rate y(t, s) through z(t, s) = X1(t)T�1 +

X2(t, s)T�2. A shift in z(t, s) could result in a shift in y(t, s). Similar to (6), the following standardized residuals could be useful
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for detecting a shift in z(t, s):

êz(t∗i , s
∗
ij) =

ẑ(t∗i , s
∗
ij) − �̂z(t

∗
i , s

∗
ij)

�̂z(t∗i , s
∗
ij)

, for j = 1,… , m∗i , i = 1, 2,… , (7)

where ẑ(t∗i , s
∗
ij) = X1(t∗i )

T �̂1+X2(t∗i , s
∗
ij)
T �̂2, �̂z(t∗i , s

∗
ij) =

√

V̂z(t∗i , t
∗
i ; s

∗
ij , s

∗
ij), and �̂z(t

∗
i , s

∗
ij) and V̂z(t

∗
i , t

∗
i ; s

∗
ij , s

∗
ij) are computed

from the IC data and have been extended in the time domain periodically from [0, T ] to [0,∞) with the period of T . Next, the
standardized residuals at different observation locations are combined at each observation time, so that a univariate control chart
can be used for detecting shifts in z(t, s). To this end, because of the spatial data correlation among {êz(t∗i , s

∗
ij), j = 1,… , m∗i }

defined in (7), we first decorrelate them by defining ẽz(t∗i ) = ̂z(t∗i )
−1∕2êz(t∗i ), where êz(t∗i ) = (êz(t∗i , s

∗
i1),… , êz(t∗i , s

∗
im∗i
))T ,

and ̂z(t∗i ) is the estimated correlation matrix of êz(t∗i ) computed from V̂z(t∗i , t
∗
i ; s, s

′), for s, s′ ∈ Ω. It can be checked that the
elements of ẽz(t∗i ), denoted as ẽz(t∗i , s

∗
ij), for j = 1,… , m∗i , are asymptotically uncorrelated with the asymptotic mean of 0 and

the asymptotic variance of 1 when there are no disease outbreaks by the time t∗i . Then, the following EWMA charting statistic
(Roberts23) is considered:

Ez,i = �ěz(t∗i ) + (1 − �)Ez,i−1, for i ≥ 1, (8)

where Ez,0 = 0, � ∈ (0, 1] is a weighting parameter, and ěz(t∗i ) =
∑m∗i
j=1 ẽz(t

∗
i , s

∗
ij)∕

√

m∗i , for each i. If there is an upward mean
shift in z(t, s) at or before the time t∗i , then the value of Ez,i would be relatively large because of the shift (cf., Chapter 5, Qiu

24).
Therefore, the EWMA charting statistic Ez,i provides a measure of the likelihood of an upward mean shift in z(t, s).
In the current spatio-temporal disease surveillance problem, our ultimate goal is to detect shifts in the disease incidence rate

y(t, s), which may or may not be caused by shifts in z(t, s). In addition, shifts in z(t, s) are not our major concern in the disease
surveillance problem, although any helpful information in z(t, s) should be used in disease surveillance. By these considerations
and the idea in Yang and Qiu15 to use covariate information during online process monitoring, the following EWMA charting
statistic is suggested for disease surveillance: for i ≥ 1,

Ey,i =W(Ez,i; �, �) ěy(t∗i ) +
[

1 −W(Ez,i; �, �)
]

Ey,i−1, (9)

where Ey,0 = 0, and W(Ez,i; �, �) ∈ (0, 1] is a weighting parameter for ěy(t∗i ) that depends on the covariate charting statistic
Ez,i and two parameters � ∈ (0, 1] and � > 0. In (9), the quantity ěy(t∗i ) is defined similarly to ěz(t∗i ), as

ěy(t∗i ) =
m∗i
∑

j=1
ẽy(t∗i , s

∗
ij)∕

√

m∗i ,

where ẽy(t∗i ) = (ẽy(t
∗
i , s

∗
i1),… , ẽy(t∗i , s

∗
im∗i
))T = ̂y(t∗i )

−1∕2êy(t∗i ), êy(t
∗
i ) = (êy(t

∗
i , s

∗
i1),… , êy(t∗i , s

∗
im∗i
))T , and ̂y(t∗i ) is the estimated

correlation matrix of êy(t∗i ) obtained from the estimate V̂y(t∗i , t
∗
i ; s, s

′). Then, the chart gives a signal of disease outbreak at time
t∗i if Ey,i > L, where L > 0 is a control limit. This chart is denoted as NEW hereafter.
In the SPC literature (cf., Qiu24), the performance of a chart like (9) is usually evaluated by the IC average run length (ARL),

defined as the average number of observation time points from the beginning of process monitoring to a signal from the chart
when the process is IC, and the OCARL, defined as the average number of observation time points from the occurrence of a shift
in the process distribution to a signal time of the chart. The IC and OCARL values are denoted as ARL0 and ARL1, respectively.
Regarding the design of the chart, its ARL0 value is usually fixed at a given level, and its parameters are chosen such that the
specified ARL0 value is reached. Then, the chart performs better if its ARL1 value is smaller for detecting a shift of a given size.
From its construction, it can be seen that the EWMA charting statisticEy,i in (9) is a weighted average of the observed disease

incidence rates. Thus, only shifts in the disease incidence rates can trigger a signal of the chart. The covariate information is used
in the weighting parameter W(Ez,i; �, �) only, which will be chosen to be an increasing function of Ez,i. So, when Ez,i is larger,
or when there is more evidence of a shift in the covariate combination z(t, s), the weight W(Ez,i; �, �) will be chosen larger so
that the current and several most recent observations will receive more weights. In such cases, the possible shift in the disease
incidence rates can be detected more effectively. Because the covariate information is used in the weighting parameter only, a
shift in z(t, s) would not trigger a signal from the chart (9) if that shift does not result in a shift in the disease incidence rates.
Thus, the chart (9) can accomplish the research goal of the paper stated in Section 1 and at the beginning of this subsection.
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2.2.2 Determination of the weighting function W(u; �, �) and the control limit L
To use the EWMA chart (9), we need to properly specify the weighting function W(u; �, �) (as a function of u) in advance.
As mentioned earlier, this function should be chosen to be an increasing function of u. Since it is a weight used in an EWMA
chart, its value needs to be in the interval (0, 1]. By taking into account all these considerations, we suggest using the following
weighting function that has been recommended in Yang and Qiu15:

W(u; �, �) =
{

min {1, � + (u∕� − 1)} , if u > �,
�, otherwise. (10)

From (10), W(u; �, �) is a linear function of u with a lower bound of � > 0 and an upper bound of 1. The lower bound � is
reached when u ≤ �. So, by using this weighting function in the EWMA chart (9), when Ez,i ≤ �, W(u; �, �) becomes the
regular weighting parameter �. The parameter � is similar to a control limit for the EWMA charting statistic Ez,i. So, when
Ez,i ≤ �, it is unlikely that there is an upward mean shift in z(t, s) by the time t∗i . In such cases, it is reasonable to use the regular
weighting parameter � in (9). When Ez,i > �, it is likely that an upward mean shift in z(t, s) has occurred at or before the time
t∗i . In such cases, the weight W(Ez,i; �, �) defined in (10) will be larger than �, implying that the observations at t∗i and a few
previous time points will receive more weights, which is intuitively reasonable, as explained before.
In the weighting function W(u; �, �) defined in (10), there are two parameters � and � involved. As explained above, � is a

regular weighting parameter used in an EWMA chart. It can be chosen to be the same as the one used in defining the EWMA
charting statistic Ez,i in (8). In the SPC literature, commonly used values for � include 0.05, 0.1, 0.2, 0.5 and 1.0. Regarding �,
it can be selected similarly to a control limit of an EWMA chart. Let the IC ARL value of the EWMA chart with the charting
statistic Ez,i be ARL0,z. Then, � can be chosen from an IC data {

(

X1(t′i),X2(t
′
i, s

′
ij), y(t

′
i, s

′
ij)
)

, j = 1,… , m′i, i = 1,… , n′} by
a block bootstrap procedure consisting of the following five steps, where the IC data used here could be different from the one
used for estimating the IC model (1).

1) The standardized residuals {ěz(t′i), i = 1,… , n′} are first computed by (7), and n′− l+1 blocks {Qk, k = 1,… , n′− l+1}
can be formed, where Qk = {ěz(t′i), i = k,… , k + l − 1} and l is a block size.

2) A sequence of blocks can be randomly selected with replacement from {Qk, k = 1,… , n′− l+1}, and the selected blocks
are placed one after another to form a bootstrap sample, denoted as {ě(b)z,i , i ≥ 1}.

3) For i ≥ 1, we calculate the EWMA charting statistic from the bootstrap sample, defined as E(b)
z,i = �ě(b)z,i + (1 − �)E

(b)
z,i−1,

and record the IC run length as RL0(�) = min{i, E
(b)
z,i > �}, for a given value of �.

4) The second and third steps are then repeated for B times, and the average of the B values of RL0(�) is used for
approximating ARL0(�).

5) The bisection search algorithm is used to search for a value of � such that ARL0(�) reaches the pre-specified value of
ARL0,z.

For the EWMA chart (9), its control limit L can be determined in the same way by the above block bootstrap procedure, once
its IC ARL value, denoted as ARL0, is given and the weighting function W(u; �, �) is determined.

2.2.3 A modification for detecting upward mean shifts
It should be pointed out that the proposed chart NEW (cf., (9)) may not be effective for detecting an upward mean shift in the
disease incidence rate y(t, s) in cases when y(t, s) has actually downward shifts at some spatial locations. The reason is that
the decorrelated and standardized residuals have been averaged across different spatial locations at each time point when the
charting statistic Ey,i is computed. So, positive and negative residuals at different spatial locations will be canceled out, making
the resulting chart ineffective. To overcome this limitation, the following modified version of NEW, denoted as MNEW, is
suggested. Let

êy,+(t∗i , s
∗
ij) = max(êy(t

∗
i , s

∗
ij), 0), êz,+(t

∗
i , s

∗
ij) = max(êz(t

∗
i , s

∗
ij), 0),

for j = 1,… , m∗i and i = 1, 2,…. Then, the means of these quantities would be non-zero, and their standardized values are
defined to be

êy,0(t∗i , s
∗
ij) =

êy,+(t∗i , s
∗
ij) − �̂y,+(t

∗
i , s

∗
ij)

�̂y,+(t∗i , s
∗
ij)

, êz,0(t∗i , s
∗
ij) =

êz,+(t∗i , s
∗
ij) − �̂z,+(t

∗
i , s

∗
ij)

�̂z,+(t∗i , s
∗
ij)

,
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where �̂y,+(t∗i , s
∗
ij) =

√

V̂y,+(t∗i , t
∗
i ; s

∗
ij , s

∗
ij), �̂z,+(t

∗
i , s

∗
ij) =

√

V̂z,+(t∗i , t
∗
i ; s

∗
ij , s

∗
ij), the estimated mean functions �̂y,+(t, s)

and �̂z,+(t, s) are both obtained by the LLKS procedure (3) after {y(ti, sij)} are replaced respectively by {êy,+(ti, sij)} and
{êz,+(ti, sij)}, and the covariance functions V̂y,+(t, t′; s, s′) and V̂z,+(t, t′; s, s′) are obtained by the estimation procedure (4)-
(5) after {"̂y(ti, sij)} are replaced respectively by {"̂y,+(ti, sij) = êy,+(ti, sij) − �̂y,+(ti, sij)} and {"̂z,+(ti, sij) = êz,+(ti, sij) −
�̂z,+(ti, sij)}. The bandwidths in obtaining �̂y,+(t, s) and �̂z,+(t, s) can be selected by the MCV score defined in (A.1) of the sup-
plementary file, while the bandwidths for obtaining V̂y,+(t, t′; s, s′) and V̂z,+(t, t′; s, s′) can be chosen by the PE score defined in
(A.3) of that file. Then, the charting statistic of MNEW is defined by (9), after the quantities {ěy(t∗i )} computed from {êy(t∗i , s

∗
ij)}

are replaced by the corresponding ones computed from {êy,0(t∗i , s
∗
ij)}.

3 SIMULATION STUDIES

In this section, we investigate the numerical performance of the proposed method described in Section 2 using Monte Carlo
simulations. Our discussion is organized in four parts. The first three parts focus on the proposed chartMNEW.More specifically,
Subsection 3.1 is about its performance in estimating the IC model, Subsection 3.2 is about the impact of the IC sample size and
block size on its performance, and Subsection 3.3 is about the impact of the parameters (�,ARL0,z) on its performance. Then,
the performance of MNEW is compared to that of NEW and several other competing methods in Subsection 3.4.
Before presenting the simulation results, let us provide a detailed description about the simulation setup. For simplicity, let us

assume that [0, T ] = [0, 1], the observation times are {ti = i∕n, i = 1,… , n}, and the observation locations are unchanged over
time and equally spaced inΩ = [0, 1]×[0, 1]. In such cases, the observation locations can simply be denoted as {sj , j = 1,… , m},
where m is square of an integer. In this section, (n, m) are chosen to be (200, 64) or (400, 100), unless stated otherwise. The IC
model is assumed to be the following one:

y(t, s) = �(t, s) + �1X1(t) + �2X2(t, s) + "(t, s), for (t, s) ∈ [0, 1] × Ω,

where X1(t) = �1(t) + "1(t), X2(t, s) = �2(t, s) + "2(t, s), and "1(t), "2(t, s) and "(t, s) are mutually independent zero-mean
random errors. In the above model, it is assumed that �1 = �2 = 0.3, �1(t) = 0.01(t − 0.5)2, �2(t, s) = 0.01(t − 0.5)2 +
0.01

[

(su − 0.5)2 + (sv − 0.5)2
]

, and �(t, s) = 0.01 cos(2�t)+0.01 exp{−(su+sv)∕2}+0.02, where s = (su, sv)T . The space/time-
varying mean functions �(t, s) and �2(t, s) are presented in the 1st and 2nd rows of Figure 1(a), respectively, when t = 0 (1st
column), t = 0.5 (2nd column) and t = 1 (3rd column), and the time-varying mean function �1(t) is shown in Figure 1(b). The
random errors {"(ti, sj)}, {"1(ti)} and {"2(ti, sj)} are generated as follows:

• The quantities {"1(ti)} are generated from the AR(1) model "1(ti) = �t"1(ti−1) + (1 − �2t )
1∕2�1(ti), where |�t| < 1 is a

constant and {�1(ti)} are i.i.d. with the common distributionN(0, 0.0062).

• Let "2(ti) = ("2(ti, s1),… , "2(ti, sm))T . Then, "2(ti) is generated from them-dimensional AR(1)model "2(ti) = �t"2(ti−1)+
(1 − �2t )

1∕2�2(ti), where �2(ti) = (�2(ti, s1),… , �2(ti, sm))T are temporally independent Gaussian spatial processes whose
spatial correlation is described by the covariance function Cov

(

�2(ti, sj), �2(ti, sl)
)

= 0.0062 exp{−dE(sj , sl)∕�s}, and
�s > 0 is a constant.

• Let "(ti) = ("(ti, s1),… , "(ti, sm))T . Then, "(ti) is generated in the same way as that for "2(ti), except that its spatial
covariance at each time point is assumed to be Cov(�(ti, sj), �(ti, sl)) = 0.0032 exp{−dE(sj , sl)∕�s}.

In the above setup, it can be checked that, for any 1 ≤ i, k ≤ n and 1 ≤ j, l ≤ m, the covariance between y(ti, sj) and y(tk, sl) is

Vy(ti, tk; sj , sl) = �
|k−i|
t

[

0.0062�21 +
(

0.0062�22 + 0.003
2) exp{−dE(sj , sl)∕�s}

]

.

Thus, the parameters �t and �s control the data correlation in time and space, respectively; the larger their values, the stronger
the correlation. To consider cases with different spatio-temporal data correlation, (�t, �s) are chosen to be (0.2, 0.1), (0.4, 0.2)
or (0.6, 0.3).

[Figure 1 about here.]

After a disease outbreak, the OC model for the disease incidence rates is assumed to be

y(�)(t, s) = �(�)(t, s) + z(�)(t, s) + "(t, s),
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where �(�)(t, s) = �(t, s) + �y��(t, s), z(�)(t, s) = z(t, s) + �y�z(t, s), �y = {0.0062 × 2 × 0.32 + 0.0032}1∕2 = 0.0039 is the
IC standard deviation of y(t, s), z(t, s) = �1X1(t) + �2X2(t, s), �z(t, s) and ��(t, s) describe the shift sizes in y(t, s) due to the
covariates and other factors that are not included in the model, respectively, and �(t, s), X1(t), X2(t, s) and "(t, s) are the same
as those in the IC model. By some simple calculation, it can be checked that the OC mean function of y(t, s) in the above setup
is �(�)y (t, s) = �y(t, s) + �y{��(t, s) + �z(t, s)}, where �y(t, s) is the IC mean function of y(t, s). The following four scenarios are
considered about the shift sizes ��(t, s) and �z(t, s): for � = 1, 2, 3, 4,

(I) ��(t, s) = 0.20� × Δ1(t, s), �z(t, s) = 0,

(II) ��(t, s) = 0.04� × Δ1(t, s), �z(t, s) = 0.16� × Δ1(t, s),

(III) ��(t, s) = 0.20� × Δ2(t, s), �z(t, s) = 0, and

(IV) ��(t, s) = 0.04� × Δ2(t, s), �z(t, s) = 0.16� × Δ2(t, s),

where Δ1(t, s) = 2(t−0.5)2 + exp
{

−[(su − 0.5)2 + (sv − 0.5)2]
}

which is always positive, Δ2(t, s) = 2(t−0.5)2 + exp{−[(su −
0.5)2 + (sv −0.5)2]}sign{|su −0.5|+ |sv −0.5|−0.5} which could be negative in regions close to the center (0.5,0.5) of Ω, and
sign(⋅) is the sign function. From their construction, it can be seen that the shifts in types (I) and (III) are not due to covariates at
all, while those in types (II) and (IV) are due to both covariates and other factors. By comparing the shifts in types (I) and (III),
those in type (I) are always positive at all observation times and locations, but those in type (III) could be negative in spatial
regions close to the center (0.5,0.5) of Ω. Similarly, the shifts in type (II) are always positive, but those in type (IV) could be
negative for both components ��(t, s) and �z(t, s).
In all simulation examples in this section, the regression coefficients (�1, �2), and the mean and covariance functions are all

assumed unknown, and they are estimated from an IC dataset of size (n, m) generated from the ICmodel. To determine the control
limits � and L of the charts (8) and (9), another IC dataset of the same size is generated, and the control limits � and L are then
determined by the block bootstrap procedure with the sample size B = 10, 000 and the block size l, as discussed in Subsection
2.2. The actual ARL0 and ARL1 values are then computed based on 1,000 replicated simulations of online monitoring. Note
that these ARL0 and ARL1 values depend on the randomly generated IC dataset used for estimating the semiparametric spatio-
temporal model (1) and for determining the control limits � and L. To reduce the randomness due to the IC dataset, the entire
simulation process described above, from generation of the IC datasets, estimation of the IC model, determination of the control
limits, to computation of the actual ARL0 and ARL1 values, is repeated for 100 times. The average of the 100 ARL0 (or ARL1)
values is used as the final estimate of the true ARL0 (or ARL1) value in each case considered. The corresponding standard error
of the ARL0 (or ARL1) estimate can also be computed.

3.1 Performance of the estimated IC model
In this part, we evaluate the numerical performance of the proposed model estimation method discussed in Subsection 2.1. To
this end, 100 simulated IC datasets are generated, as described above, for each combination of (n, m) and (�t, �s). The regression
coefficients (�1, �2) are then estimated from each of these IC datasets. The box-plots of the 100 sets of (�1, �2) estimates are
presented in Figure 2 in six cases when (n, m) = (200, 64) or (400,100) and (�t, �s) = (0.2, 0.1), (0.4,0.2) or (0.6,0.3). From the
figure, it can be seen that: (i) the median estimates of (�1, �2) are close to their true values of (0.3, 0.3) in all cases considered,
implying that the proposed model estimation method is reliable, (ii) the estimates of (�1, �2) are closer to their true values when
(�t, �s) are smaller (i.e., the temporal and spatial data correlation is weaker), which is intuitively reasonable, and (iii) the results
get better when (n, m) are larger, implying the statistical consistency of the estimates that has been verified theoretically in
Theorem 1. Regarding the estimated mean and covariance/variance functions, it has been well studied in the literature that they
would converge to the true functions when both m and n increase. See, for instance, Yang and Qiu17,18 for a related discussion.

[Figure 2 about here.]

3.2 Impact of the IC data size (n, m) and the block size l on the performance of MNEW
Performance of the proposed control charts NEW andMNEW depends on the IC data size (n, m) and the block size l of the block
bootstrap procedure. In this part, we study such dependence for the chart MNEW. The results for the chart NEW are similar and
thus omitted here. Let us consider cases when � = 0.2, ARL0,z = 200 and ARL0 = 200. To study the impact of (n, m) on the
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performance of MNEW, we fix l at 10 and let n change from 100 to 1200 and m change among 16, 36, 64 and 100. Results of
the actual ARL0 values of MNEW after its control limit is determined by the block bootstrap procedure are presented in Figure
3, where the shaded area in each panel denotes those actual ARL0 values that are within 5% of the nominal level 200. From the
plots of the figure, it can be seen that: (i) the actual ARL0 values become closer to the nominal level 200 when m and n increase,
(ii) in cases when m ≥ 64, the performance of MNEW is quite stable when n ≥ 200, and (iii) the results are better when the
data correlation is weaker.

[Figure 3 about here.]

Next, we study the impact of the block size l on the performance of MNEW. To this end, (n, m) are fixed at (200, 64) or
(400, 100), and l is allowed to change from 1 to 20. Other setups are kept the same as those in the example of Figure 3. The related
results of the actual ARL0 values of MNEW are shown in Figure 4. From the figure, it can be seen that: (i) when l ∈ [10, 15],
MNEW performs quite satisfactorily unless the data correlation is very strong (i.e., (�t, �s) = (0.6, 0.3)) and the IC data size
is relatively small (i.e., (n, m) = (200, 64)), and (ii) the performance of MNEW becomes worse when the data correlation is
stronger, as expected. Based on this example, it seems reasonable to choose l in the interval [10, 15].

[Figure 4 about here.]

3.3 Impact of the parameters � and ARL0,z on the performance of MNEW
The proposed charts NEW and MNEW have two other parameters � and ARL0,z involved. In this part, we study their impact
on the performance of NEW and MNEW. Because the results for NEW are similar to those for MNEW, they are not presented
here. Let us consider cases when ARL0 = 200, (n, m) = (200, 64), (�t, �s) = (0.4, 0.2), l = 10, � = 0.1, 0.2 or 0.3, and
ARL0,z = 100, 200 or 400. The actual ARL1 values and the corresponding standard errors of MNEW for detecting the four
types of shifts described earlier are presented in Table 1. In each row of the table, the bold numbers denote the smallest ones
for each ARL0,z value, and the bold italic number denotes the smallest number in the entire row. From the table, we can have
the following conclusions. First, for detecting shifts of types (I) and (III) that are not due to covariates, MNEW performs the
best when ARL0,z = 400. This is reasonable because the control limit � of the EWMA chart for the covariates (cf., (8)) would
be large due to a large value of ARL0,z. Consequently, the weighting function W(u; �, �) defined in (10) is closer to the regular
weighting parameter � in this case, compared to cases when ARL0,z = 100 or 200. The resulting chart, which is more similar to
the regular EWMA chart, would be more effective in such cases. From the table, for detecting shifts of types (II) and (IV) that
are partially related to covariates, MNEW performs the best when ARL0,z = 100. So, selection of ARL0,z depends on whether a
future shift is related to a shift in covariates: if the answer is “yes”, then ARL0,z should be chosen small, and it should be chosen
large otherwise. In practice, we may not have such prior information. In such cases, we suggest choosing ARL0,z = ARL0. From
Table 1, it can be seen that the corresponding results when ARL0,z = ARL0 = 200 may not be the best, but they are reasonably
good. Second, when the value of ARL0,z is given, we can see that different values of � can result in different ARL1 values,
although the impact of � seems a little smaller than that of ARL0,z. From the table, it seems that the general conclusion about
the impact of � is still true that a smaller � is good for detecting a smaller shift and a larger � is good for detecting a larger shift
(cf., Chapter 5, Qiu24).

[Table 1 about here.]

3.4 Numerical comparison of different methods
In this part, we compare the numerical performance of the proposed charts NEW and MNEW with a number of alternative
methods. The four alternative methods considered in the comparison are briefly described below.

(i) Zhao et al25 suggested a disease outbreak detection method, denoted as DODZ, using the kernel smoothing method for
estimating the IC pattern of the disease incidence rates. For sequential monitoring of the observed disease incidence rates,
it first removes the estimated IC pattern from the observed data and calculates the related “raw” residuals. Then, at each
observation location, an AR(2) model is used to decorrelate the “raw” residuals over time and obtain the “model-based”
residuals. Finally, a signal of disease outbreak is triggered if a “model-based” residual exceeds a threshold value c, where c
is chosen by a parametric bootstrap procedure under the assumptions that the observations collected at different locations
are independent and the “model-based” residuals follow a normal distribution.



11

(ii) Chen et al26 suggested a distribution-free EWMAchart, denoted asDFEWMA, formonitoring high-dimensional processes
under the assumptions that the IC process distribution is unchanged over time and observations at different time points
are independent. In the DFEWMA chart, time-varying control limits are used and they are obtained from a permutation
testing procedure.

(iii) In the proposed chart NEW, a regular weighting parameter � is used in (9), replacing the covariate-dependent weight
W(Ez,i; �, �). The resulting chart does not use any covariate information. It is denoted as WOC, represeting “without
covariate” information.

(iv) In the proposed chart MNEW, a regular weighting parameter � is used. The resulting chart is denoted as MWOC.

We first study the IC performance of all six methods discussed above. In the charts DFEWMA, WOC, MWOC, NEW and
MNEW, the weighting parameter � is chosen to be 0.1, 0.2 or 0.3. In the method DODZ, the threshold value c is determined by
a parametric bootstrap procedure, as discussed in Zhao et al.25 In the chart DFEWMA, there is a window size parameter w to
choose. In this paper, we adopt the suggestion by Chen et al26 thatw is chosen to be the smallest integer satisfying (1−�)w ≤ 0.05.
As mentioned above, the control limit of DFEWMA is chosen by a permutation testing procedure suggested by Chen et al.26 The
control limits of WOC, MWOC, NEW and MNEW are determined by the block bootstrap procedure discussed in Subsection
2.2 with B = 10, 000 and l = 10. In both NEW and MNEW, ARL0,z is chosen to be equal to ARL0. Then, in cases when the
nominal ARL0 is 200, (n, m) = (200, 64) or (400, 100), and (�t, �s) = (0.2, 0.1), (0.4, 0.2) or (0.6, 0.3), the calculated actual
ARL0 values and their standard errors are presented in Table 2. From the table, it can be seen that (i) the actual ARL0 values
of DODZ and DFEWMA are quite far away from the nominal ARL0 value of 200, due to the fact that some of their model
assumptions are violated in this example, (ii) the actual ARL0 values of WOC, MWOC, NEW and MNEW are all close to the
nominal ARL0 value, and thus these four charts all have a reliable IC performance, and (iii) for each method, its actual ARL0
values are closer to the nominal ARL0 value when (n, m) are larger and/or (�t, �s) are smaller, which is intuitively reasonable.

[Table 2 about here.]

Next, we compare the OC performance of all six methods in cases when the nominal ARL0 value is fixed at 200, (n, m) =
(200, 64) or (400, 100), and (�t, �s) = (0.2, 0.1), (0.4, 0.2) or (0.6, 0.3). To make the comparison fair, the control limits of the six
charts, especially the charts DODZ and DFEWMA, are all adjusted such that their actual ARL0 values equal to 200. In addition,
a weighting parameter � is involved in the charts DFEWMA, WOC, MWOC, NEW and MNEW, and the OC performance of
the related charts may not be comparable if they use a same value of � (cf., Qiu27). To overcome this difficulty, their optimal
OC performance is considered here, which is obtained by changing the value of � for each method such that its ARL1 value is
minimized for detecting a given shift. In the charts NEW and MNEW, ARL0,z is chosen to be equal to ARL0, and other setups
of this example are the same as those in Tables 1 and 2. Then, the optimal ARL1 values of the six methods are shown in Figures
5 and 6. From the figures, we can have the following conclusions. (i) The four charts WOC, MWOC, NEW and MNEW perform
uniformly better than the remaining two charts DODZ and DFEWMA in all cases considered. (ii) WOC performs slightly better
than MWOC, NEW andMNEW for detecting shifts of type (I). (iii) For detecting shifts of type (II), NEW andMNEW are better
than WOC and MWOC. (iv) MNEW and MWOC are better than NEW and WOC for detecting shifts of type (III). (v) To detect
shifts of type (IV), MNEW performs the best. The conclusion (i) is reasonable because some model assumptions of DODZ and
DFEWMA are invalid in this example. All shifts of type (I) are positive and not due to covariates. So, the conclusion (ii) is
reasonable because the chartWOC did not use any covariate information in its construction, it did not consider any modifications
for handling negative shifts, and thus the variability of its charting statistic would be smaller than that of the charts MWOC,
NEW and MNEW. Since the shifts of type (II) are partially due to covariates and they are all positive, NEW and MNEW
would be better than WOC and MWOC, and NEW would be better than MNEW. This explains why the conclusion (iii) is also
reasonable. The remaining two conclusions can be explained in a similar way. From this example, it can be seen that the chart
MNEW performs the best or close to the best in all cases considered. Because it is often difficult to know in practice whether
a future shift would be related to the covariates and whether it could be negative at some spatial locations, the chart MNEW is
recommended in this paper.

[Figure 5 about here.]

[Figure 6 about here.]



12

4 A REAL-DATA APPLICATION

In this section, we demonstrate our proposed methodology using a real-data example. As discussed in Section 1, because infec-
tious diseases could have a great damage to public health, many disease reporting systems have been developed in US at the
federal or state level. In the state of Florida, the disease reporting system called ESSENCE has been developed by the Florida
Department of Health. ESSENCE collects daily numbers of incidences of the influenza-like illness (ILI) from 264 participating
emergency departments and urgent care centers across the entire state. Researchers can have an access to the database after a
proper application, but the provided data have been organized in county level by the reporting system. In this section, its data
collected during 2012-2014 are used. The observed ILI incidence rates on 06/15 (a summer time) and 12/15 (a winter time)
during the three years are presented in Figure 7. From the figure, it can be seen that the disease incidence rates in the winters
are much higher than those in the summers, which is mainly due to the seasonality of ILI. However, the disease incidence rates
in the winter of 2014 seem much higher than those in the winters of 2012 and 2013. Thus, it is interesting to see whether there
was a disease outbreak occurred in that year. In the literature, it has been well discussed that diseases like ILI could be highly
associated with certain climate conditions, such as air temperature and relative humidity (cf., Noort et al28). For this reason, we
downloaded the observed data of the time-dependent relative humidity and the space/time-dependent air temperature in Florida
during 2012-2014 from the official website of the National Oceanic and Atmospheric Administration of the United States, and
the two variables Relative Humidity (in the unit of %) and Air Temperature (in the unit of ◦F) will be used as covariates in our
proposed method.

[Figure 7 about here.]

As discussed above, the observed data of the disease incidence rates during 2012 and 2013 look stable. Thus, they are used
as the IC data in our proposed method. This IC data are then splitted into two parts: those in 2013 are used for estimating the
IC model (1), and those in 2012 are used for determining the control limits of the related control charts. From the estimated
IC model, the estimated regression coefficients of Relative Humidity and Air Temperature are −1.17 × 10−6 and −1.06 × 10−6,
respectively. Therefore, both covariates are negatively associated with the ILI incidence rates, which is consistent with our
intuition and with the conclusions found in the literature (cf., Pica and Bouvier,29 Schulman and Kilbourne30). In the proposed
charts NEW and MNEW, we choose � = 0.1 and ARL0 = 200, which are commonly used in an EWMA chart. Also, we
choose ARL0,z to be equal to ARL0, as suggested in Section 3. The control limits � and L are determined by the block bootstrap
procedure discussed in Subsection 2.2 with the bootstrap sample size B = 10, 000 and the block length l = 10. For comparison
purposes, the methods DODZ, DFEWMA, WOC and MWOC are also considered here. For the method DODZ, its control limit
is determined by the parametric bootstrap approach suggested by Zhao et al.25 The time-varying control limits of DFEWMA are
chosen by the permutation testing procedure suggested by Chen et al.26 In the charts DFEWMA, WOC and MWOC, �, ARL0,
B and l are chosen to be the same as those in NEW and MNEW. The charting statistics of the six methods for monitoring the
observed disease incidence rates in 2014 are shown in Figure 8. From the figure, it can be seen that (i) the charting statistic of
DODZ is very noisy and it gives the first signal of disease outbreak in middle January of 2014, (ii) DFEWMA gives signals
almost every day and its first signal is on 01/01/2014, (iii) the charts WOC and MWOC are quite similar and their first signals
are on 10/07 and 10/10, respectively, and (iv) the charts NEW and MNEW are also similar and their first signals are both on
09/27. This example shows that the signals from the charts DODZ and DFEWMA are too frequent to be really helpful. As a
comparison, the performance of the charts WOC and MWOC seems more reasonable because they have taken into account the
dynamic nature (e.g., seasonality) of the IC process distribution and the possible spatio-temporal data correlation. Finally, the
charts NEW andMNEW seemmore effective thanWOC andMWOC after accommodating the helpful information in covariates
for disease surveillance.

[Figure 8 about here.]

To verify the signals of NEW and MNEW, the ILI incidence rates of the entire Florida state during 09/01-12/31 in all three
years of 2012-2014 are presented in the left panel of Figure 9, where the dark dashed line denotes the estimated mean function
of the IC model and the vertical thin like denotes the first signal time of NEW and MNEW. To better perceive the difference
between the observed ILI incidence rates and the estimated IC mean function, the right panel of Figure 9 presents the residuals
of the 2014 ILI incidence rates (i.e, differences between the observations and the estimated mean values). From the plots in
the figure, it can be seen that (i) the estimated IC mean function describes the longitudinal pattern of the IC data well, (ii) the
observed ILI incidence rates start to deviate from the estimated IC mean function in early or middle September of 2014, and
(iii) the charts NEW and MNEW can react to such a systemic deviation promptly.
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[Figure 9 about here.]

5 CONCLUDING REMARKS

In the previous sections, we present a new sequential monitoring method for disease surveillance. The new method can
accommodate spatio-temporal data correlation, time-varying IC process distribution (e.g., seasonality), and nonparametric data
distribution. One novelty of the newmethod is that it takes advantage of the covariate information in the way that a signal from the
proposed chart can only be triggered by unusual patterns in the observed disease incidence data but the helpful covariate infor-
mation can improve its effectiveness. Extensive simulation studies and a real data application have shown that the new method
performs well in different cases. However, there are still some issues about the proposed method that need to be addressed in the
future research. For instance, in practice there could be a large number of covariates relevant to the incidence rates of a disease.
Intuitively, only those highly related to the disease incidence rates should be included in the IC model, to reduce the variability
of the estimated IC model and improve the efficiency of the subsequent process monitoring. Therefore, a reliable and effective
variable selection procedure should be helpful when estimating the IC model. Also, although the semiparametric IC model (1)
is already very flexible, it assumes that the relationship between the covariates and the response is linear, which may not be
appropriate in some applications. This model is possible to be further generalized to a semiparametric model with space/time-
varying coefficients or even a completely nonparametric model. However, such possible generalizations are not straightforward
and they require much future research effort. In addition, the proposed method assumes that the time period T is known, which
is reasonable in some applications (e.g., the seasonality of some infectious diseases like influenza is usually in years). For some
other applications, especially those involve diseases that we are unfamiliar with, T might be unknown and it needs to be properly
estimated in advance, which requires further research.
Acknowledgments: The authors thank the editor, the associate editor and two referees for their constructive comments and

suggestions, which improved the quality of the paper greatly. This research was supported in part by an NSF grant with the
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APPENDIX

In the appendix, we present some statistical properties of the estimates �̂, �̂(t, s), �̂z(t, s), �̂y(t, s) = �̂(t, s)+�̂z(t, s), V̂y(t, t′; s, s′)
and V̂z(t, t′; s, s′) defined in Section 2.1. To this end, the strong mixing coefficient of order k in the time domain for the random
errors {"(ti, sij)} in model (1) is defined to be

�"(k) = sup
n≥k+1,1≤i≤n−k

sup
A,B

{

|P (AB) − P (A)P (B)| ∶ A ∈  i
1, B ∈ n

i+k
}

,

where  i2
i1

denotes the �-algebra generated by {"(ti, sij), j = 1,… , mi, i1 ≤ i ≤ i2}. For the random errors {"z(ti, sij) =
z(ti, sij) − E(z(ti, sij))}, the strong mixing coefficient can be defined in the same way, which is denoted as �z(k).
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Theorem 1. For model (1) and its estimation, assume that: i)Ω is a bounded and closed set inℝ2, {mi, i = 1,… , n} are all in the
same order as m, {sij , j = 1,… , mi} follow a distribution with density f (s) for each i, they are independent of each other, and
independent of {"(ti, sij)} and {X1(ti),X2(ti, sij)}; ii) f (s) is twice continuously differentiable and has a non-zero lower bound
in Ω; iii) the functions �(t, s), �z(t, s), Vy(t, t′; s, s′) and Vz(t, t′; s, s′) are all twice continuously differentiable in [0, T ] × Ω; iv)
there exist two constants C0, C1 > 0 such that, �(k) ≤ C0 exp(−C1k), for any k ≥ 0, where �(k) = max

(

�"(k), �z(k)
)

; v) there
are constants C2, C3, ! > 0 such that P (|"(t, s)| ≥ k) ≤ C2k! exp(−C3k) and P (|"z(t, s)| ≥ k) ≤ C2k! exp(−C3k), for any
(t, s) ∈ [0, T ] × Ω and k ≥ 0; vi) the kernel functions K1(u) and K2(u) are both symmetric about 0 and Lipschitz-1 continuous
density functions with finite supports; vii) ℎs,l = o(1), ℎt,l∕ℎs,l = O(1), log(n)∕(mℎ2s,l) = o(1), and log(n)

2∕(nℎ2t,l) = o(1), for
1 ≤ l ≤ 4. Then, we have

1) ||�̂ − �||∞ = Op
(

ℎ2t,1 + ℎ
2
s,1 + [1∕(nℎt,1)]

1∕2
)

,

2) sup
(t,s)∈[0,T ]×Ω

|

|

�̂(t, s) − �(t, s)|
|

= Op
(

ℎ2t,1 + ℎ
2
s,1 + [log(n)

2∕(nℎ2t,1)]
1∕2

)

,

3) sup
(t,s)∈[0,T ]×Ω

|

|

�̂z(t, s) − �z(t, s)||=Op
(

ℎ2t,3 + ℎ
2
s,3 + [log(n)

2∕(nℎ2t,3)]
1∕2

)

,

4) sup
(t,s)∈[0,T ]×Ω

|

|

|

�̂y(t, s) − �y(t, s)
|

|

|

=Op
(

ℎ2t,1 + ℎ
2
s,1 + ℎ

2
t,3 + ℎ

2
s,3 + [log(n)

2∕(nℎ2t,1)]
1∕2 + [log(n)2∕(nℎ2t,3)]

1∕2
)

,

5) sup
(t,s),(t′,s′)∈[0,T ]×Ω

|

|

|

V̂y(t, t′; s, s′) − Vy(t, t′; s, s′)
|

|

|

= Op
(

ℎ2t,max + ℎ
2
s,max + [log(n)

2∕(nℎ2t,min)]
1∕2

)

,

6) sup
(t,s),(t′,s′)∈[0,T ]×Ω

|

|

|

V̂z(t, t′; s, s′) − Vz(t, t′; s, s′)
|

|

|

= Op
(

ℎ̃2t,max + ℎ̃
2
s,max + [log(n)

2∕(nℎ̃2t,min)]
1∕2

)

,

where ‖ ⋅ ‖∞ is the maximum norm, ℎt,max = max{ℎt,1, ℎt,2, ℎt,3}, ℎt,min = min{ℎt,1, ℎt,2, ℎt,3}, ℎ̃t,max = max{ℎt,1, ℎt,3, ℎt,4}, and
ℎ̃t,min = min{ℎt,1, ℎt,3, ℎt,4}.

The proof of Theorem 1 is given in the supplementary file.
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FIGURE 1 (a) IC mean functions �(t, s) (1st row) and �2(t, s) (2nd row) when t = 0 (1st column), t = 0.5 (2nd column) and
t = 1 (3rd column). (b) IC mean function �1(t).
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FIGURE 2 Boxplots of the estimates (�̂1, �̂2) based on 100 replicated simulations. In each panel, the y-axis denotes the values
of �̂1 or �̂2, and the bold dashed horizontal line denotes the true values of �1 and �2.

TABLE 1 ARL1 values and their standard errors (in parentheses) of the proposed chart MNEW when ARL0 = 200, (n, m) =
(200, 64), (�t, �s) = (0.4, 0.2) and l = 10. In each row, the bold numbers denote the smallest ones for each ARL0,z value, and
the bold italic number denotes the smallest number in the entire row.

Shift ARL0,z = 100 ARL0,z = 200 ARL0,z = 400
Type � � = 0.1 � = 0.2 � = 0.3 � = 0.1 � = 0.2 � = 0.3 � = 0.1 � = 0.2 � = 0.3
(I) 1 88.23(2.62) 79.04(2.58) 77.48(2.12) 58.71(2.30) 56.65(1.63) 59.63(1.67) 50.19(1.34) 52.10(1.31) 56.70(1.28)

2 47.91(2.17) 34.16(2.07) 32.24(1.73) 18.90(0.93) 18.54(0.90) 21.76(1.04) 17.24(0.70) 18.18(0.77) 20.84(0.80)
3 24.14(1.64) 16.24(0.92) 14.89(0.71) 11.04(0.40) 10.35(0.43) 10.85(0.49) 10.49(0.37) 10.19(0.41) 10.46(0.43)
4 13.10(1.01) 8.01(0.31) 7.28(0.27) 6.92(0.21) 6.09(0.23) 6.02(0.25) 6.13(0.20) 5.63(0.21) 5.62(0.22)

(II) 1 38.72(1.28) 39.11(1.26) 50.53(1.27) 39.41(1.26) 46.60(1.29) 52.45(1.28) 40.63(1.24) 47.70(1.27) 53.18(1.28)
2 14.95(0.63) 16.49(0.70) 19.56(0.76) 15.79(0.68) 17.45(0.72) 19.64(0.78) 15.99(0.68) 17.92(0.72) 20.07(0.76)
3 7.59(0.29) 7.69(0.34) 8.15(0.38) 8.18(0.34) 8.24(0.37) 8.72(0.40) 8.46(0.35) 8.52(0.38) 8.94(0.41)
4 4.81(0.15) 4.66(0.17) 4.76(0.18) 5.19(0.18) 4.94(0.19) 4.96(0.20) 5.44(0.19) 5.15(0.20) 5.16(0.22)

(III) 1 162.28(4.27) 163.56(4.30) 164.30(4.32) 155.82(4.10) 156.50(4.11) 156.73(4.14) 146.20(3.89) 151.24(3.91) 154.00(3.98)
2 132.26(3.12) 133.43(3.12) 134.93(3.17) 115.90(3.04) 116.56(3.06) 120.33(3.11) 112.10(2.87) 113.01(3.01) 118.40(3.05)
3 111.62(2.84) 109.52(2.65) 111.41(2.71) 80.81(2.54) 84.28(2.57) 91.24(2.64) 73.64(2.17) 80.75(2.25) 86.95(2.49)
4 93.18(2.61) 87.53(2.48) 90.29(2.56) 55.89(1.56) 60.39(1.73) 70.78(1.91) 48.75(1.35) 56.79(1.49) 65.03(1.69)

(IV) 1 133.95(3.62) 141.52(3.78) 144.73(3.72) 136.08(3.78) 144.13(3.88) 146.11(3.93) 136.49(3.80) 145.77(3.78) 148.47(3.99)
2 90.40(2.67) 105.63(2.83) 115.19(2.91) 92.99(2.68) 106.65(2.97) 115.47(3.04) 96.59(2.64) 109.85(3.01) 116.87(3.07)
3 56.93(1.64) 72.45(2.11) 80.98(2.46) 57.75(1.71) 74.39(2.24) 81.43(2.51) 60.31(1.84) 77.01(2.19) 82.92(2.61)
4 30.61(1.31) 45.67(1.51) 56.96(1.61) 31.51(1.41) 46.01(1.53) 58.51(1.74) 33.95(1.48) 48.89(1.53) 60.52(1.76)
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FIGURE 3 Actual ARL0 values of MNEW when the nominal ARL0 value is 200, n changes from 100 to 1200 and m changes
among 16, 36, 64 and 100. In each panel, the shaded area denotes those ARL0 values that are within 5% of the nominal ARL0
level.
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FIGURE 4 Actual ARL0 values of MNEWwhen the nominal ARL0 value is 200, (n, m) are fixed at (200, 64) or (400, 100), and
l changes from 1 to 20. In each panel, the shaded area denotes those ARL0 values that are within 5% of the nominal ARL0 level.
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TABLE 2Actual ARL0 values and their standard errors (in parentheses) of six control charts in different cases when the nominal
ARL0 value is 200.

DODZ DFEWMA WOC MWOC NEW MNEW
(n, m) (�t, �s) ARL0 � ARL0 � ARL0 � ARL0 � ARL0 � ARL0

(200,64) (0.2,0.1) 0.1 112(5.8) 0.1 193(11.1) 0.1 195(11.3) 0.1 192(11.3) 0.1 194(11.3)
174(9.1) 0.2 127(6.9) 0.2 197(11.2) 0.2 197(11.4) 0.2 196(11.4) 0.2 197(11.5)

0.3 140(7.3) 0.3 198(11.3) 0.3 203(11.6) 0.3 198(11.5) 0.3 200(11.7)
(0.4,0.2) 0.1 97(5.1) 0.1 187(10.9) 0.1 189(11.0) 0.1 185(10.8) 0.1 186(11.1)

161(8.4) 0.2 108(5.7) 0.2 192(11.0) 0.2 192(11.2) 0.2 191(11.1) 0.2 192(11.2)
0.3 114(6.2) 0.3 195(11.1) 0.3 197(11.3) 0.3 192(11.2) 0.3 195(11.4)

(0.6,0.3) 0.1 86(4.6) 0.1 182(10.6) 0.1 185(10.8) 0.1 181(10.7) 0.1 183(11.2)
144(7.6) 0.2 94(4.9) 0.2 190(11.0) 0.2 190(11.0) 0.2 189(11.2) 0.2 187(11.3)

0.3 104(5.7) 0.3 193(11.1) 0.3 192(11.1) 0.3 192(11.3) 0.3 193(11.3)
(400,100) (0.2,0.1) 0.1 121(4.8) 0.1 198(8.5) 0.1 197(8.5) 0.1 204(8.8) 0.1 203(8.9)

189(9.7) 0.2 129(5.3) 0.2 199(8.5) 0.2 202(8.7) 0.2 198(8.6) 0.2 201(8.8)
0.3 147(6.1) 0.3 200(8.6) 0.3 201(8.7) 0.3 200(8.7) 0.3 200(8.8)

(0.4,0.2) 0.1 103(4.6) 0.1 191(8.2) 0.1 191(8.3) 0.1 190(8.3) 0.1 190(8.4)
174(8.9) 0.2 111(4.8) 0.2 195(8.5) 0.2 192(8.4) 0.2 193(8.5) 0.2 194(8.7)

0.3 121(5.2) 0.3 199(8.6) 0.3 202(8.7) 0.3 198(8.8) 0.3 199(8.9)
(0.6,0.3) 0.1 92(3.7) 0.1 187(8.0) 0.1 189(8.1) 0.1 188(8.2) 0.1 186(8.2)

158(7.9) 0.2 102(4.1) 0.2 192(8.3) 0.2 191(8.3) 0.2 191(8.5) 0.2 190(8.4)
0.3 111(4.7) 0.3 195(8.4) 0.3 196(8.5) 0.3 196(8.7) 0.3 195(8.8)
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FIGURE 5 Optimal ARL1 values of the six charts DODZ, DFEWMA, WOC, MWOC, NEW and MNEW for detecting shifts
of types (I) and (II).
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FIGURE 6 Optimal ARL1 values of the six charts DODZ, DFEWMA, WOC, MWOC, NEW and MNEW for detecting shifts
of types (III) and (IV).
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FIGURE 7 Observed ILI incidence rates of all 67 Florida counties on 06/15 and 12/15 in years 2012-2014.
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FIGURE 8 Six control charts for monitoring the observed spatial incidence rates of ILI in 2014: DODZ (plot (a)), DFEWMA
(plot (b)), WOC (plot (c)), MWOC (plot (d)), NEW (plot (e)) and MNEW (plot (f)). The horizontal line in each plot denotes a
control limit of the related chart.
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FIGURE 9 Left panel: observed daily ILI incidence rates during 09/01-12/31 in years 2012-2014 and the estimated IC mean
function (dark dashed line). Right panel: residuals of the observed ILI incidence rates during 09/01/2014-12/31/2014. In each
panel, the vertical line denotes the first signal time of NEW and MNEW, and the y-axis is in the scale of 10−5.
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