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Abstract

Sequential monitoring of dynamic processes is an active research area because of its broad

applications in different industries and scientific research projects, including disease screening

in medical research. In the literature, it has been shown that dynamic screening system (DySS)

is a powerful tool for sequential monitoring of dynamic processes. To detect a disease (e.g.,

stroke) for a patient, existing DySS methods first estimate the regular longitudinal pattern

of certain disease predictors (e.g., blood pressure, cholesterol level) from an in-control (IC)

dataset that contains observations of a group of non-diseased people, and then compare the

longitudinal pattern of the observed disease predictors of the given patient with the estimated

regular longitudinal pattern. A signal of disease occurrence is triggered if their cumulative

difference exceeds a certain level, facilitated by a built-in control chart. In practice, a dataset

containing longitudinal observations of the disease predictors of both non-diseased and diseased

people is often available in advance, from which it is possible to explore the relationship between

the disease occurrence and the longitudinal pattern of the disease predictors. This relationship

should be helpful for disease screening. In this paper, a new DySS method is suggested based on

this idea. Numerical studies confirm that it can improve the existing DySS methods for disease

screening.

Key Words: Disease predictors; Dynamic processes; Joint modeling; Longitudinal data;

Survival analysis; Time to event.

1 Introduction

Disease early detection is critically important for our wellbeing. To detect a disease (e.g., stroke)

in a timely manner, we need to have clinical visits and check certain disease predictors (e.g., blood

pressure, cholesterol level) in a regular basis. The repeated measures of the disease predictors can

be regarded as sequential observations of an underlying process, and this process is dynamic in the
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sense that its distribution would change over time even when the process is in control (IC) (i.e., the

related person is healthy and does not have the disease in question). This paper aims to develop a

new methodology to detect a disease early by sequentially monitoring the dynamic process of the

disease predictors.

A large amount of existing literature has been devoted to modeling longitudinal data, among

which nonparametric approaches have received increasing attention since parametric models with

stringent assumptions may not be able to describe the observed data well. Examples of nonpara-

metric models for analyzing longitudinal data include those discussed in Shi et al. (1996), Brumback

and Rice (1998), Wu and Zhang (2002) and Xiang et al. (2013). There is also an increasing lit-

erature on identifying disease predictors that are associated with the survival outcomes related to

a disease (e.g., Wulfsohn and Tsiatis, 1997; Brown and Ibrahim, 2003; Chi and Ibrahim, 2006;

Rizopoulos and Ghosh, 2011). Nonetheless, all these methods are retrospective, and thus cannot

handle the prospective disease early detection problem effectively. To overcome this limitation,

Qiu and Xiang (2014, 2015) suggested the dynamic screening system (DySS) approach for dis-

ease early detection, which combined the strengths of longitudinal data modeling approaches and

sequential process monitoring approaches. By a DySS method, the regular longitudinal pattern

of the disease predictors is first estimated by a longitudinal data modeling approach from an IC

dataset that contains observations of a group of non-diseased people. Then, to detect the disease

for a given person, his/her longitudinal pattern of the observed disease predictors is compared with

the estimated regular longitudinal pattern, and a signal of disease occurrence is triggered if their

cumulative difference exceeds a certain level, facilitated by a built-in statistical process control

(SPC) chart. Some modified versions of this approach can be found in Li and Qiu (2016, 2017),

Qiu et al. (2018) and You and Qiu (2019). However, these methods only use the information in the

observed longitudinal data of the disease predictors for disease early detection, and the association

between the longitudinal data and the survival outcomes related to the occurrence of the disease in

question is ignored completely. For this reason, You and Qiu (2020) recently proposed a new dis-

ease early detection method that attempted to quantify the relationship between the longitudinal

data and the survival outcomes by a proportional hazards model, from a training data containing

longitudinal observations of the disease predictors of both non-diseased and diseased people. In

the literature, it has been well demonstrated that joint modeling of the longitudinal and survival

data is often more effective than the corresponding survival model alone that includes the related
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longitudinal covariates (cf., Wulfsohn and Tsiatis, 1997). Based on this intuition, we develop a new

disease early detection method in this paper using the joint modeling approach. Numerical studies

show that the new method is indeed more effective than some representative existing methods.

The remainder of the paper is organized as follows. Joint modeling of multivariate longitudinal

data and survival data is discussed in Section 2. A new disease early detection method based on the

joint modeling approach is described in Section 3. Several extensions of the proposed method are

discussed in Section 4. Some numerical results regarding its performance are presented in Section

5. A real-data example for demonstrating its application is discussed in Section 6. Several remarks

conclude the paper in Section 7.

2 A Joint Model and Its Estimation

A joint model. Suppose there is a training dataset containing longitudinal observations of p

disease predictors and survival outcomes related to the occurrence of a given disease of interest

of m individuals. For the ith individual, longitudinal observations of the kth disease predictor

are obtained at times tik1, tik2, . . . , tiknik
, for i = 1, . . . ,m and k = 1, . . . , p, where the observation

times of different disease predictors could be different. The corresponding observations of the kth

disease predictor are denoted as yik(tik1), yik(tik2), . . . , yik(tiknik
). The survival outcome of the

ith individual is denoted by (Ti,∆i), where Ti represents the last follow-up time and ∆i is the

indicator of the event that the ith individual has the disease at Ti (i.e., ∆i = 1 denotes the event

being observed, and ∆i = 0 otherwise). As in the classical survival model setup, Ti is assumed to

be the minimum of the event time Di and the censoring time Ci. Then, ∆i = I(Di ≤ Ci). Let

Ni(t) = ∆iI(Ti ≤ t) be the right-continuous counting process of the survival status for the ith

individual, R(t) = {i : Ti ≥ t} be the set of individuals who are still at risk at time t, and [0,T] be

the study period that contains all observation times. Then, the observed longitudinal observations

of the disease predictors are assumed to follow the multivariate nonparametric mixed-effects model

below: for j = 1, . . . , nik, i = 1, . . . ,m and k = 1, . . . , p,

yik(tikj) = µ
(0)
k (tikj) + ∆iδk(tikj) + vik(tikj) + εik(tikj), (1)

where µ
(0)
k (t) = E[yik(t)|t ≤ Ti,∆i = 0] is the population mean function of the kth disease predictor

for individuals without the disease in concern, µ
(1)
k (t) = µ

(0)
k (t) + δk(t) = E[yik(t)|t ≤ Ti,∆i =
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1] is the population mean function of the kth disease predictor for individuals with the disease

observed during the study period, vik(t) is the zero-mean random-effects function for describing

the person-to-person variation from the population mean µ
(0)
k (t) + ∆iδk(t), and εik(t) is the i.i.d.

pure measurement error with Var(εik(t)) = σ2
k(t), for each i. Let vi(t) = (vi1(t), . . . , vip(t))

T,

εi(t) = (εi1(t), . . . , εip(t))
T, µ(0)(t) = (µ

(0)
1 (t), . . . , µ

(0)
p (t))T, and δ(t) = (δ1(t), . . . , δk(t))

T. Then,

mi(t) = (mi1(t), . . . ,mip(t))
T = µ(0)(t)+∆iδ(t)+vi(t) denotes the latent trajectories of the disease

predictors after the pure measurement errors are removed from their longitudinal observations. To

describe the association between these latent trajectories and the observed survival outcomes, the

following proportional hazards model is considered:

λi(t) = λ0(t) exp{βTmi(t)}, for i = 1, . . . ,m, (2)

where λi(t) = limdt↓0 P(Di ∈ (t, t+dt]|t ≤ Ti)/dt is the hazard function of the ith individual, λ0(t) is

the baseline hazard function, and β is the p-dimensional coefficient vector. From model (2), it can be

seen that the disease predictors are associated with the hazard function through ri(t) = βTmi(t).

For this reason, ri(t) is defined to be the disease risk function of the ith individual, which is

the quantity that we are interested in monitoring later for disease early detection. Regarding

ri(t), it can be checked that its mean among all non-diseased people who are at risk at time t is

µ
(0)
r (t) = E[ri(t)|t ≤ Ti,∆i = 0] = βTµ(0)(t), and its mean among all diseased people who are at

risk at time t is µ
(1)
r (t) = E[ri(t)|t ≤ Ti,∆i = 1] = βTµ(1)(t), where µ(1)(t) = µ(0)(t) + δ(t).

Model estimation. Next, we discuss estimation of the joint models (1) and (2). To this end,

we develop a multivariate local polynomial mixed-effects model estimation procedure, extended

from the univariate version discussed in Wu and Zhang (2002). At a given time point t ∈ [0,T],

consider a small neighborhood [t−h, t+h], where h is a bandwidth parameter. In that neighborhood,

µ(0)(s), δ(s) and vi(s), for s ∈ [t − h, t + h], can be approximated by their rth-order Taylor’s
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expansions

µ(0)(s) ≈
r∑

k=0

(s− t)k 1

k!

dkµ(0)(t)

dtk
= X(s− t)


µ(0)(t)

...

1
r!

drµ(0)(t)
dtr

 ,

δ(s) ≈
r∑

k=0

(s− t)k 1

k!

dkδ(t)

dtk
= X(s− t)


δ(t)

...

1
r!

drδ(t)
dtr

 ,

vi(s) ≈
r∑

k=0

(s− t)k 1

k!

dkvi(t)

dtk
= X(s− t)


vi(t)

...

1
r!

drvi(t)
dtr

 ,
where X(t) =

[
Ip×p, tIp×p, . . . , t

rIp×p
]
, and Ip×p is the p × p identity matrix. By these local

function approximations, the latent trajectories mi(s) in model (2) can be approximated by X(s−

t)
[
c(t) + d(t) + ai(t)

]
, for s ∈ [t − h, t + h], where c(t) =

[
µ(0)(t)T, . . . , 1

r!

(drµ(0)(t)
dtr

)T]T
, d(t) =[

δ(t)T, . . . , 1
r!

(drδ(t)
dtr

)T]T
, and ai(t) =

[
vi(t)

T, . . . , 1
r!

(drvi(t)
dtr

)T]T
. Consequently, model (1) can be

approximated by the following linear mixed-effects model:

yik(tikj) = eTkX(tikj − t)
[
c(t) + ∆id(t) + ai(t)

]
+ εik(tikj), for tikj ∈ [t− h, t+ h], (3)

where ek is a p-dimensional vector with its kth element being 1 and all other elements being

0, c(t) + ∆id(t) is the fixed-effects term, and ai(t) is the random-effects term with mean 0

and covariance Σb(t). To simplify the notation, we will denote the quantities in the brackets by

bi(t) = c(t) + ∆id(t) + ai(t). Then, X(s− t)bi(t) is an approximation of mi(s), for s ∈ [t− h, t+ h],

and the mean and covariance of bi(t) are 0 and Σb(t), respectively.

To provide local estimates of mi(s) and other quantities in the model (3), let K(s) be a

symmetric kernel function with the support [−1, 1] and K(0) = 1. In all numerical examples in this

paper, K(s) is chosen to be the Epanechnikov kernel function K(u) = (1− u2)I(|u| ≤ 1), which is

a symmetric, uni-modal and smooth function with the compact support [−1, 1]. The Epanechnikov

kernel function satisfies the conditions listed in You and Qiu (2021) that are needed for justifying

the consistency of parameter estimates. Its simple analytical form can also reduce the computational

complexity. Next, we describe a two-stage procedure for estimating the time-varying parameters

c(t), d(t), Σb(t) and σ2
k(t), and the time-independent parameter vector β. To this end, we first

derive the local likelihood function for estimating these parameters. It should be pointed out that
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although the derivation below is based on the assumption that the longitudinal observations and the

random effects have normal distributions, this normality assumption is actually unnecessary to have

the consistency of the estimates, as shown in You and Qiu (2021). Assume that the ith individual is

in R(t) (i.e., it is at risk at the time t). In the neighborhood [t−h, t+h], if it is assumed that yik(tikj)

follows a normal distribution with mean eTkX(tikj − t)bi(t) and variance σ2
k(t), then conditional on

bi(t), the log local-weighted probability density of Yi = {yik(tikj) : k = 1, . . . , p, j = 1, . . . , nik} at

t is

log ft(Yi|bi(t)) = −1

2

p∑
k=1

nik∑
j=1

log{2πσ2
k(t)}Kh(tikj − t)

−1

2

p∑
k=1

nik∑
j=1

[
yik(tikj)− eTkX(tikj − t)bi(t)

]2
σ2
k(t)

Kh(tikj − t), (4)

where Kh(s) = K(s/h). The quantity −2 log ft(Yi|bi(t)) can also be regarded as a penalized local-

weighted least square objective function with the penalty term
∑p

k=1

∑nik
j=1 log{2πσ2

k(t)}Kh(tikj−t).

Thus, the normality assumption mentioned above is not essential for the suggested model estimation

procedure. It is used mainly for the convenience in deriving the objective function. Similarly, the

log probability density function of the random-effects term bi(t) is

log ft(bi(t)) = −1

2
log det(2πΣb(t))−

1

2
[bi(t)− c(t)−∆id(t)]TΣb(t)

−1[bi(t)− c(t)−∆id(t)].

Then, for a given t ∈ [0,T], the time-varying parameters c(t), d(t), Σb(t) and σ2
k(t) can be estimated

by maximizing the following local likelihood function:

L(c(t),Σb(t), σ
2
k(t)) =

∏
i:t≤Ti

∫
ft(Yi|bi(t))ft(bi(t)) dbi(t).

To solve the above local maximum likelihood estimation problem, we suggest using a local

version of the EM algorithm. Similar to the conventional EM algorithm, the local version proceeds

by iterating between the expectation step and the maximization step. In the expectation step,

the expectation of the log-likelihood is evaluated conditional on the observed data. Then, in the

maximization step, parameter estimates are updated by maximizing the conditional expectation of

the log-likelihood. Different from the conventional EM algorithm, the current local EM algorithm

works with the local likelihood and thus the conditional expectation in the EM algorithm should be

taken with respect to the local probability density function. To save space, the local EM algorithm

is described in detail in Appendix A.1.
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After the time-varying parameters are estimated using the local EM algorithm, we can proceed

to the second stage to estimate the time-independent coefficient vector β in the survival model (2).

Let ĉ(t), d̂(t), Σ̂b(t), and σ̂2
k(t) be the final local maximum likelihood estimators of c(t), d(t), Σb(t)

and σ2
k(t). Then, µ(0)(t), δ(t) and Σm(t) = Var(mi(t)) can be estimated by X(0)ĉ(t), X(0)d̂(t) and

X(0)Σ̂b(t)X(0)T, respectively. The random effects term bi(t) can be estimated by its corresponding

best linear unbiased predictor (BLUP), defined to be b̂i(t) = Ê[bi(t)|Yi] = m̂b,i(t), where m̂b,i(t) is

defined to be mb,i(t) given in Appendix A.1, after certain unknown quantities are replaced by their

local maximum likelihood estimators. The quantity mi(t) can be estimated similarly by X(0)b̂i(t).

To estimate β, we can first plug in the estimated values of mi(t) into the following Cox partial

likelihood function:

pl(β) =

m∑
i=1

∆i

[
βTmi(Ti)− log

{
m∑
l=1

exp{βTml(Ti)}I(Tl ≥ Ti)

}]
. (5)

Then, β can be estimated by the maximizer of (5), denoted as β̂, which can be computed by the

standard Newton-Raphson algorithm.

In the local EM algorithm described in Appendix A.1, the bandwidth parameter h needs to be

selected properly. To this end, we suggest using a multivariate version of the leave-one-point-out

cross-validation (PTCV) criterion (see Altman 1990; Wu and Zhang 2002), described below. Let

τ1 < . . . < τG be all distinct time points in the set {tikj : i = 1, . . . ,m, k = 1, . . . , p, j = 1, . . . , nik}.

Define m̂
(−g)
ik (t) to be the estimate of mik(t) when all observations at τg are excluded. Then, the

PTCV score is defined as

PTCV(h) =

G∑
g=1

∑
i,k,j:tikj=τg

[
yik(tikj)− m̂

(−g)
ik (tikj)

]2
,

which measures the difference between the predicted values of mik(tikj) and the actual observations

at tikj . The bandwidth h is then selected by minimizing the PTCV score PTCV(h). In this

bandwidth selection procedure, in cases when the scales of yik, for different k, are very different,

we recommend re-scaling them in advance so that different disease predictors have similar sample

variances.
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3 Dynamic Disease Screening

To detect a disease in concern early for a new individual not contained in the training data, we need

to sequentially monitor his/her longitudinal pattern of the observed disease predictors. Assume

that the kth disease predictor y∗k(t) is observed at times t∗k1, t
∗
k2, . . ., for k = 1, 2, . . . , p, where the

superscript “*” is used in the notations here to distinguish them from those in the training data

described in model (1). For these longitudinal data, it is assumed that they follow the model

y∗k(t
∗
kj) = m∗k(t

∗
kj) + ε∗k(t

∗
kj), for k = 1, 2, . . . , p,

where m∗k(t) is the latent longitudinal trajectory of the kth disease predictor, and ε∗k(t) is the

random error term. If the given individual is a non-diseased person, then his/her disease risk at

time t can still be quantified by r̂∗(t) = β̂Tm∗(t), where β̂ is obtained by the local EM algorithm

from the training dataset, as discussed in Section 2, and m∗(t) = (m∗1(t), . . . ,m∗p(t))
T.

Assume that the current time point is t during the sequential monitoring for the new individual.

Then, given all the history data {(t∗kj , y∗k(t∗kj)) : t∗kj ≤ t} of his/her observed disease predictors, we

would like to make a judgment whether the new individual has a significantly higher disease risk or

not at time t, compared to the non-diseased people in the training data. The related hypotheses are

H0 : E[r̂∗(t)] = µ
(0)
r (t) versus H1 : E[r̂∗(t)] > µ

(0)
r (t). By the SPC terminology, the new individual

is declared to be out-of-control (OC) at time t if the null hypothesis is rejected. To assess the

hypotheses, we consider using the following test statistic:

U(t) =
r̂∗(t)− µ(0)

r (t)√
β̂TΣ̂m(t)β̂

=
β̂Tm∗(t)− µ(0)

r (t)√
β̂TΣ̂m(t)β̂

,

where Σ̂m(t) is obtained by the joint modeling approach discussed in Section 2. To estimate the

latent trajectory m∗(t) of the new individual, let us consider the following objective function:

L(m∗(t)) = −1

2

p∑
k=1

∑
j:t∗kj≤t

[
y∗k(t

∗
kj)− eTkm∗(t)

]2
σ2
k(t)

(1− λ)(t−t∗kj)/d̄

− 1

2
[m∗(t)− µ(0)(t)]TΣm(t)−1[m∗(t)− µ(0)(t)],

where d̄ is the average distance between two consecutive observation times that can be estimated

from the training dataset, and λ is a weighting parameter. It can be seen that the expression

of L(m∗(t)) is similar to that of (4), with X(tikj − t) being replaced by X(0) and Kh(tikj −

8



t) by (1 − λ)(t−t∗kj)/d̄. Thus, L(m∗(t)) can be regarded as a local weighted likelihood with an

exponential weighting function. In L(m∗(t)), past observations have been used and receive the

weight (1 − λ)(t−t∗kj)/d̄, which decreases exponentially fast as t − t∗kj increases. Namely, the older

the observations, the exponentially smaller the weights they receive. The estimate of m∗(t) is

then defined to be the maximizer of L(m∗(t)). Since L(m∗(t)) has a quadratic form of m∗(t), the

estimator for m∗(t) can be derived to be

m̂∗(t) =

[ p∑
k=1

∑
j:t∗kj≤t

eke
T
k

σ̂2
k(t)

(1− λ)(t−t∗kj)/d̄ + Σ̂m(t)−1

]−1

×
[ p∑
k=1

∑
j:t∗kj≤t

y∗k(t
∗
kj)ek

σ̂2
k(t)

(1− λ)(t−t∗kj)/d̄ + Σ̂m(t)−1µ̂(0)(t)

]
,

where Σm(t), σ2
k(t) and µ(0)(t) have been replaced by Σ̂m(t), σ̂2

k(t) and µ̂(0)(t), respectively, which

are obtained from the training dataset as discussed in Section 2. Then, a natural charting statistic

is

Û(t) =
β̂Tm̂∗(t)− µ̂(0)

r (t)√
β̂TΣ̂m(t)β̂

, (6)

and the chart gives a signal at time t if Û(t) > ρ, where ρ > 0 is a control limit.

In the control chart (6), the weighting parameter λ controls the amount of history information

used in process monitoring at the current time point. If λ is chosen larger, then more weight is

assigned to the current observation and less weight is assigned to the previous observations. Next,

we describe a method to determine λ based on the training data. For a given value of λ, consider

the following loss function

L̃(mi(t)) = −1

2

p∑
k=1

nik∑
j:tikj<t

[yik(tikj)− eTkmi(t)]
2(1− λ)(t−tikj)/d̄

− 1

2
[mi(t)− µ(0)(t)]TΣm(t)−1[mi(t)− µ(0)(t)].

It can be seen that L̃(mi(t)) is the same as L(mi(t)), except that observations at the current

time point t are excluded when computing the former quantity. Let m̃i,λ(t) be the minimizer of

L̃(mi(t)). Then, m̃i,λ(t) can be regarded as a prediction of mi(t) based on the history data, and

the prediction error can be defined by

PE(λ) =
m∑
i=1

p∑
k=1

nik∑
j=1

[yik(tikj)− eTk m̃i,λ(tikj)]
2.
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Then, the value of λ can be chosen by minimizing PE(λ).

In the dynamic disease screening literature (e.g., Qiu and Xiang, 2014), the performance of

a control chart like (6) is usually evaluated by the average time to signal (ATS). Let ∆∗signal = 1

denote the individual under monitoring receives a signal and 0 otherwise, and T ∗signal denote the time

when the individual receives the signal. Then, ATS is defined to be ATS = E[T ∗signal|∆∗signal = 1].

The IC value of ATS, denoted as ATS0, is the average time to signals when the processes under

monitoring are IC, and the OC value of ATS, denoted as ATS1, is the average time to signals when

the processes under monitoring are OC. When comparing different control charts, we usually fix

ATS0 at a given level, and then compare their ATS1 values. Control charts with smaller ATS1

values are considered better because they can provide signals to OC individuals sooner.

The control limit ρ of the chart (6) is usually selected such that a pre-specified value of ATS0

is attained. To determine the value of ρ, the block bootstrap method discussed in Qiu and Xiang

(2014) can be used. By this method, the original training dataset is partitioned into two parts, one

of which is used for model estimation and the other one is used for determining the control limit.

Then, individuals in the second part are re-sampled with replacement for online monitoring, and a

numerical searching algorithm is used for determining the value of ρ.

4 Some Extensions

The proposed method discussed in the previous sections can be extended in several different direc-

tions, which are briefly discussed in this section.

4.1 Cases with longitudinal categorical or count data

In Section 2, we focus on cases when the disease predictors are continuous variables. Here, we

comment that the proposed method can be extended to cases when the disease predictors take

categorical or count values, by using the generalized linear modeling framework. To this end,

consider the following generalized linear model that is modifed from Model (1):

E[yik(tikj)|∆i, vik(tikj), tikj ≤ Ti] = g−1
k

(
µ

(0)
k (tikj) + ∆iδk(tikj) + vik(tikj)

)
,

Var(yik(tikj)|∆i, vik(tikj), tikj ≤ Ti) = φkVk
(

E[yik(tikj)|∆i, vik(tikj), tikj ≤ Ti]
)
,
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where gk(·), Vk(·), and φk are the canonical link function, variance function, and dispersion pa-

rameter for the kth disease predictor, respectively, for k = 1, 2, . . . , p. Depending on the type of

values (e.g., continuous, binary, or count) of the kth disease predictor, one can choose gk(·), Vk(·),

and φk accordingly (cf., McCullagh and Nelder, 2019). Model (1) can be regarded as a special case

of the above model when gk(x) = x, Vk(x) = 1, and φk = σ2
k. When the kth disease predictor is

categorical with Nk categories a1, . . . , aNk
, the following generalized linear model can be considered:

for l = 2, . . . , Nk,

log

[
P(yik(tikj) = al|∆i, vik(tikj), tikj ≤ Ti)
P(yik(tikj) = a1|∆i, vik(tikj), tikj ≤ Ti)

]
= µ

(0)
kl (tikj) + ∆iδkl(tikj) + vikl(tikj),

where a1 is the reference category. When the kth disease predictor is an ordinal categorical variable

that takes the integer values 1, . . . , Nk, the following proportional odds model can be considered:

log

[
P (yik(tikj) ≤ l|∆i, vik(tikj), tikj ≤ Ti)
P (yik(tikj) > l|∆i, vik(tikj), tikj ≤ Ti)

]
= µ

(0)
kl (tikj) + ∆iδk(tikj) + vik(tikj),

for l = 1, . . . , Nk − 1. The parameters in the above models can be estimated by the local EM

algorithm similarly to the one discussed in Section 2. However, there are generally no closed-form

expressions for the integrals involved in the related expectations. So, more sophisticated techniques

might be required for parameter estimation. A systematic research on this method extension is

deferred to our future research.

4.2 Accommodation of covariates

Our proposed method discussed in the previous sections can be extended to include some longi-

tudinal covariates for describing their impact on the latent longitudinal trajectories of the disease

predictors. Let xik(t) be the longitudinal covariates for the kth disease predictor. Then, Model (1)

can be generalized to

yik(tikj) = µ
(0)
k (tikj) + ∆iδk(tikj) + vik(tikj) + γT

k xik(tikj) + εik(tikj),

where {γk} are coefficient vectors. This model can still be estimated by the local EM algorithm

discussed in Section 2. Then, the part µ
(0)
k (tikj) + ∆iδk(tikj) + vik(tikj) + γT

k xik(tikj) in the above

model can replace mik(tikj) in model (2), and the dynamic screening method can be constructed

in the same way as that discussed in Section 3 afterwards. By using the above longitudinal model,

the covariate effect would be assumed to be multiplicative with respect to the hazard rate in model
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(2). This assumption could be violated in certain applications. In such cases, some more flexible al-

ternatives can be considered, which include the time-varying coefficient model discussed in Section

4.3 below and the nonparametric regression model discussed in Section 7.

4.3 Survival model with time-varying coefficients

The proportional hazards model (2) can also be generalized to the following time-varying coefficient

model to allow the impact of the longitudinal predictors on the survival outcomes to change over

time:

λi(t) = λ0(t) exp{β(t)Tmi(t)}, (7)

where β(t) is the time-varying coefficient vector. Many different approaches (e.g., regression splines)

for estimation of Model (7) have been proposed in the literature. To be consistent with the model

estimation method discussed in the previous sections, a kernel smoothing method that is similar

to the ones discussed in Tian et al. (2005) and You and Qiu (2021) can be considered here. More

specifically, β(t) can be estimated by

β̂(t) = argmaxβ pl(β, t),

where

pl(β, t) =
m∑
i=1

Kh(Ti − t)∆i

[
βTmi(Ti)− log

{
m∑
l=1

exp{βTml(Ti)}I(Tl ≥ Ti)

}]
.

In the above maximization procedure, ml(t) needs to be estimated, which can be accomplished

using the local EM algorithm discussed in Section 2 and Appendix A.

After β̂(t) is obtained, Expression (6) for defining the charting statistic for process monitoring

can be changed to

Û(t) =
β̂(t)Tm̂∗(t)− µ̂(0)

r (t)√
β̂(t)TΣ̂m(t)β̂(t)

. (8)

5 Simulation Study

In this section, a simulation study is conducted to assess the numerical performance of the pro-

posed method. In each simulation example, the training dataset contains observations of m = 500

individuals with p = 4 disease predictors. The basic time unit is assumed to be ω = 0.001, and the
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study time period is [0, 2]. Then, all observation times would be integer multiples of ω. For instance,

the observation times of an individual could be {0.1, 0.15, 0.531, 0.734, 0.85}, all of which are integer

multiples of 0.001. But, 0.1542 would be rounded to 0.154 in the simulation study. The following

five different cases are considered. In cases (I) and (II), longitudinal observations of the disease

predictors are generated from the following mixed-effects model: for i = 1, . . . ,m and k = 1, . . . , p,

yik(t) = mik(t) + εik(t) (9)

= 2 + sin(πt) + ξik1φ1(t) + ξik2φ2(t) + ξik3φ3(t) + εik(t), (10)

where φ1(t) = (t− 1)2, φ2(t) = sin(2πt), φ3(t) = cos(2πt), {ξikl, l = 1, 2, 3} are iid random numbers

generated from the N(0, 1) distribution. The random errors {εik(t)} are generated i.i.d. from the

N(0, 1) distribution and the t-distribution with 3 degrees of freedom, respectively, in cases (I) and

(II). In the above model, ξik1φ1(t)+ξik2φ2(t)+ξik3φ3(t) is the time-dependent random-effects term

for describing within-subject and within-disease-predictor data correlation. For simplicity, it is

assumed that different disease predictors are observed at the same observation times for a given

individual. More precisely, we let ti1j = · · · = tipj , for all i and j, and ti1j is generated from the

uniform distribution in the interval [(j − 1)/200, j/200], for each i and j. This restriction is due to

the fact that the existing DySS methods that will be compared with the proposed method cannot

handle cases when different disease predictors are observed at different time points. Note that all

observation times tikj will end at the event time Ti determined by the survival model specified

below, for all i, j and k. To study the impact of the percentage of diseased people in the training

dataset on the performance of the proposed method, we consider three scenarios when the baseline

hazard function is λ0(t) = 0.03, λ0(t) = 0.02 and λ0(t) = 0.01, respectively, so that the percentages

of diseased people in the second and third scenarios are approximately 2/3 and 1/3 of the one in

the first scenario. The survival outcomes are generated from the model (2). In cases (III)–(V),

longitudinal observations of the disease predictors are generated from the following model:

yik(t) = mik(t) + εik(t) (11)

= 2 + sin(πt/2) + gik(t) + εik(t), (12)

where {gik(t)} are i.i.d. Gaussian processes with the covariance function σ(s, t) = 2 exp{−10(s−t)2},

and {εik(t)} follow the zero mean normal distribution with the standard deviation being 1, 0.5, and

0, respectively. In cases (III)–(V), the proportional hazards model (2) is assumed to be valid, and

the baseline hazard function is assumed to be λ0(t) = 0.03, λ0(t) = 0.02 or λ0(t) = 0.01. In cases
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(I)–(V), the proportional hazards assumption is assumed valid. Next, we consider several cases

when this assumption is violated or the covariance function σ(s, t) has a more complex form. More

specifically, in case (VI), we assume that the longitudinal observations are generated in the same

way as that in case (I) (i.e., from Models (9–10)), but the survival outcomes are generated from

the following non-proportional hazards model:

λi(t) = λ0(t){1 + βTmi(t)}2. (13)

In cases (VII) and (VIII), it is assumed that the longitudinal observations are generated from

Models (11–12) with the following rational-quadratic variance-covariance function:

σ(s, t) = {1 + 2(s− t)2}−0.5, (14)

and the random errors {εik(t)} follow theN(0, 22) distribution. The survival outcomes are generated

from the proporional hazards model (2) in case (VII), and the non-proportional hazards model (13)

in case (VIII). In cases (VI–VIII), the baseline hazard function is λ0(t) = 0.03, λ0(t) = 0.02, and

λ0(t) = 0.01 respectively. In all eight cases described above, simulations are repeated for 500 times,

the true regression coefficients are β = (0.5, 0.4,−0.3,−0.2)T, and the true censoring times are

Ci = T, for each i. The control limit of the proposed chart is selected using the block bootstrap

method discussed at the end of Section 3 such that ATS0 = 370× 0.001.

The proposed method is then compared with two existing methods on multivariate dynamic

disease screening suggested by Qiu and Xiang (2015) and You and Qiu (2020). The method by

Qiu and Xiang (2015) has two versions: the one using a multivariate EWMA chart and the one

combining multiple univariate control charts. These two versions are denoted as “DySS-M” and

“DySS-C”, respectively, where “M” represents “multivariate” and “C” represents “combination

of multiple univariate charts.” The risk monitoring method by You and Qiu (2020) is denoted

as “Risk-Mnt”, and the method proposed in this paper is denoted as “New”. Among the four

methods, “DySS-M” and “DySS-C” use the longitudinal observations of the non-diseased people in

the training dataset only for estimating the regular longitudinal patterns of the disease predictors.

“Risk-Mnt” first uses a proportional hazards model to quantify the relationship between the disease

predictors and the survival outcomes, and then monitors a linear combination of the disease pre-

dictors for disease screening of individual people. Its major difference from the proposed method

“New” is that it did not use a joint modeling framework when building the functional relation-

ship between the disease predictors and the survival outcomes. In Table 1, we first compare the
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estimated regression coefficients in the survival model (2) by “Risk-Mnt” and “New” in terms of

the bias and the overall mean squared error (MSE). Because the proportional hazards assumption

is violated in Cases (VI) and (VIII) and it is meaningless to compare the estimated regression

coefficients with the true regression coefficients of the survival model in such cases, only Cases

(I–V) and (VII) are considered here. From the table, it can be seen that in Cases (I–IV) and (VII)

when the longitudinal measurements are observed with random errors, the regression coefficients

estimated by “Risk-Mnt” have much larger bias and MSE, compared to those by “New”. In case

(V) when the longitudinal measurements are observed without random errors, the two methods

perform similarly.

To evaluate the OC performance of the four methods, we compare their ATS1 values. To this

end, we first simulate 1,000 longitudinal processes from model (1) with ∆i = 0, and denote the

simulated longitudinal processes by mi,IC(t). Then, we add shifts to these processes in the direction

of β:

mδ
i,OC(t) = mi,IC(t) + δβ,

where δ is actually the shift size in disease risks. Then, we evaluate different methods by comparing

their ATS1 values, and the one with a smaller ATS1 value is considered better. The computed

ATS1 values of the four methods when their ATS0 values are all set to be 370×0.001 are presented

in Figures 1 and 2. From the figures, we can have the following conclusions. First, all methods

can reach the nominal ATS0 value when the shift is 0. Second, “New” has the smallest ATS1

values in all eight cases, compared to the other three methods for different shift sizes. Because

the longitudinal measurements are observed with random errors in these cases, “Risk-Mnt” cannot

provide a good estimate of β and this explains why it performs worse than “New”. In Case (V)

when the longitudinal measurements are observed without random errors, “Risk-Mnt” and “New”

perform similarly. Third, when the baseline hazard decreases, the number of diseased people in

the training dataset would decrease as well, and thus both “Risk-Mnt” and “New” become less

efficient. As a comparison, the perfromance of “DySS-M” and “DySS-C” does not change much

because they do not rely on the survival information in the training dataset. Fourth, in cases (VI)

and (VIII) when the proportional hazards assumption is violated, the proposed method “New” still

demonstrates a reasonable performance. Fifth, by comparing cases (III)–(V) when the noise level

gets smaller and smaller, it can be seen that all four methods perform better and better, which is

intuitively reasonable.
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The true positive rates (TPR) and the false positive rates (FPR) of the four methods are

presented in Table 2. From the table, it can be seen that in all cases considered here, the two

methods that use the survival information in the training dataset (i.e., “Risk-Mnt” and “New”)

perform better than the two methods that do not use the survival information (i.e., “DySS-M” and

“DySS-C”). By comparing “Risk-Mnt” and “New”, we can see that they have similar FPR values,

but “New” has much larger TPR values in all cases except Case (V) where the TPR values of

“New” are slightly larger than those of “Risk-Mnt” since the longitudinal observations are free of

noise in such a case. Therefore, the proposed method “New” also demonstrates good performance

in terms of TPR and FPR.

We would like to mention that, in the current setup, it needs an average of n∗ = 370× 0.001× 200 = 74

longitudinal observations for each non-diseased individual to receive a false signal from the control

chart (6). In the SPC literature, a relatively large n∗ value is often used to facilitate the evalu-

ation of different methods in terms of ATS, since the signal times for diseased people are often

much sooner than those for non-diseased people. In some applications, however, the number of

longitudinal observations for each individual could be relatively small. To evaluate the numerical

performance of the proposed dynamic disease screening method and the related competing methods

in such cases, we also consider the study design in which the observation time ti1j is generated from

the uniform distribution in the interval [(j − 1)/100, j/100], for each i and j, and all other setups

are kept the same as before. In such cases, an average of n∗ = 370× 0.001× 100 = 37 longitudinal

observations are needed for each non-diseased individual to receive a false signal from the control

chart (6). The related results are included in the supplementary material, from which it can be

seen that similar conclusions to those made above can be obtained and the proposed method still

has an overall better performance compared to its peers.

6 Application to the Primary Biliary Cirrhosis Data

We use a dataset from the Primary Biliary Cirrhosis (PBC) study conducted at the Mayo Clinic as

an example to illustrate the application of the proposed method. PBC is a chronic disease when the

small bile ducts of the liver become injured, which eventually would lead to cirrhosis of the liver.

The dataset contains observed data of 312 PBC patients, among which 172 patients died from PBC

during the study and 140 were censored due to either survival during the study or lost to follow-up.
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Table 1: Biases and mean squared errors (MSE) of estimated regression coefficients by “Risk-Mnt”

and “New” in cases (I)–(V) and (VII). Numbers in parentheses are the standard errors.

Case λ0(t) Method Bias(β̂1) Bias(β̂2) Bias(β̂3) Bias(β̂4) Overall MSE

Risk-Mnt -0.2264 (0.0047) -0.1791 (0.0049) 0.1298 (0.0047) 0.0843 (0.0046) 0.1522 (0.0035)
0.03

New -0.0040 (0.0070) 0.0064 (0.0073) -0.0035 (0.0067) -0.0087 (0.0063) 0.0937 (0.0033)

Risk-Mnt -0.2321 (0.0060) -0.1782 (0.0058) 0.1370 (0.0055) 0.0964 (0.0056) 0.1802 (0.0049)
0.02

New -0.0127 (0.0082) 0.0110 (0.0087) 0.0094 (0.0079) 0.0087 (0.0081) 0.1352 (0.0047)

Risk-Mnt -0.2151 (0.0084) -0.1832 (0.0084) 0.1287 (0.0082) 0.0932 (0.0078) 0.2398 (0.0073)

(I)

0.01
New 0.0219 (0.0124) -0.0016 (0.0118) -0.0103 (0.0117) -0.0039 (0.0113) 0.2788 (0.0105)

Risk-Mnt -0.4035 (0.0028) -0.3189 (0.0027) 0.2321 (0.0025) 0.1562 (0.0027) 0.3571 (0.0038)
0.03

New -0.0126 (0.0067) 0.0060 (0.0074) 0.0139 (0.0075) 0.0067 (0.0071) 0.0975 (0.0036)

Risk-Mnt -0.4013 (0.0036) -0.3155 (0.0033) 0.2311 (0.0030) 0.1564 (0.0034) 0.3601 (0.0048)
0.02

New -0.0015 (0.0085) 0.0042 (0.0087) -0.0033 (0.0081) 0.0052 (0.0086) 0.1428 (0.0047)

Risk-Mnt -0.4125 (0.0042) -0.3211 (0.0041) 0.2423 (0.0043) 0.1562 (0.0043) 0.3911 (0.0060)

(II)

0.01
New -0.0136 (0.0121) -0.0006 (0.0116) -0.0061 (0.0126) 0.0005 (0.0123) 0.2948 (0.0116)

Risk-Mnt -0.4452 (0.0014) -0.3537 (0.0013) 0.2688 (0.0014) 0.1781 (0.0014) 0.4312 (0.0019)
0.03

New 0.0328 (0.0058) 0.0352 (0.0062) -0.0141 (0.0057) -0.0194 (0.0059) 0.0720 (0.0023)

Risk-Mnt -0.4452 (0.0016) -0.3582 (0.0015) 0.2673 (0.0016) 0.1796 (0.0016) 0.4351 (0.0020)
0.02

New 0.0321 (0.0071) 0.0166 (0.0071) -0.0208 (0.0069) -0.0118 (0.0068) 0.0994 (0.0032)

Risk-Mnt -0.4468 (0.0022) -0.3567 (0.0023) 0.2676 (0.0023) 0.1767 (0.0023) 0.4399 (0.0031)

(III)

0.01
New 0.0232 (0.0101) 0.0411 (0.0103) -0.0299 (0.0100) -0.0216 (0.0103) 0.2095 (0.0072)

Risk-Mnt -0.3363 (0.0025) -0.2640 (0.0023) 0.2043 (0.0025) 0.1336 (0.0024) 0.2542 (0.0025)
0.03

New 0.0122 (0.0047) 0.0190 (0.0050) -0.0045 (0.0046) -0.0108 (0.0048) 0.0459 (0.0015)

Risk-Mnt -0.3372 (0.0027) -0.2699 (0.0028) 0.2079 (0.0027) 0.1324 (0.0029) 0.2629 (0.0028)
0.02

New 0.0054 (0.0055) 0.0092 (0.0056) -0.0071 (0.0054) -0.0114 (0.0057) 0.0614 (0.0020)

Risk-Mnt -0.3385 (0.0038) -0.2685 (0.0040) 0.2002 (0.0041) 0.1326 (0.0040) 0.2755 (0.0042)

(IV)

0.01
New 0.0059 (0.0077) 0.0185 (0.0079) -0.0137 (0.0080) -0.0066 (0.0079) 0.1250 (0.0043)

Risk-Mnt 0.0105 (0.0044) 0.0126 (0.0043) -0.0091 (0.0040) 0.0010 (0.0044) 0.0370 (0.0012)
0.03

New 0.0022 (0.0043) 0.0088 (0.0043) -0.0058 (0.0039) 0.0033 (0.0043) 0.0355 (0.0011)

Risk-Mnt 0.0122 (0.0055) 0.0127 (0.0052) -0.0101 (0.0048) 0.0052 (0.0055) 0.0549 (0.0018)
0.02

New 0.0064 (0.0054) 0.0081 (0.0051) -0.0065 (0.0047) 0.0077 (0.0054) 0.0528 (0.0017)

Risk-Mnt 0.0251 (0.0075) 0.0084 (0.0074) -0.0274 (0.0077) 0.0049 (0.0070) 0.1119 (0.0039)

(V)

0.01
New 0.0180 (0.0073) 0.0031 (0.0073) -0.0228 (0.0076) 0.0075 (0.0069) 0.1070 (0.0037)

Risk-Mnt -0.3364 (0.0024) -0.2686 (0.0024) 0.2006 (0.0024) 0.1351 (0.0023) 0.2549 (0.0024)
0.03

New 0.0066 (0.0050) 0.0125 (0.0048) -0.0078 (0.0046) 0.0017 (0.0044) 0.0446 (0.0015)

Risk-Mnt -0.3375 (0.0028) -0.2672 (0.0028) 0.1998 (0.0027) 0.1356 (0.0029) 0.2593 (0.0029)
0.02

New 0.0089 (0.0057) 0.0211 (0.0056) -0.0177 (0.0056) 0.0002 (0.0053) 0.0625 (0.0021)

Risk-Mnt -0.3393 (0.0037) -0.2648 (0.0043) 0.2009 (0.0040) 0.1327 (0.0039) 0.2739 (0.0039)

(VII)

0.01
New 0.0005 (0.0077) 0.0237 (0.0081) -0.0076 (0.0083) -0.0126 (0.0079) 0.1281 (0.0046)
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Figure 1: Calculated ATS1 values of the four methods “DySS-M”, “DySS-C”, “Risk-Mnt”, and

“New” in cases (I)–(V) when ATS0 is set to be 370× 0.001.
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Figure 2: Calculated ATS1 values of the four methods “DySS-M”, “DySS-C”, “Risk-Mnt”, and

“New” in cases (VI)–(VIII) when ATS0 is set to be 370× 0.001.
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Figure 3: Five biomarkers in the PBC dataset. Dark dashed lines represent data of died patients

and gray solid lines represent data of censored patients.

These two groups of patients are called “died patients” and “censored patients,” respectively, in this

section. Several biomarkers related to the disease progression were measured sequentially at the

baseline time and the follow-up visits that were scheduled every 6 months. These biomarkers include

log serum bilirubin (mg/dl), log alkaline phosphatase (U/liter), log serum glutamic-oxaloacetic

transaminase (SGOT) (U/ml), albumin (g/dl), and platelets per cubic (ml/1000). The entire

dataset is shown in Figure 3. On average, each patient made 6.23 clinical visits, resulting in a

total of 1,945 observations for each biomarker. To apply the proposed method “New”, the original

dataset is randomly divided into two parts with equal numbers of died patients. The first part is

used as a training dataset to estimate the joint model as discussed in Section 2, and the second

part is used as a test dataset for evaluating the proposed method.

Our proposed joint models (1) and (2) are then estimated from the training dataset, where

observations of the five biomarkers are the longitudinal data and times from enrollment to deaths

are the times to the event (i.e., death in this case). After estimating the joint models, a test to

check the proportional hazards assumption is performed using the method by Park and Qiu (2014).

This method extended the tests in Grønnesby and Borgan (1996) and May and Hosmer (1998) to

the joint-modeling setup. By this model diagnosis method, all patients in the training dataset are

first divided into 10 groups of similar sizes based on the ranks of the weighted baseline measures∑p
k=1 β̂kyik(tik1). Then, the integrated martingale residual of the ith patient is defined to be

ri =

∫ Ti

0
λ̂0(t) exp{β̂Tm̂i(t)} dt.

Let Hs be the sum of ri for patients in the sth group, for s = 1, 2, . . . , 10. Then, the test statistic

21



Table 3: Numbers of signals, computed ATS1 values, and the corresponding FPR and TPR values

of the four methods “DySS-M”, “DySS-C”, “Risk-Mnt” and “New” when they are applied to the

test PBC data. Numbers in parentheses are the corresponding standard errors.

Censored Patients Died Patients

Method ATS1 No Signal Signal No Signal Signal FPR TPR

DySS-M 17.16 32 54 12 58 0.628 (0.052) 0.829 (0.045)

DySS-C 21.76 42 44 19 51 0.512 (0.054) 0.729 (0.053)

Risk-Mnt 10.73 48 38 8 62 0.442 (0.054) 0.886 (0.038)

New 8.98 54 32 8 62 0.360 (0.052) 0.886 (0.038)

to assess the proportional hazard assumption is defined to be

TPH = (H1, . . . ,H9)Σ−1
H (H1, . . . ,H9)T,

where ΣH is an estimate of the covariance matrix of (H1, . . . ,H9)T. According to Park and Qiu

(2014), TPH would follow an asymptotic χ2-distribution with 9 degrees of freedom under the pro-

portional hazards assumption and some other regularity conditions. In this example, TPH = 13.257

and the corresponding p-value is 0.151. So, there is no significant evidence in the training dataset

to reject the proportional hazards assumption.

We then apply the proposed monitoring scheme “New” and the three competing methods

“DySS-M”, “DySS-C”, and “Risk-Mnt” to sequentially monitor patients in the test dataset. The

nominal ATS0 value, defined as the average time from the beginning of online monitoring to the

signal time among censored patients, is fixed to be 20 months for each method. The results are

summarized in Table 3. From the table, it can be seen that “New” gives 32 false signals to a total

of 86 censored patients, and it gives 62 true signals to a total of 70 died patients. Its false positive

rate (FPR), which is equivalent to 1.0 minus the specificity, is 0.360, and its true positive rate

(TPR), which is equivalent to the sensitivity, is 0.886. For its true signals, the ATS1 value is 8.98

months, which is calculated to be the average time from the death of a patient to the signal time

among died patients. By comparing “New” with the three competing methods, it can be seen that

its FPR value is the lowest among the four methods, its TPR is higher than the ones of “DySS-M”

and “DySS-C” and tied with the one of “Risk-Mnt”, and its ATS1 value is the shortest.
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7 Concluding Remarks and Discussions

In this paper, a new DySS method for disease monitoring and disease early detection is proposed.

The proposed new method first provides a formula for quantifying the disease risk using the joint

modeling approach for analyzing the longitudinal and survival data in the training dataset, and

then detects the disease in concern for individual people by sequentially monitoring the quantifed

disease risks by a control chart. It has been shown that this method is more effective than several

representative existing DySS methods. A practical procedure for choosing the weighting parameter

λ used in the proposed method is also developed, which is not provided in the existing DySS

research. In this paper, we focus primarily on the cases when the disease predictors are continuous

variables. In many applications, one may encounter situations when such disease predictors are a

combination of categorical, binary, count, and continuous variables. Modeling such data is often

more challenging, and it is left for future research. Besides the local polynomial mixed-effects

model considered in the proposed method, there have been some alternative recent methods for

model estimation of nonparametric longitudinal models. For instance, Zhao et al. (2020) suggested

using the penalized likelihood to simplify the the computation in model estimation, and Mauff

et al. (2020) proposed a corrected two-stage approach for reducing the computation involved in

the joint modeling. It might be possible to combine these methods with the proposed method

in an appropriate way to further reduce its computation, which will be investigated in our future

research. In addition, the survival model used in the proposed method relies on the proportional

hazards assumption. Although some simulation examples have justified that our method is quite

robust in certain cases when this assumption is violated, the model can be made more flexible to

better describe the relationship between disease hazard rate and disease predictors. In Section 4.3,

we have considered one such extension using a time-varying coefficients model. In the literature,

there are some existing discussions about the case when the true hazard rate function is a nonpara-

metric function of disease predictors. For instance, Huang (1999) used a generalized additive model

to approximate the hazard function, and Fan et al. (1997) considered a local likelihood estimation

method to estimate the hazard as a nonparametric function of disease predictors. Future research

can explore the possibility to incorporate these more flexible survival models into the proposed

method.
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A Appendix

A.1 Model Estimation by local EM algorithm

In this part, we will give the full details of applying the local EM algorithm to model estimation.

We first need to derive a formula for calculating the expectations of the random effects bi(t)

conditional on the observed data. Let ψ(bi(t)) be some function of bi(t). For a fixed t, we denote

the expectation of ψ(bi(t)) conditional on Yi by Ẽi,t[ψ(bi(t))], and it can be computed by

Ẽi,t[ψ(bi(t))] =

∫
Rpr

ψ(bi(t))ft(bi(t)|Yi) dbi(t).

In the above expression, by the Bayes rule, we have

ft(bi(t)|Yi) ∝ ft(Yi|bi(t))ft(bi(t)).

It can also be checked that

log ft(Yi|bi(t)) + log ft(bi(t)) = −1

2

p∑
k=1

nik∑
j=1

log{2πσ2
k(t)}Kh(tikj − t)

− 1

2

p∑
k=1

nik∑
j=1

[
yik(tikj)− eTkX(tikj − t)bi(t)

]2
σ2
k(t)

Kh(tikj − t)

− 1

2
log det(2πΣb(t))−

1

2
[bi(t)− c(t)−∆id(t)]TΣb(t)

−1[bi(t)− c(t)−∆id(t)].

(15)

Therefore, because the expression (5) has a quadratic form of bi(t), bi(t)|Yi follows the multivariate

normal distribution N(mb,i(t),Vb,i(t)) with

mb,i(t) = c(t) + Vb,i(t)

p∑
k=1

nik∑
j=1

X(tikj − t)Tek
[
yik(tikj)− eTkX(tikj − t)[c(t) + ∆id(t)]

]
Kh(tikj − t)/σ2

k(t),

Vb,i(t) =

[
Σb(t)

−1 +

p∑
k=1

nik∑
j=1

X(tikj − t)Teke
T
kX(tikj − t)Kh(tikj − t)/σ2

k(t)

]−1

.
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Thus, the expected log likelihood conditional on all observed data {Yi : i = 1, . . . ,m} is

∑
i∈R(t)

Ẽi,t
[

log ft(Yi|bi(t)) + log ft(bi(t))
]

= −1

2

m∑
i=1

p∑
k=1

nik∑
j=1

log{2πσ2
k(t)}Kh(tikj − t)I(Ti ≥ t)

− 1

2

m∑
i=1

p∑
k=1

nik∑
j=1

Ẽi,t
[
(yik(tikj)− eTkX(tikj − t)bi(t))2

]
σ2
k(t)

Kh(tikj − t)I(Ti ≥ t)

− 1

2

m∑
i=1

Ẽi,t

{[
bi(t)− c(t)−∆id(t)]TΣb(t)

−1
[
bi(t)− c(t)−∆id(t)

]}
I(Ti ≥ t)

− 1

2

m∑
i=1

log det(2πΣb(t))I(Ti ≥ t).

To maximize the above quantity, we can set its partial derivatives with respect to the time-varying

parameters c(t), Σb(t) and σ2
k(t) to be zero, which results in the following parameter updating

procedure in the maximization step:

c(t)←
∑

i:∆i=0 Ẽi,t[bi(t)]I(Ti ≥ t)∑
i:∆i=0 I(Ti ≥ t)

(16)

d(t)←
∑

i:∆i=1 Ẽi,t[bi(t)]I(Ti ≥ t)∑
i:∆i=1 I(Ti ≥ t)

− c(t) (17)

Σb(t)←
∑m

i=1 Ẽi,t
[
(bi(t)− c(t)−∆id(t))⊗2

]
I(Ti ≥ t)∑m

i=1 I(Ti ≥ t)
(18)

σ2
k(t)←

∑m
i=1

∑nik
j=1 Ẽi,t

[
(yik(tikj)− eTkX(tikj − t)bi(t))2

]
Kh(tikj − t)I(Ti ≥ t)∑m

i=1

∑nik
j=1Kh(tikj − t)I(Ti ≥ t)

, (19)

where x⊗2 = xxT denotes the outer product of a vector with itself. From the distribution of bi|Yi,

the quantities Ẽi,t[bi(t)], Ẽi,t
[
(bi(t) − c(t) −∆id(t))⊗2

]
and Ẽi,t

[
(yik(tikj) − eTkX(tikj − t)bi(t))2

]
in (16)–(19) have the expressions

Ẽi,t[bi(t)] = mb,i(t),

Ẽi,t
[
(bi(t)− c(t)−∆id(t))⊗2

]
= Vb,i(t),

Ẽi,t
[
(yik(tikj)− eTkX(tikj − t)bi(t))2

]
= eTkX(tikj − t)Vb,i(t)X(tikj − t)Tek

+
[
yik(tikj − t)− ekX(tikj − t)mb,i(t)

]2
.

For each t ∈ [0,T], we can update the estimates of the time-varying parameters c(t), d(t), Σb(t)

and σ2
k(t) by (16)–(19) until a convergence criterion holds.
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