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Comparison of two hazard rate functions is important for evaluating treatment effect in studies concerning times

to some important events. In practice, it may happen that the two hazard rate functions cross each other at one

or more unknown time points, representing temporal changes of the treatment effect. Also, besides survival data,

there could be longitudinal data available regarding some time-dependent covariates. When jointly modeling the

survival and longitudinal data in such cases, model selection and model diagnostics are especially important to

provide reliable statistical analysis of the data, which are lacking in the literature. In this paper, we discuss several

criteria for assessing model fit that have been used for model selection, and apply them to the joint modeling of

survival and longitudinal data for comparing two crossing hazard rate functions. We also propose hypothesis

testing and graphical methods for model diagnostics of the proposed joint modeling approach. Our proposed

methods are illustrated by a simulation study and by a real-data example concerning two early breast cancer

treatments. Copyright c© 2013 John Wiley & Sons, Ltd.
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1. Introduction

Comparison of two hazard rate functions is important in survival data analysis for evaluating treatment effects [1]-[3]. In

applications, the two hazard rate functions may cross each other, reflecting temporal changes of treatment effects [4]-[8].

Also, besides survival data, there is often longitudinal data available about some time-dependent covariates [9]-[10]. This

paper discusses model selection and model diagnostics when jointly modeling the survival and longitudinal data with

crossing hazard rate functions.

The real-data example that motivates this research concerns the two treatments called Cyclophosphamide Epirubicin

Fluorouracil (CEF) and Cyclophosphamide Methotrexate Fluorouracil (CMF) of early breast cancer. In a clinical trial

study for evaluating the treatment effect of CEF and CMF, 231 patients recruited to the study have their observed survival

times between 20-95 months, among which 107 patients received the CEF treatment and the remaining 124 patients

received the CMF treatment. The life-table estimates of the hazard rate functions of the two treatment groups are shown

in Figure 1. It can be seen that they cross each other around t = 60 months. In this example, besides the survival data,

longitudinal observations of a quality of life (QOL) index were also recorded for each patient at times when s/he visited

the clinic. Therefore, this longitudinal information should also be taken into account when comparing the two crossing

hazard rate functions. See Section 4 for a more detailed description of this example.
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Figure 1. Life-table estimates of the two hazard rate functions of the CEF and CMF treatment groups in the early breast cancer example.

In the literature, there are some existing procedures for comparing two hazard rate functions. Early methods, including
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the logrank, Gehan-Wilcoxon, and Peto-Peto tests, among several others (cf., [3], Chapter 7) do not take into account the

crossing phenomenon. It has been well demonstrated that these methods are ineffective in comparing two crossing hazard

rates, because early differences between the two hazard rates would be canceled out by later differences of opposite signs

in their test statistics [11], [7]. To overcome this limitation, several authors, including Fleming et al. [12] and Lin and

Wang [6], define their test statistics using absolute or squared differences between the two estimated hazard rates. Some

alternative methods handle the crossing hazard rates problem by choosing special weights in the weighted logrank test,

which change signs before and after a potential crossing point. See, for instance, [13], [14], and [8] for different weighting

schemes. Some other methods employ the modeling approach, by explicitly including the crossing structure of the hazard

rates in a model [15], [16], [7], [17]. For recent development on nonparametric estimation of crossing hazard rates, see

[18], [19], and the references cited therein. All these existing methods mentioned above for handling the crossing hazard

rates problem analyze the survival data only, although some modeling approaches (e.g., [7]) can also accommodate some

time-independent baseline information (e.g., a patient’s age, gender, etc., at the time when he/she was first included in the

study). However, in a medical research (e.g., the early breast cancer example described above), it is common to collect both

the time-dependent and time-independent data, besides patients’ survival data. In the literature, there are some existing

methods for joint modeling the survival and longitudinal data. See, for instance, [9], [10], [20], [21], and the references

cited there. But, all these methods do not handle cases when the two hazard rate functions cross each other.

In this paper, we propose a joint modeling procedure to analyze both the survival and longitudinal data in cases when

the two hazard rate functions cross each other. Besides model estimation, our focus is on model selection and model

diagnostics that are practically important but challenging to discuss in the current problem. To this end, we examine several

criteria for assessing fitted models that have been used in the model selection literature, and apply them to the current

joint modeling problem. We further discuss hypothesis testing and graphical methods for checking model goodness-of-

fit. The rest part of the paper is organized as follows. Section 2 describes our proposed joint model and its estimation

procedure, along with our proposed model selection and model diagnostics methods. Section 3 presents a simulation

study to investigate their numerical performance. Section 4 demonstrates the proposed methods using the early breast

cancer example. Section 5 concludes the article with some concluding remarks.
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2. Proposed Method

In this section, we describe our proposed method in three parts. In Subsection 2.1, the proposed joint model and its

estimation are first discussed. Then, some model selection criteria are described in Subsection 2.2. Finally, our proposed

methods for model diagnostics are discussed in Subsection 2.3.

2.1. Joint modeling procedure and its estimation

Assume that there are n subjects involved in a study. For the survival data of the ith subject with i = 1, 2, . . . , n, let

Oi = min (Ti, Ci) denote the observed survival time and ∆i = I{Ti ≤ Ci} denote the censoring indicator, where Ti is the

true survival time and Ci is the censoring time of the ith subject. For the longitudinal data of the ith subject, assume that

the response variable Y (t) is observed at ni time points and it follows the linear mixed effects model

Y (tij) = X(tij)
′β +Z(tij)

′bi + εij

=:M(tij) + εij , for j = 1, 2, . . . , ni, i = 1, 2, . . . , n,

(1)

where X and Z are the covariates of the fixed effects and the random effects, respectively, β is the vector of the fixed

effects coefficients, bi
iid∼ N(0,Σb) is the vector of the random effects coefficients, and εij

iid∼ N(0, σ2
ε) are the random

errors. In model (1), it is routinely assumed that the random errors are independent of the random effects. For the survival

data, we assume that the survival model is

λ (t|M(t), g) = λ0(t) exp
{
ψM(t) + φ (t− γ) g +W ′η

}
, (2)

where λ0(t) is the baseline hazard rate, M(t) is the mean component of the longitudinal response Y (t) defined in model

(1), g is the group indicator that equals 1 if a subject is in the first treatment group and 0 otherwise, ψ, φ and γ are unknown

coefficients, W is the vector of some extra covariates, and η is a vector of coefficients. By model (2), the log-ratio of the

hazard rate functions of the two treatment groups is

log

[
λ (t|M(t), g = 1)

λ (t|M(t), g = 0)

]
= φ (t− γ) ,

which changes signs at t = γ. Therefore, by using model (2), we actually assume that the two hazard rate functions cross

at γ given M(t). It is worth mentioning that if the value of M(t) is not given and M(t) depends on the group indicator

g, then the crossing point of the two hazard rate functions is usually not γ. For ease of understanding, let us re-write

M(t) as M(t, g). Then, the log-ratio of the hazard rate functions in such cases is ψ[M(t, 1)−M(t, 0)] + φ(t− γ), and

the crossing point should be the root of the equation ψ[M(t, 1)−M(t, 0)] + φ(t− γ) = 0. See expression (11) and the

related discussion in Section 4 for an example.
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For models (1) and (2), we would like to make several remarks. First, model (2) assumes a linear pattern of the

log hazard ratio around the crossing point γ. This can be generalized in several different ways. For instance, the term

φ (t− γ) g in model (2) can be generalized to φ [BCα(t)− BCα(γ)] g, where BCα(t) is the Box-Cox transformation of t

and α is a parameter. More specifically, BCα(t) = (tα − 1)/α if α 6= 0, and BCα(t) = log(t) if α = 0. Liu et al. [7] has

demonstrated that such a model can accommodate various different crossing patterns of the hazard rate functions. All

the proposed methods discussed in this paper can be adapted easily to such a generalized setting. Model (2) can also be

generalized to include the quadratic term of M(t) and other terms in the exponential part on its right-hand-side. Second,

model (2) can be generalized easily to include more than one crossing point. Third, the covariates in X and those in

W can have some variables in common. See the numerical example of Table 2 in the next section for a demonstration.

Fourth, models (1) and (2) can be estimated by maximizing the likelihood of the observed survival and longitudinal data,

as in a regular joint modeling approach (cf., [9]). The EM algorithm and the Newton-Raphson algorithm can be used for

obtaining parameter estimates. In the model estimation, the term φ (t− γ) g on the right-hand-side of model (2) can be

written as

φ (t− γ) g = φtg − φγg =: φtg − ξg,

where ξ = φγ. By this re-parameterization, the original parameters (φ, γ) can be replaced by (φ, ξ), and the exponential

component of model (2) is linear with respect to both φ and ξ, which simplifies the model estimation. In cases

when the estimate of φ is not significantly different from 0 or when the estimate of γ is outside the time interval

[min(Oi, i = 1, 2, , . . . , n),max(Oi, i = 1, 2, , . . . , n)], we conclude that there does not exist any crossing point, although

the estimation algorithm still converges.

2.2. Model selection

In practice, there could be many covariates involved in models (1) and (2). It will increase the variability of the estimated

model dramatically if an irrelevant covariate is included in a selected model. Therefore, proper selection of a final model is

important to increase the efficiency of the related statistical inferences. In the literature on joint modeling of survival and

longitudinal data, existing research on model selection is limited. In this subsection, we discuss four criteria for assessing

model fit that have been used in the model selection literature, and apply them to the current joint modeling problem with

crossing hazard rate functions.
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The joint likelihood function of models (1) and (2) can be defined by

L(θ) =

n∏

i=1

Li (θ|Oi,∆i,Yi, ti)

=

n∏

i=1

[∫ ∞

−∞

{
ni∏

j=1

f1 (Y (tij)|bi,θy)
}
f2 (bi|θb) f3 (Oi,∆i|bi,θt) dbi

]
,

where θ = (θy,θb,θt) is a vector of all parameters in models (1) and (2), θy =
(
β, σ2

ε

)
, θb is a vector of all parameters in

Σb of the random effects term in (1), θt = (ψ, φ, γ,Λ0) includes all parameters in model (2) in which Λ0 (t) =
∫ t
0
λ0 (u) du

is the cumulative baseline hazard, Y i = (Y (ti1), Y (ti2), . . . , Y (tini
))′, ti = (ti1, ti2, . . . , tini

)′,

f1 (Y (tij)|bi,θy) =
1√
2πσ2

ε

exp

{
− (Y (tij)−M(tij))

2

2σ2
ǫ

}
,

f2 (bi|θb) =
1

(2π)
q/2 |Σb|1/2

exp

{
− 1

2
b′iΣ

−1
b bi

}
,

and

f3 (Oi,∆i|bi,θt) = [λ0(Oi) exp {ψM(Oi) + φ (Oi − γ) gi}]∆i

× exp

[
−
∫ Oi

0

λ0 (u) exp {ψM(u) + φ (u− γ) gi} du
]
.

The Akaike Information Criterion (AIC), originally introduced by Akaike [22], is a popular model assessment criterion

for model selection. Its AIC score is defined by

AIC = −2 log(Lmax) + 2k,

where Lmax is the maximized value of the likelihood function of the current model under consideration, and k is the

number of parameters in the model. By this criterion, among all candidate models, the one with the smallest AIC value is

selected.

In models (1) and (2), there are quite a few parameters involved, and the percentage of censored observations is usually

quite high in the observed data. In such cases, the corrected AIC (AICc) criterion by Hurvich and Tsai [23] should be

relevant, which is designed specifically for cases when the sample size is small or when the number of parameters is a

moderate to large fraction of the sample size. The AICc score of this criterion is defined by

AICc = AIC +
2k(k + 1)

n− k − 1
.

Obviously, the AICc score adds some extra penalty to the AIC score for cases when k is large and n− k − 1 is small.
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In the model selection literature, the Bayesian Information Criterion (BIC) is another popular model assessment criterion

for model selection. The BIC score of this criterion is defined by

BIC = −2 log(Lmax) + k log(n).

By comparing the BIC score with the AIC score, it can be seen that the former puts more penalty on the number of

parameters k in cases when log(n) > 2. As well discussed in the literature, the BIC criterion has the consistency property

in the sense that the probability of selecting the true model would approach 1 when n increases and when the true model

is among all candidate models under consideration, and the AIC criterion has the asymptotic optimality property in the

sense that it can asymptotically choose the best possible model in cases when the true model is not a candidate model (cf.,

[24], [25]). For analyzing the censored survival data, Volinsky and Raftery [26] proposed a corrected BIC (BICc) criterion

with the BICc score

BICc = −2 log(Lmax) + k log(r),

where r is the number of uncensored survival times.

To use one of the above criteria for model selection, if the number of possible models is relatively small, then we can

use the all-subset variable selection procedure. By this procedure, we estimate all possible models and choose the one

with the smallest value of the selected model assessment criterion as our final model. If the number of possible models

is relatively large, then the backward, forward, stepwise or other variable selection procedures can be considered. See a

textbook, such as [27], for a comprehensive description of these variable selection procedures.

2.3. Model diagnostics

After obtaining a final joint model using the model selection method described in the previous subsection, we need to

check the model goodness-of-fit and make some appropriate model diagnostics, which is discussed in this subsection.

Because the joint model consists of two parts (i.e., the survival part and the longitudinal part) and the responses in these

two parts may not be comparable, our proposed model diagnostics are separated for the two parts as well.

For checking the goodness-of-fit of a proportional hazard (PH) model, there are a number of existing methods, including

the ones discussed by [28], [29], [30], [31], and [32]. For that purpose, Grønnesby and Borgan [33] proposed a hypothesis

test that is similar to the Hosmer-Lemeshow test commonly used in the logistic regression. Their test is based on the

martingale residuals after the n subjects are partitioned into m groups according to the estimated risk scores. For the
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current PH model (2), the martingale residual of the ith subject is defined as ∆i − ri, for i = 1, 2, . . . , n, where

ri =

∫ Oi

0

λ̂0(u) exp
{
ψ̂M̂(u) + φ̂ (u− γ̂) gi

}
du, (3)

and λ̂0(t), ψ̂, M̂(t), φ̂, and γ̂ are estimators of λ0(t), ψ, M(t), φ, and γ, respectively. Then, the sum of all martingale

residuals within a group would be a random variable with mean 0 if the PH model is valid. The test statistic of the

goodness-of-fit test is then defined by

T = (H1, H2, . . . , Hm−1)Σ̂
−1
H (H1, H2, . . . , Hm−1)

′, (4)

where Hj denotes the sum of all martingale residuals within the jth group, for j = 1, 2, . . . ,m− 1, and Σ̂−1
H is the

estimated covariance matrix of (H1, H2, . . . , Hm−1)
′. Note that the sum of the martingale residuals of the mth group

is not included in (4) because the inverse matrix Σ̂−1
H would not exist otherwise.

As pointed out by May and Hosmer [34], the computation of the inverse matrix Σ̂−1
H in (4) is complicated, and thus the

testing procedure based on T is difficult to compute. To overcome this difficulty, May and Hosmer proposed an equivalent

but simpler procedure by adding m− 1 group indicator variables to the PH model and by testing whether the coefficients

of all these indicator variables are significantly different from zero, using the score test or the asymptotically equivalent

likelihood ratio test. However, both the procedure (4) by Grønnesby and Borgan [33] and its simplified version by May

and Hosmer [34] cannot be applied to the current joint modeling problem directly for the following reason. In their

models, there are no time-dependent covariates involved in the risk scores, and thus the n subjects can be partitioned by

the estimated risk scores in such cases. As a comparison, in model (2) of the current joint modeling problem, both M(t)

and (t− γ)gi on the right-hand-side of the model are time-dependent. In such cases, it is difficult to properly partition the

n subjects into m groups based on the estimated risk scores because they have the time-dependent covariates involved as

well. If we partition the subjects based on the estimated risk scores using subject-specific times, then the results would be

biased.

In this paper, we suggest the following procedure to check the goodness-of-fit of the survival part of the joint model.

First, we partition all n subjects into m groups by the baseline values of the response variable Y (t) (i.e., by Y (0)). Then,

m− 1 group indicator variables are added to model (2), and the likelihood ratio test is performed for testing whether all

coefficients of these indicator variables are 0. Regarding the selection of m, one good rule of thumb suggests selecting m

to be a simple integer close to the integer part of 2n2/5 (cf., [35]), and on average each group should include at least 5

subjects. For the determination of the m groups, one well-known practical guideline is that the groups should be chosen

in a way such that the numbers of subjects are roughly the same among different groups.
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The quantities {ri, i = 1, 2, . . . , n} defined in (3) can also be used for making a diagnostic plot described as follows.

From (3), it is obvious that

ri = Λ̂(Oi) = − log
(
Ŝ(Oi)

)
= − log

(
1− F̂ (Oi)

)
, (5)

where Λ̂(t), Ŝ(t) and F̂ (t) are estimators of the cumulative hazard function Λ(t), the survival function S(t), and the

cumulative distribution function F (t), respectively, defined by (3) and the relationships that Λ̂(t) = − log(Ŝ(t)) and

Ŝ(t) = 1− F̂ (t). Therefore, If the PH model (2) fits the data well, then roughly speaking the cumulative distribution

function of the quantity Oi would be close to F̂ (t). Thus, the distributions of both F̂ (Oi) and 1− F̂ (Oi) would be close to

Uniform[0, 1]. Consequently, the distribution of ri is close to Exponential(1), according to (5). For the Exponential(1)

distribution, we have

S(t) = exp(−t) =⇒ − log(S(t)) = t.

Therefore, if the PH model (2) fits the data well, then the scatter plot of {(ri,− log(S(ri)), i = 1, 2, . . . , n} should wave

around a straight line through the origin with a slope of 1.

For checking the goodness-of-fit of the longitudinal model (1), there are some existing methods for model diagnostics

in the longitudinal data analysis literature. However, as pointed out by Rizopoulos et al. [36], these methods cannot be

applied to the joint modeling problem directly, because there are many nonrandom dropouts in the longitudinal outcome

due to the occurrence of events in the survival data (see also [37]). More specifically, in cases when individuals in the

study experience the event of interest (e.g., death), they will leave the study after the occurrence of the event. In such

cases, it is impossible to collect further longitudinal observations after the event times. If we apply the conventional model

diagnostics methods designed for ordinary longitudinal data analysis to such data and treat the unavailable longitudinal

observations as missing values, then the results could be misleading because the unavailable longitudinal observations are

not missing at random. To overcome this difficulty, Rizopoulos et al. [36] proposed a multiple imputation (MI) procedure

for generating multiple sets of completed data. This procedure consists of 4 steps briefly described below.

Step 1. Draw an observation of β in random from the distribution N(β̂, Σ̂β), where β̂ and Σ̂β are the estimated value of

β and the estimated covariance matrix of β̂ obtained in the joint model estimation.

Step 2. Draw an observation of bi in random from its posterior distribution given the observed data and the coefficient

vector β generated in Step 1.
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Step 3. For a missing longitudinal observation at a given time point t∗, generate its imputed value in random from the

distribution

N
(
X(t∗)′β +Z(t∗)′bi, σ̂

2
ε

)
,

where β and bi are generated in Steps 1 and 2, and σ̂2
ε is obtained in the joint model estimation.

Step 4. Repeat Steps 1–3 L times for each subject, where L denotes the number of multiple imputations.

In the above procedure, for each subject, to determine the time points for imputation (i.e., t∗), we first find the time point

τ which is the maximum of {Oi, i = 1, 2, . . . , n}. Then, for the ith subject, we impute its Y values at all time points in

[Oi, τ) that at least one of the other subjects has observations of Y . Since the MI procedure described above requires a

complete specification of the likelihood function, the nonparametric baseline hazard function λ0(t) in our PH model (2)

should be replaced by a parametric one in order to use this approach. In all our numerical examples discussed in the next

two sections, λ0(t) is modeled by a piecewise-constant function. After the imputation step, we can use the traditional

model diagnostic approaches as usual on the observed residuals and the residuals generated by the MI procedure (called

MI residuals hereafter). In this paper, we use the subject-specific residuals for checking the homoscedasticity and the

normality assumptions of the longitudinal model (1). The subject-specific residuals are defined by

ε̂ij = Y (tij)−X(tij)
′β̂ −Z(tij)

′b̂i.

They measure the deviation of the observed values of Y from their predicted values based on the longitudinal model (1).

See, for instance, [38] for more discussion on subject-specific residuals.

3. Simulation Study

In this section, we present some simulation results to evaluate the numerical performance of the proposed methods

described in the previous section. In the first example, we assume that σ2
ε = 1 in the longitudinal model (1) and

M(t) = β0 + β1t+ β2g + β3x1 + β4x2 + β5x3 + bt,

where g (equals 0 or 1) is a group indicator, x1, x2 and x3 are three time-independent covariates with values generated from

N(0, I3×3), b is the random effects term having the distribution N(0, σ2
b ) with σb = 0.1, and the regression coefficients

take the values β0 = 0, β1 = 0.5, β2 = −0.3, β3 = 0.4, β4 = 0, and β5 = 0. The true survival model (2) is assumed to be

λ(t) = λ0(t) exp [ψM(t) + φ (t− γ) g + η1x1 + η2x2 + η3x3] ,

10 www.sim.org Copyright c© 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 00 1–21
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where λ0(t) ≡ 0.05, ψ = 0.5, φ = −0.2, γ = 4, η1 = 0, η2 = 0.6, and η3 = 0. In such cases, the log ratio of the hazard

rate functions of the two groups is shown in Figure 1, which is a straight line with a negative slope of -0.2. Because the

log ratio passes 0 at t = 4, the two hazard rate functions cross each other at t = 4.
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Figure 2. The log ratio of the two hazard rate functions considered in the first simulation example.

In the simulation study, the sample sizes considered are n = 100, 200, and 400, with the two treatment groups having the

same number of subjects. For each subject, the survival time is generated by the survival model specified above, with the

censoring time following the Uniform[0, 20] distribution. In such cases, the censoring rate is about 35%. The longitudinal

data are generated at consecutive discrete times with a step of 0.5 in the interval [0,min(50, O)), where O is the observed

survival time of a subject. The number 50 is chosen here because the maximum value of {Oi, i = 1, 2, . . . , n} is about 50

in the cases considered.

Then, we use the all-subset model selection procedure to select a final joint model with one of the four model assessment

criteria AIC, AICc, BIC, and BICc. In the longitudinal model, we assume that the terms β0, β1t and bt are always included

in the model. In the survival model, we assume that the term ψM(t) is always in the model. All other terms in the two

models may or may not be included. Therefore, there are a total of 24 × 24 = 256 possible joint models. For each model

assessment criterion and each sample size, we record the proportion of times when the true joint model is chosen and the

proportion of times when a joint model with the crossing term φ (t− γ) g included in the survival model (note: such a

model may not be the correct model if other terms are not chosen properly) is chosen, among 100 replicated simulations.

The second proportion is recorded in this example because it can tell us how well each model assessment criterion can

help us choose a model with the correct crossing pattern. Obviously, the second proportion is always larger than or equal
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Table 1. For each model assessment criterion and each sample size, this table presents the proportion of times when the
true joint model is chosen (Part I), the proportion of times when a joint model with the crossing term included in the
survival model is chosen (Part II), and the proportion of times when the true model or one of the six alternative models

listed in Table 2 is chosen (Part III). The results are based on 100 replicated simulations.

n
Part I Part II Part III

AIC AICc BIC BICc AIC AICc BIC BICc AIC AICc BIC BICc

100 0.40 0.41 0.26 0.31 0.78 0.70 0.33 0.39 0.69 0.63 0.29 0.35
200 0.50 0.55 0.64 0.63 0.98 0.97 0.74 0.77 0.94 0.94 0.73 0.76
400 0.57 0.59 0.95 0.93 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99

to the first proportion. The results are presented in Parts I and II of Table 1. From the table, it can be seen that the four

model assessment criteria could lead to different model choices. As expected, BIC and BICc seem more powerful to select

the true model than AIC and AICc when the sample size is reasonably large (i.e., n ≥ 200). When the sample size is small,

AIC and AICc have better performance to choose the true model. Also, regarding their performance to choose the true

model, AICc is slightly better than AIC, and BIC is slightly better than BICc when n ≥ 200. Regarding their performance

to choose joint models with the correct crossing term, it seems that AIC and AICc perform better than BIC and BICc,

especially when the sample size is small to moderate. When the sample size is large (i.e., n ≥ 400 in the table), their

performance is comparable. Based on this example, it seems that the AIC and AICc model assessment criteria should be

used if we are quite sure that a crossing term should be included in the survival model, which can be judged based on the

plot of the two life-table estimates of the hazard rate functions (cf., Figure 1).

From Table 1, it seems that the four model assessment criteria have quite large chances to choose wrong models. If

we check their selected models carefully, then it can be found that most of these models are actually quite close to the

true model. For instance, in cases when n = 200, the true model and the top six models that are chosen most often based

on the four model assessment criteria are listed in Table 2. Because the true model is nested in all these six models, the

likelihood ratio test (LRT) can be carried out to compare the true model with each of these six models. Based on 100

replications, the averaged p-values of the six LRT tests are listed in the last column of Table 2. It can be seen that all these

averaged p-values are larger than or equal to 0.45, implying that the six alternative models are not significantly different

from the true model. If we treat these six alternative models as true models and re-count the proportion of times when the

true models are chosen in 100 replicated simulations, the results are shown in Part III of Table 1. From the table, it can be

seen that both AIC and AICc perform really well, and BIC and BICc perform well when the sample size is moderate to

large (i.e., n = 200 or 400 in the table).

Next, we investigate our proposed goodness-of-fit test described in the paragraph immediately before the one containing
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Table 2. Averaged p-values of the LRT tests to compare the true model with the top six models that are chosen most often
based on the four model assessment criteria in cases when n = 200. The results are based on 100 replications.

Models
Covariates

Averaged p-values
Longitudinal part Survival part

True model g, x1 g, x2
Model 1 g, x1, x3 g, x1, x2 0.52
Model 2 g, x1 g, x1, x2 0.54
Model 3 g, x1, x3 g, x2, x3 0.46
Model 4 g, x1 g, x2, x3 0.45
Model 5 g, x1, x2 g, x2 0.46
Model 6 g, x1, x3 g, x2 0.50

expression (5). The survival model considered is the true one described at the beginning of this section in the case when

n = 200. In the test, all subjects are divided into 10 groups based on the values of Y (0) in the way as described in

Subsection 2.3. The simulation is repeated 100 times, generating 100 p-values of the test. The overall estimate of the

p-value is defined by their average, and the standard error (SE) of the overall estimate is defined by their sample standard

deviation divided by
√
100 = 10, which are 0.508 and 0.028, respectively. Because the estimated p-value is large, the test

concludes that the survival model fits the data well, which confirms that our proposed goodness-of-fit test performs well

in this example. As a comparison, we also try the test that is exactly the same as our proposed one, except that the subjects

are randomly divided into 10 groups. The corresponding overall estimate of the p-value and the standard error are 0.458

and 0.028, respectively. It can be seen that this alternative test also performs well, although the first one is a little better.

At the end of this section, we consider another example to investigate whether the longitudinal modeling (cf., expression

(1)) is helpful for estimating the survival model (2) and the related crossing point. For this purpose, let us assume that the

true survival model is

λ (t) = λ0(t) exp {ψM(t) + φ (t− γ) g} , (6)

where ψ = 0.5, φ = 0.2, γ = 4,

M(t) = β0 + (β1 + b) t,

β0 = 1, β1 = 0.5, and b is the random effect coefficient generated from a zero-mean normal distribution with variance

σ2
b = 0.1. The observed longitudinal data (i.e., observations of Y (t)) are generated from N(M(t), σ2

ε) with σ2
ε = 0.5.

The sample sizes considered are n = 200 and 400, with the two treatment groups having the same number of subjects.

The censoring time for each subject is generated from the Uniform [1, T ] distribution, where T is adjusted to reach a pre-

specified censoring rate. We choose the left end of the interval to be 1 to allow a minimum follow-up time of one time unit.

In the simulation, we consider the two censoring rates of 20% and 50%. Besides the joint modeling approach described
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in Subsection 2.1, we also consider the so-called “naive” approach, by which M(t) in (6) is replaced by Y (t). Namely,

we do not specifically model the observed longitudinal data in the naive approach. For both methods, the simulation is

repeated for 100 times, and the MSE values of their estimators of ψ, φ, and γ are computed and presented in Table 3. From

the table, it can be seen that the joint modeling approach is more effective than the naive approach in estimating the three

parameters of model (6) in all cases, except that the two approaches are comparable in estimating γ when n = 200 and the

censoring rate is 50%. This example demonstrates that proper modeling of the longitudinal data can generally improve the

estimation of the survival model.

Table 3. MSE values of the estimators of ψ, φ, and γ in model (6) of the joint modeling and naive approaches based on
100 replicated simulations.

n censoring rate Method ψ φ γ
200 20% joint modeling 0.0750 0.0086 1.7837

naive 0.1643 0.0099 1.8693
50% joint modeling 0.1471 0.0335 2.1464

naive 0.1803 0.0353 2.1392

400 20% joint modeling 0.0538 0.0037 0.5528
naive 0.1332 0.0041 0.7360

50% joint modeling 0.1198 0.0114 1.6661
naive 0.1903 0.0133 2.0055

4. A Real-Data Example

The early breast cancer data described briefly in Section 1 were obtained from a clinical trial study designed to assess the

time to death in 231 patients with early breast cancer. Those 231 patients were randomly assigned to receive either the

Cyclophosphamide Epirubicin Fluorouracil (CEF) treatment or the Cyclophosphamide Methotrexate Fluorouracil (CMF)

treatment after their breast cancer surgeries, among which 107 patients received the CEF treatment and the remaining 124

patients received the CMF treatment. For each patient, her survival time was defined to be the period from the start of the

study to the time when she died. Besides the survival data, the following longitudinal data were also available. During the

course of the study, observations of a numerical index of quality of life (QOL) were recorded for each patient at times

when she visited the clinic. Furthermore, there are four time-independent covariates involved, described below.

trt: treatment group indicator: 1 = CEF, 0 = CMF,

age: age of each patient at the beginning of study,

node: number of axillary nodes that each patient had at the beginning of study,

size: size of tumor that each patient had at the beginning of study.
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The life-table estimates of the two hazard rate functions are shown in Figure 1 and it shows that the two hazard functions

corresponding to the CEF and CMF treatment groups cross each other at around t = 60 months. Thus, we might conclude

that the treatment effects of CEF and CMF are different in different stages of the early breast cancer, and the survival

model with a single crossing point is reasonable to use. For the longitudinal data, we consider the following full model:

Y (tij) = β0 + β1tij + β2trti + β3agei + β4nodei + β5sizei + b0i + b1itij + εij , (7)

where Y is the observed index of QOL, bi = (b0i, b1i)
′ are the random effects coefficients following the distribution

N(0,Σb), (β0, β1, β2, β3, β4, β5) are regression coefficients, and εij are i.i.d. random errors. For the survival data, we

consider the following Cox’s PH model with one crossing point:

λ(tij) = λ0(tij) exp {ψM(tij) + φ (tij − γ) trti + η1agei + η2nodei + η3sizei} , (8)

where M(tij) is the right-hand-side of equation (7) without the random error term, γ is the crossing point, and

(ψ, φ, η1, η2, η3) are coefficients. Since there are four covariates (i.e., trt, age, node, size) involved in both the longitudinal

and survival models (7) and (8), there are a total of 24 × 24 = 256 possible models to consider.

Then, we use the all-subset model selection procedure to choose our final joint model. As pointed out in the previous

section, if we are quite certain about the crossing phenomenon of the two hazard rate functions, then the model selection

results based on AIC and AICc would be more reliable than those based on BIC and BICc. Since Figure 1 already

demonstrates an obvious crossing pattern, the AIC and AICc model assessment criteria are considered here. Under both

criteria, the selected final joint model consists of the longitudinal model

Y (tij) = β0 + β1tij + β2trti + β3agei + β4nodei + b0i + b1itij + εij , (9)

and the survival model

λ(tij) = λ0(tij) exp {ψM(tij) + φ (tij − γ) trti} . (10)

By the way, if we restrict the final joint model to contain the crossing term φ(tij − γ)trti in its survival model, then the

selected final joint models based on the BIC and BICc model assessment criteria are exactly the same as those described

by (9) and (10). If we do not add that restriction, then their selected final joint models do not contain the crossing term in

the survival models.

The estimated parameters and the corresponding 95% asymptotic confidence intervals (CIs) of the parameters in models

(9) and (10) are presented in Table 4. Remember that the parameter γ can be expressed as γ = ξ/φ, as discussed at the end
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Table 4. Point estimates and 95% asymptotic CIs of the parameters in models (9) and (10).

Parameters Estimates 95% CIs

Model (10)
ψ 0.2655 (0.2359, 0.2952)
φ 0.0144 (0.0047, 0.0241)
γ 56.7314 (38.1224, 75.3404)

Model (9)

β0 4.0802 (4.0280, 4.1324)
β1 0.0237 (0.0233, 0.0241)
β2 −0.1248 (−0.1410,−0.1086)
β3 0.0239 (0.0228, 0.0251)
β4 0.0101 (0.0084, 0.0118)

of Subsection 2.1 about the model re-parameterization. So, its standard error can be computed by the delta-method from

the estimated covariance matrix of the estimator of (φ, ξ). From the table, it can be seen that the estimate of ψ is 0.2655

in the survival model (10) and its 95% asymptotic confidence interval does not contain 0. Thus, we could conclude that

there is a significant evidence to support the statement that QOL has a positive association with the hazard of death. This

is really an interesting result because it might conflicts with our intuition. However, if we think about the related variables

carefully, then we would agree that women with a high social status are often more likely to have a good QOL, and they

usually have more stress as well. It is well known that stress is a main risk factor of breast cancer (cf., [39]). Therefore, it

is possible that women with high QOL would have more chance to get breast cancer.

The ratio of the two hazard rate functions of the CEF and CMF treatment groups is

λ(tij |trti = 1)

λ(tij |trti = 0)

=
λ0(tij) exp {ψ (β0 + β1tij + β2 + β3agei + β4nodei + b0i + b1itij) + φ (tij − γ)}

λ0(tij) exp {ψ (β0 + β1tij + β3agei + β4nodei + b0i + b1itij)}

= exp {ψβ2 + φ (tij − γ)} . (11)

From equation (11), it can be easily calculated that the two hazard rate functions cross each other at γ − ψ
φβ2. Note that

this number is different from γ because M(tij) in (10) depends on trti (cf., (9)) and γ can be interpreted as the crossing

point only when the value of trti is given. By replacing the related parameters with their estimates shown in Table 4, the

estimated crossing point is 59.0324. So, it seems that the hazard rate of the CMF treatment group is higher than the hazard

rate of the CEF treatment group before t = 59.0324 months, and their relative positions are switched after that time point.

The estimated log hazard ratio by our joint modeling approach is shown by the dashed line in Figure 3, and the estimated

log hazard ratio based on the life-table estimates of the two hazard rate functions is shown in the same plot by the solid

curve. From the plot, it can be seen that the estimate by the joint modeling approach matches the empirical estimate based

on the survival data alone well, and their estimated crossing points are close to each other.
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Figure 3. Estimated log hazard ratio by our joint modeling approach (dashed line) and the empirical estimate based on the life-table estimates of the two hazard rate functions

(solid curve) of the CEF and CMF treatment groups in the early breast cancer example.

For the longitudinal model (9), from Table 4, it can be seen that all parameters β0, β1, β2, β3, and β4 are significantly

different from 0 at the 0.05 significance level, because all their 95% CIs do not cover 0. The positive value of β̂1 = 0.0237

suggests that QOL increases over time. This may reflect the fact that most patients were hard to accept the fact that they had

the cancer at the beginning of study, and they accepted this fact gradually and adjusted their lifes properly over time. The

negative value of β̂2 = −0.1248 shows that the patients receiving the CMF treatment had higher QOL scores than those

receiving the CEF treatment. Also, the QOL scores seem to increase with age, and it has a small but positive association

with the number of axillary nodes.

Next, we check the goodness-of-fit of the selected joint model. For the estimated survival model (10), we use the

baseline QOL scores of patients (i.e., the QOL scores at the beginning of study) to partition all patients into 15 groups,

where the number 15 is chosen to be a simple integer number that is close to the number 2n2/5 = 17.639. The groups are

determined by the (j/15)-th quantiles of the baseline QOL scores, for j = 1, 2, . . . , 15. The overall goodness-of-fit test is

performed by using the likelihood ratio test after adding 14 group indicators to the model (10). The resulting p-value of

the test is 0.570, implying that the joint model fits the data well. For the 15 groups of patients, the observed and expected

numbers of events are computed and presented in Table 5. For each group, we can use the z-test with the test statistic

observed # of events − expected # of events√
expected # of events

,

to check whether the difference between the observed and expected numbers of events is significant. The observed z-

scores and the corresponding p-values are shown in Table 5 as well. From the table, it can be seen that only one group
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Table 5. Observed and expected numbers of events, z-scores, and p-values of the 15 groups of patients in the early breast
cancer example.

Group
Observed Expected

z-score p-value
number of events number of events

1 14 15.06 -0.27 0.39
2 13 9.47 1.15 0.13
3 14 16.59 -0.64 0.26
4 14 11.09 0.87 0.19
5 14 13.37 0.17 0.43
6 16 11.84 1.21 0.11
7 13 18.23 -1.22 0.11
8 15 9.18 1.92 0.03
9 15 16.54 -0.38 0.35
10 15 19.59 -1.04 0.15
11 15 12.39 0.74 0.23
12 14 20.11 -1.36 0.09
13 15 14.29 0.19 0.43
14 16 15.20 0.20 0.42
15 15 14.14 0.23 0.41

(i.e., group 8) has a significant p-value and the remaining 14 groups all have insignificant p-values. This result matches

the result of the overall goodness-of-fit test well.

As mentioned in Subsection 2.3, if the estimated model (10) fits the data well, then the scatter plot of

{(ri,− log(S(ri)), i = 1, 2, . . . , n} should wave around a straight line through the origin with a slope of 1. For the early

breast cancer data, this plot is shown in Figure 4. It can be seen that all points of {(ri,− log(S(ri)), i = 1, 2, . . . , n} are

close to the straight line through the origin with a slope of 1. Therefore, this plot confirms that the estimated survival

model (10) fits the data well

ri
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Figure 4. Scatter plot of {(ri,− log(S(ri)), i = 1, 2, . . . , n} in the early breast cancer example. The solid grey line is the reference line through the origin with a slope of 1.
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For diagnostics of the estimated longitudinal model (9), the left plot of Figure 5 shows the subject-specific residuals

versus the corresponding fitted values of QOL. The grey dashed line in the plot denotes the loess fit of these observed

residuals. To handle the nonrandom dropouts, the corresponding unobserved QOL scores are imputed using the 4-step

procedure described in Subsection 2.3. The right plot in Figure 5 shows the observed subject-specific residuals (black

circles) and the MI subject-specific residuals (grey points). The grey dashed line in the plot is the loess fit of both

the observed residuals and the MI residuals. So, the dashed line in the left plot describes the relationship between the

observed residuals and the fitted values of QOL while the dashed line in the right plot describes the relationship between

the observed/MI residuals and the fitted values. By comparing the two lines, we can see that there is a systematic trend in

the former case when the observed residuals are used alone and this trend is mostly eliminated in the latter case.
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Figure 5. Diagnostic plots of the estimated longitudinal model (8) in the early breast cancer example. The left and right plots show the observed subject-specific residuals versus

the fitted values of QOL and the observed and multiple imputed (MI) subject-specific residuals versus the fitted values of QOL, respectively.

5. Concluding Remarks

In the previous sections, we have discussed model estimation, model selection, and model diagnostics for joint modeling

the survival and longitudinal data when the hazard rate functions cross each other. For model selection, the four model

assessment criteria AIC, AICc, BIC, and BICc are compared using numerical simulations. Based on the numerical study, it

seems that AIC and AICc are more reliable for model selection in cases when we are quite sure from the life-table estimates

of the hazard rate functions that they cross each other. When the sample size is moderate to large, all four criteria perform
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reasonably well. For checking the goodness-of-fit of the survival model, the likelihood ratio test by grouping subjects

and a diagnostic plot based on the quantities {ri, i = 1, 2, . . . , n} are discussed. For checking the goodness-of-fit of the

longitudinal model, the 4-step multiple imputation approach is discussed to eliminate the impact of nonrandom dropouts

of the longitudinal response.

There are still many issues that need to be addressed in our future research. For instance, when we perform model

diagnostics, the methods discussed in the current paper handles the survival and longitudinal models separately. It is still

unknown to us how to check the goodness-of-fit of the estimated survival and longitudinal models simultaneously by

a single test or by a single diagnostic plot. Furthermore, in grouping subjects when checking the goodness-of-fit of the

estimated survival model, we have used the baseline longitudinal response for that purpose and the numerical examples

show that it worked well. However, it requires much theoretical research to justify this approach.
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