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Abstract Statistical process control (SPC) charts are widely used in manufacturing
industries for quality control and management. They are used in more and more
other applications, such as internet traffic monitoring, disease surveillance, and en-
vironmental protection. Traditional SPC charts designed for monitoring production
lines in manufacturing industries are based on the assumptions that observed data
are independent and identically distributed with a parametric in-control distribution.
These assumptions, however, are rarely valid in practice. Therefore, recent SPC re-
search focuses mainly on development of new control charts that are appropriate
to use without these assumptions. In this article, we briefly introduce some recent
studies on nonparametric SPC, control charts for monitoring dynamic processes,
and spatio-temporal process monitoring. Control charts developed in these direc-
tions have found broad applications in practice.

1 Introduction

Since the first control chart suggested by Shewhart (1931), statistical process control
(SPC) charts have become a basic and powerful tool for quality control and man-
agement in manufacturing industries. Many different control charts have been de-
veloped in the past more than eighty years. These charts are mainly in the following
four categories: Shewhart charts, cumulative sum (CUSUM) charts, exponentially
weighted moving average (EWMA) charts, and charts based on change-point detec-
tion (CPD). For systematic descriptions about the basics of these control charts, see
books Hawkins and Olwell (1998), Montgomery (2012), and Qiu (2014).

Conventional control charts in the SPC literature are developed under the routine
assumptions that process observations are independent and identically distributed
(i.i.d.) with a parametric in-control (IC) distribution (e.g., normal). These assump-
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tions are rarely valid in practice. For instance, process observations collected at
different time points could be serially correlated. Distributions of certain quality
variables could be skewed and inappropriate to describe by a normal or another
parametric distribution. In manufacturing industries, it might be reasonable to as-
sume that the IC distribution of process observations does not change over time.
But, in some other applications (e.g., monitoring of incidence rates of influenza
over time), the process IC distribution usually changes over time and space, due to
seasonality and other reasons. It has been well demonstrated in the literature that the
conventional control charts designed under the above routine assumptions would not
be reliable if one or more of their model assumptions are violated (e.g., Apley and
Tsung 2002, Capizzi 2015, Chakraborti et al. 2001, Qiu 2018a, Qiu and Hawkins
2001, Qiu and Xiang 2014, Wardell et al. 1994). So, much recent research effort in
the SPC community has been made in developing more flexible control charts. This
chapter aims to describe some of them in the research directions of nonparametric
SPC, control charts for monitoring dynamic processes, and spatio-temporal process
monitoring.

SPC can be roughly divided into two phases. In Phase I, we try to adjust a pro-
cess under monitoring to make it run stably and satisfactorily (or IC), which usually
happens when the process is first monitored (e.g., a machine for production is first
installed). To know whether the process is IC, a Phase I control chart needs to be
applied to a small dataset collected from the process, and adjust the process if it
is not IC. This control-and-adjustment process usually needs to be repeated several
times until it is certain that the process is IC. Then, a Phase II control chart can
be designed properly, based on an IC dataset collected after Phase I SPC, for on-
line process monitoring. This chapter mainly introduce methods for Phase II SPC,
although many methods introduced here can be modified easily for Phase I SPC.
Also, in some SPC applications, the process under monitoring cannot be adjusted
easily (e.g., when monitoring incidence rates of influenza or satellite images of earth
surface in a given region). In such cases, Phase I SPC may not be relevant.

The remaining parts of the chapter are organized as follows. In Section 2, some
conventional control charts are briefly introduced. Then, nonparametric SPC for
cases when a parametric form is inappropriate or unavailable for describing the
process distributions is discussed in Section 3. In Section 4, monitoring of processes
with time-varying IC distributions (or dynamic processes) is discussed, followed by
a discussion about spatio-temporal process monitoring in Section 5. Finally, some
remarks conclude the chapter in Section 6.

2 Basic Control Charts

As mentioned in Section 1, early control charts in the SPC literature are in the
framework of Shewhart charts that are described briefly in this section. Assume
that X is a univariate quality variable in a specific process monitoring problem, it
is continuous numerical, and its IC distribution is N(µ0,σ

2). A batch of process
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observations obtained at the nth time point is denoted as

Xn1,Xn2, . . . ,Xnm,

where m≥ 2 is the batch size. To test whether the process is IC at the nth time point,
it is natural to use the following z-test: the process is declared out-of-control (OC)
if

Xn > µ0 +Z1−α/2
σ√
m

or Xn < µ0−Z1−α/2
σ√
m
,

where Xn is the sample mean of {Xn1,Xn2, . . . ,Xnm}, and Z1−α/2 is the (1−α/2)th
quantile of the N(0,1) distribution. In practice, both µ0 and σ could be un-
known, and they need to be estimated from an IC dataset {(X∗i1,X∗i2, . . . ,X∗im), i =
1,2, . . . ,M}. Let X∗i and R∗i be the sample mean and sample range of (X∗i1,X

∗
i2, . . . ,X

∗
im),

for i = 1,2, . . . ,M, and X
∗

and R∗ be the averages of {X∗i , i = 1,2, . . . ,M} and
{R∗i , i = 1,2, . . . ,M}, respectively. Then, it can be checked that X

∗
is an unbiased

estimator of µ0 and R∗/d1(m) is an unbiased estimator of σ , where d1(m) is a con-
stant that depends on m. When m= 2,3,4,5, d1(m) = 1.128,1.693,2.059 and 2.326,
respectively. See Table 3.1 in Qiu (2014) for more values of d1(m). After replacing
µ0 and σ by their estimates in the z-test, we obtain the Shewhart chart. So, the
Shewhart chart declares a process mean shift at the nth time point if

Xn > X
∗
+Z1−α/2

R∗

d1(m)
√

m
or Xn < X

∗
−Z1−α/2

R∗

d1(m)
√

m
. (1)

In manufacturing industries, we often choose α = 0.0027. In such cases, Z1−α/2 = 3.
The popular terminology “six-sigma” in quality control and management is related
directly to the above design of the Shewhart chart. Namely, the performance of a
production process at time n can be considered IC if Xn is within an interval of
six-sigma wide that is centered at µ0, where sigma is the standard deviation of Xn.

There are many different versions of the Shewhart chart (1) for detecting mean
shifts. For instance, instead of using sample ranges for estimating the IC process
standard deviation, we can also use sample standard deviations. The Shewhart chart
(1) is constructed based on batch data with the batch size m ≥ 2. When m = 1,
there is only one observation at each time point. In such cases, the data are called
individual observation data. There are some Shewhart charts suggested in the liter-
ature for monitoring individual observation data, some of which are based on the
moving-window idea that the sample means and sample ranges used in construct-
ing the Shewhart chart (1) are calculated from batches of observed data in different
windows of observation times. There are many Shewhart charts in the literature sug-
gested for detecting shifts in process variance, for monitoring binary or count data,
and for many other purposes. See Chapter 3 in Qiu (2014) for a detailed description.

The Shewhart chart (1) makes a decision whether a process is IC at a given time
point based on the observed data at that time point only. It is thus ineffective for
Phase II process monitoring in most cases, because the observed data in the past
can also provide helpful information about the process performance at the current
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time point and such information is ignored completely by the Shewhart chart. To
overcome this limitation, Page (1954) suggested the first CUSUM chart, and then
many different CUSUM charts have been suggested in the literature for different
purposes (cf., Hawkins and Olwell 1998, Qiu 2014). Next, we briefly describe the
basic CUSUM chart for detecting a mean shift of a normal-distributed process. As-
sume that the IC process distribution is N(µ0,σ

2), and the process observations for
online monitoring are {Xn,n = 1,2, . . .}. Then, the CUSUM charting statistics for
detecting a mean shift are defined by

C+
n = max(0,C+

n−1 +(Xn−µ0)/σ − k),

C−n = min(0,C−n−1 +(Xn−µ0)/σ + k), for n≥ 1, (2)

where C+
0 = C−0 = 0, and k > 0 is an allowance constant. The chart gives a signal

when
C+

n > ρC or C−n <−ρC, (3)

where ρC > 0 is a control limit. In the above CUSUM chart (2)-(3), the allowance
constant k is usually pre-specified. Then, the control limit ρC is determined so that
the IC average run length (ARL), denoted as ARL0, equals a given value, where
ARL0 is defined as the average number of observation times from the beginning of
process monitoring to a signal when the process is IC. From (2), it can be seen that
(i) the charting statistics C+

n and C−n make use of the cumulative information in all
available data by the current time point n, and (ii) they re-start from 0 each time
when the cumulative information suggests no significant evidence of a mean shift in
the sense that C+

n−1+(Xn−µ0)/σ < k and C−n−1+(Xn−µ0)/σ >−k. The re-starting
mechanism of the CUSUM chart makes it possess a good theoretical property that
it has the smallest value of OC ARL, denoted as ARL1, among all control charts that
have the same ARL0 value (cf., Moustakides 1986), where ARL1 is defined as the
average number of observation times from the occurrence of a real mean shift to a
signal after the process becomes OC.

Although the CUSUM chart (2)-(3) has good properties for process monitoring,
it is quite complicated to use, especially at the time when computing was expensive
in the 1950s when the chart was first suggested. An alternative but simpler chart is
the EWMA chart, first suggested by Roberts (1959) in the first volume of Techno-
metrics. In the same setup as that for the CUSUM chart (2)-(3), the EWMA charting
statistic is defined as

En = λXn +(1−λ )En−1, (4)

where E0 = µ0, and λ ∈ (0,1] is a weighting parameter. From (4), it is easy to check
that

En = λ

n

∑
i=1

(1−λ )n−iXi +(1−λ )n
µ0, (5)

and when the process is IC up to the current time point n, we have

En ∼ N
(

µ0,
λ

2−λ

[
1− (1−λ )2n]

σ
2
)
. (6)
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Equation (5) implies that En is a weighted average of µ0 and all available observa-
tions up to n, and the weight received by Xi decays exponentially fast when i moves
away from n. So, it is easy to study the IC properties of En, including the IC dis-
tribution given in (6). Based on Expression (6), the EWMA chart gives a signal of
process mean shift when

|En−µ0|> ρEσ

√
λ

2−λ
[1− (1−λ )2n], (7)

where ρE > 0 is a control limit. In the EWMA chart (7), the weighting parameter λ

is usually pre-specified, and the control limit ρE is chosen such that a given ARL0
value is reached.

To use the Shewhart, CUSUM and EWMA charts described above, the IC param-
eters µ0 and σ should be known or estimated in advance, which is inconvenient for
certain applications. To overcome this limitation, Hawkins et al. (2003) suggested
a CPD chart described below. For process observations X1,X2, . . . ,Xn, it is assumed
that they follow the following change-point model:

Xi =

{
µ0 + εi, if i = 1,2, . . . ,r,
µ1 + εi, if i = r+1,r+2, . . . ,n,

where r is a change-point, and {ε1,ε2, . . . ,εn} is a sequence of i.i.d. random vari-
ables with the common distribution N(0,σ2). Then, the likelihood ratio test statistic
for testing the existence of a change-point is

Tmax,n = max
1≤ j≤n−1

√
j(n− j)

n

∣∣∣X j−X ′j
∣∣∣/ S̃ j, (8)

where X j and X ′j are sample means of the first j and the remaining n− j observations
in {X1,X2, . . . ,Xn}, respectively, and S̃2

j = ∑
j
i=1(Xi−X j)

2 +∑
n
i= j+1(Xi−X ′j)

2. The
CPD chart gives a signal of mean shift when

Tmax,n > ρn, (9)

where ρn > 0 is a control limit that may depend on n. After a signal is given, an
estimate of the change-point r is given by the maximizer found in (8). Hawkins et
al. (2003) provided formulas for computing the values of ρn used in (9) for several
commonly used ARL0 values.

The description about the four types of basic control charts given above is for
detecting process mean shifts when process observations are univariate. There are
many different versions of each type for detecting shifts in process mean, variance
and other aspects of the process distribution. There are many control charts for mon-
itoring multivariate processes as well. See references, such as Crosier (1988), Gan
(1993), Hawkins (1987, 1991), Hawkins et al. (2007), Healy (1987), Lowry et al.
(1992), Mason et al. (2001), Sparks (2000), Woodall and Ncube (1985), Zamba and
Hawkins (2006), Zou and Qiu (2009), and many more.
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3 Nonparametric Control Charts

The basic control charts discussed in Section 2 are all based on the assumption
that IC process observations follow a parametric (e.g., normal) distribution. In prac-
tice, this assumption is rarely valid and distributions of quality variables are often
skewed and difficult to describe well by any parametric distributions. It has been
well demonstrated in the literature that conventional control charts are unreliable to
use in cases when their distributional assumptions are invalid (e.g., Capizzi 2015,
Chakraborti et al. 2001, Chakraborti et al. 2015, Hackl and Ledolter 1992, Qiu 2008,
Qiu 2018a, Qiu and Hawkins 2001, 2003). Thus, distribution-free or nonparamet-
ric SPC is under rapid development in the past twenty years. Some fundamental
nonparametric SPC charts are described below in this section.

The first type of nonparametric SPC charts makes use of the ordering or ranking
information in process observations collected at different time points. Let us first
discuss univariate cases when there is only one quality variable X involved in pro-
cess monitoring. Assume that the batch of observed data at the nth time point is
{Xn1,Xn2, . . . ,Xnm}, for n ≥ 1. Let ξ0 be the median of the IC process distribution,
and Rn j be the rank of |Xn j−ξ0| in the sequence {|Xn1−ξ0|, |Xn2−ξ0|, . . . , |Xnm−
ξ0|}. Then, the sum of the Wilcoxon signed-ranks within the nth batch of observa-
tions is defined as

ψn =
m

∑
j=1

sign(Xn j−ξ0)Rn j, (10)

where sign(u) = -1,0,1, respectively, when u < 0,= 0,> 0. The absolute value of ψn
should be small when the process is IC, because the positive and negative values in
the summation of (10) will be mostly canceled out in such cases. On the other hand,
the value of ψn will be positively (negatively) large if there is an upward (downward)
mean shift. Therefore, ψn can be used for detecting process mean shift. Also, it
can be checked that the IC distribution of ψn does not depend on the original IC
process distribution as long as that distribution is symmetric. In that sense, control
charts constructed based on ψn are distribution-free. As a matter of fact, a number
of distribution-free control charts based on ψn have been suggested in the literature.
See, for instance, Bakir (2004), Chakraborti and Eryilmaz (2007), Graham et al.
(2011), Li et al. (2010), and Mukherjee et al. (2013). For instance, the EWMA
charting statistic suggested in Chapter 8 of Qiu (2014) is defined as

En = λψn +(1−λ )En−1, for n≥ 1, (11)

where E0 = 0 and λ ∈ (0,1] is a weighting parameter. When the process distribution
is symmetric, it can be checked that the IC mean and variance of En are 0 and
m(m+1)(2m+1)/6, respectively. So, the chart gives a signal when

|En|> ρW

√[
m(m+1)(2m+1)

6

][
λ

2−λ

]
[1− (1−λ )2n], (12)
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where ρW > 0 is a parameter chosen to reach a given ARL0 value.
Besides ψn, there are some alternative rank-based statistics used for construct-

ing nonparametric control charts. These include the ones based on the sign test
statistic (e.g., Lu 2015), the Cucconi test statistic (e.g., Chowdhury et al. 2014), the
nonparametric likelihood ratio test (e.g., Zou and Tsung 2010), the Mann-Whitney
two-sample test (e.g., Hawkins and Deng 2010), and more. For multivariate SPC
problems, Qiu and Hawkins (2001, 2003) suggested CUSUM charts for detecting
process mean shifts using antiranks of different quality variables, Zou and Tsung
(2011) suggested an EWMA chart using spatial signs, and Zou et al. (2012) and
Holland and Hawkins (2014) suggested different nonparametric control charts us-
ing spatial ranks. See Qiu (2018) for a discussion about other rank-based control
charts.

The second type of nonparametric SPC charts is based on data categorization. In
multivariate cases, the major difficulty in describing a process distribution when it
is non-Gaussian is that the association among different quality variables can have
infinitely many possibilities and it is hard to describe such association properly in
general. However, if the quality variables are all categorical, then there are some
mature statistical methodologies in the area of categorical data analysis (cf., Agresti
2002) for describing the association among categorical variables. Based on this ob-
servation, Qiu (2008) suggested a general framework for constructing nonparamet-
ric control charts based on data categorization and categorical data analysis. Assume
that process observations are

Xn = (Xn1,Xn2, . . . ,Xnp)
′, for n≥ 1,

where p is the dimension of the quality vector X. Let the IC median of Xn j be µ̃ j,
for j = 1,2, . . . , p, which can be estimated from an IC data. Define

Yn j = I(Xn j > µ̃ j), for j = 1,2, . . . , p, (13)

and Yn = (Yn1,Yn2, . . . ,Ynp)
′, where I(a) is an indicator function that equals 1 if

a is “true” and 0 otherwise. Then, Yn is the categorized version of Xn. The IC
distribution of Yn, can be described by a log-linear model which can be estimated
from the IC data. The estimated IC distribution of Yn is denoted as{

f (0)j1 j2··· jp
, j1, j2, . . . , jp = 1,2

}
,

where j1, j2, . . . , jp are indices of the p-way contingency table associated with the
categorized data Yn and its distribution (note that each dimension of the contingency
table has two categories). For j1, j2, . . . , jp = 1,2, define

gn j1 j2··· jp = I(Yn1 = j1−1,Yn2 = j2−1, . . . ,Ynp(i) = jp−1),

gn is a vector of all gn j1 j2··· jp values, and f(0) is the vector of all f (0)j1 j2··· jp
. Then, gn

and f(0) are vectors of the observed and expected counts of the contingency table at
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the time point n, respectively. Let Uobs
0 = Uexp

0 = 0 be two 2p-dimensional vectors,
and 

Uobs
n = Uexp

n = 0, if Bn ≤ k
Uobs

n =
(
Uobs

n−1 +gn
)
(1− k/Bn) , if Bn > k

Uexp
n =

(
Uexp

n−1 + f(0)
)
(1− k/Bn) ,

where

Bn =
{(

Uobs
n−1−Uexp

n−1

)
+
(

gn− f(0)
)}′(

diag(Uexp
n−1 + f(0))

)−1

{(
Uobs

n−1−Uexp
n−1

)
+
(

gn− f(0)
)}

,

k ≥ 0 is an allowance constant, diag(a) denotes a diagonal matrix with its diagonal
elements equal to the corresponding elements of the vector a, and the superscripts
“obs” and “exp” denote the observed and expected counts, respectively. Define

Cn =
(

Uobs
n −Uexp

n

)′
[diag(Uexp

n )]−1
(

Uobs
n −Uexp

n

)
. (14)

Then, a location shift in Xn is signaled if

Cn > h, (15)

where h > 0 is a control limit chosen to achieve a given ARL0 level.
A chart similar to the one defined in (13)-(15) was suggested in univariate cases

by Qiu and Li (2011a), where the number of categories in categorizing the qual-
ity variable can be larger than 2. From the large comparative studies in Qiu and
Li (2011a,b), it can be seen that the chart based on data categorization has some
advantages in terms of the ARL1 metric over certain alternative nonparametric con-
trol charts in various cases considered, although it still has much room for possible
improvement. For instance, data categorization would lose information in the orig-
inal data. It is thus important to study how to make the lost information as small as
possible while keeping the favorable properties of the related nonparametric control
charts. In this regard, one possible improvement is to make use of the ordering in-
formation among the categories of the categorized data when constructing control
charts, which has been discussed recently by Li (2017).

4 Charts for Monitoring Dynamic Processes

The conventional control charts discussed in Section 2 usually require the assump-
tion that process observations have an identical distribution at different time points
when the related process is IC. This assumption is not valid in certain applications.
One example mentioned in Section 1 is about monitoring of disease incidence rates.
In this example, the distribution of disease incidence rates would change over time
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because of seasonality and other reasons, even in cases when there are no disease
outbreaks. In such cases, the disease incidence rate process has a time-varying IC
distribution. Such processes are called dynamic processes in this paper. For mon-
itoring dynamic processes, the conventional control charts would be unreliable to
use, and new monitoring charts are needed. Recently, we developed several con-
trol charts for monitoring dynamic processes, which are introduced below in this
section.

Qiu and Xiang (2014) suggested a so-called dynamic screening system (DySS)
for monitoring dynamic processes with a single quality/performance variable. The
DySS method consists of three main steps described below.

Step I The regular longitudinal pattern of the performance variable y is first esti-
mated from an IC dataset containing longitudinal observations of a group of m
well-functioning subjects.

Step II For a new subject to monitor, his/her observations are first standardized
using the estimated regular longitudinal pattern obtained in Step I.

Step III The standardized observations of the new subject are then monitored by a
conventional control chart and a signal is given as soon as all available data sug-
gest a significant shift in the longitudinal pattern of the subject under monitoring
from the estimated regular pattern.

Assume that the observed longitudinal data of the m well-functioning subjects in
the IC dataset follow the model

y(ti j) = µ(ti j)+σ(ti j)ε(ti j), for j = 1,2, . . . ,ni, i = 1,2, . . . ,m, (16)

where ti j ∈ [0,T ] are observation times, y(ti j) is the jth observation of the ith sub-
ject, µ(ti j) and σ(ti j) are the mean and standard deviation of y(ti j), and ε(ti j) is
the standardized random error with mean 0 and variance 1. Qiu and Xiang (2014)
suggested a four-step procedure for estimating µ(t) and σ2(t) using the local linear
kernel smoothing procedure. The estimators are denoted as µ̂(t) and σ̂2(t), respec-
tively. For a subject to monitor, when his/her performance is IC, his/her observa-
tions should follow model (16), although the observation times, denoted as t∗j , for
j = 1,2, . . ., could be different from those in model (1). So, his/her observations
{y(t∗j ), j ≥ 1} can be standardized by

ε̂(t∗j ) =
y(t∗j )− µ̂(t∗j )

σ̂(t∗j )
, for j ≥ 1, (17)

where µ̂(t) and σ̂(t) are estimated from the IC data. Obviously, the standardized ob-
servations {ε̂(t∗j ), j≥ 1} in (17) would have mean 0 and variance 1 when the subject
under monitoring is IC. To detect an upward mean shift in the original performance
variable y for the given subject, Qiu and Xiang (2014) suggested using the CUSUM
charting statistic defined as

C+
j = max(0,C+

j−1 + ε̂(t∗j )− k), for j ≥ 1, (18)
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where C+
0 = 0 and k > 0 is an allowance constant. Then, the chart gives a signal

when
C+

j > hC, (19)

where hC > 0 is a control limit. For detecting a downward or arbitrary shift, a down-
ward or two-sided CUSUM chart can be used.

As discussed in Section 2, the performance of a control chart is usually measured
by ARL0 and ARL1. However, in many dynamic process monitoring applications,
the observation times are often unequally spaced. In such cases, ARL0 and ARL1
are irrelevant any more. Instead, Qiu and Xiang (2014) suggested using the average
time to signal (ATS), defined below. Let ω be a basic time unit so that all observation
times are its integer multiples. Then, we define n∗j = t∗j /ω , for j = 1,2, . . ., where
n∗0 = t∗0 = 0. For a subject whose longitudinal performance is IC, assume that a signal
is given at the sth observation time. Then, E(n∗s ) is called the IC ATS, denoted as
AT S0. Similarly, for a subject whose longitudinal performance starts to deviate from
the regular longitudinal pattern at the time point τ , the value E(n∗s |n∗s ≥ τ)− τ is
called OC ATS, denoted as AT S1. For the chart (18)-(19), the value of AT S0 can be
specified beforehand, and it performs better for detecting a shift of a given size if its
AT S1 value is smaller.

The DySS method discussed above is for monitoring univariate dynamic pro-
cesses only. Its multivariate version has been developed in Qiu and Xiang (2015).
Li and Qiu (2016, 2017) suggested univariate and multivariate DySS methods that
were effective in cases when process observations were serially correlated. In the
chart (18)-(19), the fact that process observations are often unequally spaced is con-
sidered in the performance measures AT S0 and AT S1 only, and it is not taken into
account in the construction of the chart. This limitation was lifted in the EWMA
chart proposed by Qiu et al. (2018).

In many applications, especially those outside the manufacturing industries, lon-
gitudinal processes for monitoring often have time-varying IC distributions. There-
fore, dynamic process monitoring is an important research topic. Although we have
developed a number of control charts for that purpose, there are still many open re-
search problems. For instance, the DySS method described above depends heavily
on the estimated regular longitudinal pattern obtained from an IC dataset. However,
it is often challenging to choose an appropriate IC dataset in practice. Proper esti-
mation of the regular longitudinal pattern is challenging as well, especially in cases
when the size of the IC dataset is quite small.

5 Charts for Monitoring Spatio-Temporal Processes

We experienced SARS and many other damaging infectious diseases (cf., Fiore et
al. 2010). To monitor their incidence rates, some global, national and regional re-
porting systems have been developed. For instance, Florida Department of Health
(FDOH) has built the Electronic Surveillance System for the Early Notification of
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Community-based Epidemics at Florida (ESSENCE-FL) recently, which is a syn-
dromic surveillance system for collecting near real-time pre-diagnostic data from
participating hospitals and urgent care centers in Florida. Figure 1 presents the ob-
served incidence rates of influenza-like illness (ILI) for all 67 counties of Florida on
06/01/2012 (a summer time) and 12/01/2012 (a winter time). One important feature
of these disease incidence data is that observed data collected at different places and
different times are usually correlated: with the ones closer in space or time being
more correlated. This kind of spatio-temporal (ST) correlation, however, is hidden
in the observed data, and cannot be observed directly. Also, the disease incidence
data have the seasonality and other temporal variation, and their temporal patterns
could be different at different places (i.e., the spatial variation), as seen in Figure 1.
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Fig. 1 Observed ILI incidence rates in Florida on 06/01/2012 (left) and 12/01/2012 (right).
Stronger colors denote larger values.

The conventional SPC charts described in Section 2 require the assumptions that
process observations are independent and identically distributed when the underly-
ing process is IC. These assumptions are all violated in the ST process monitoring
problem discussed above, because of the ST data correlation and the fact that disease
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incidence rates would have time- and space-varying distribution even in cases when
no disease outbreaks are present. Therefore, specific control charts for handling ST
processes are needed.

In a case study for analyzing a foot, hand and mouth disease dataset, Zhang et
al. (2015) suggested a procedure consisting of three steps: detrend, decorrelation,
and sequential monitoring, which are briefly described below. (i) Seasonality in the
observed disease incidence data is first described by a nonparametric longitudinal
model, which can be estimated from an IC dataset and then eliminated from all
observed data. (ii) Temporal autocorrelation in the detrended data is modeled by an
ARIMA model, and then eliminated from the detrended data. (iii) The detrended
and decorrelated data obtained in step (ii) are then sequentially monitored by an
SPC chart. A similar procedure was used for analyzing an AIDS data in Zhang
et al. (2016). This three-step method, however, can monitor the disease incidence
rates at a single location only, and it cannot monitor the data at multiple locations
simultaneously while accommodating ST data correlation properly.

To overcome the limitation of the three-step method by Zhang et al. (2015), Yang
and Qiu (2018) suggested a flexible approach for spatio-temporal data modeling,
briefly described below. Let Ω and [0,T ] be a 2-D region and a given time interval.
The observed disease incidence rates in Ω × [0,T ] are assumed to follow the model

y(ti,si j) = λ (ti,si j)+ ε(ti,si j), for j = 1,2, . . . ,mi, i = 1,2, . . . ,n, (20)

where ti ∈ [0,T ] is the ith observation time point, si j ∈Ω is the jth observation loca-
tion at time ti, ε(ti,si j) is a zero-mean random error, mi is the number of observation
locations at time ti, and n is the number of time points in the dataset. The correlation
structure in the observed data can be described by the covariance function

V (uuu;vvv) = E [ε(uuu)ε(vvv)] = σ(uuu)σ(vvv)Cor(ε(uuu),ε(vvv)), for uuu,vvv ∈ [0,T ]×Ω ,
(21)

where σ2(·) is the variance function and Cor(·, ·) is the correlation function. The
mean function λ (t,s) is then estimated by a spatio-temporal local linear kernel
smoothing procedure. The estimator is denoted as λ̂ (t,s). To accommodate the ST
data correlation, the bandwidths used in estimating λ (t,s) should be chosen care-
fully. To this end, a modified cross-validation procedure was proposed in Yang and
Qiu (2018). After λ̂ (t,s) is obtained, V (uuu,vvv) can be estimated by moment estimation
from the residuals. The resulting estimator is denoted as V̂ (uuu,vvv).

Based on the above ST data modeling approach, Yang and Qiu (2019) suggested
a CUSUM chart for monitoring ST processes, which consists of several steps. First,
the regular longitudinal pattern of the spatial disease incidence rates in cases when
no disease outbreaks are present can be described by λ (t,s) and V (uuu,vvv) in (20)
and (21), which can be estimated from an IC dataset by the ST modeling proce-
dure discussed above. Then, they can be used for online monitoring of the disease
incidence rates y(t∗i ,s∗i j) observed at locations {s∗i j, j = 1,2, . . . ,m∗i } and times t∗i ,
for i = 1,2, . . .. Define yyy(t∗i ) = (y(t∗i ,s∗i1),y(t

∗
i ,s∗i2), . . . ,y(t

∗
i ,s∗im∗i ))

′, for all i. When
the process is IC, the observed data are assumed to follow model (20) in the sense
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that y(t∗i ,s∗i j) = λ (t∗i ,s∗i j) + ε(t∗i ,s∗i j), for j = 1,2, . . . ,m∗i and i = 1,2, . . ., and the
mean function λ (t,s) is assumed periodic in time with the period T . Namely,
λ (t∗i ,s∗i j) = λ (t∗∗i ,s∗i j), where t∗i = t∗∗i + `T for all i, t∗∗i ∈ [0,T ], and ` ≥ 1 is an
integer. Second, decorrelate and standardize all observed data up to the current time
point i: {yyy(t∗1 ),yyy(t∗2 ), . . . ,yyy(t∗i )}. The decorrelated and standardized data are denoted
as ̂̃eee(t∗1 ),̂̃eee(t∗2 ), . . . ,̂̃eee(t∗i ). Then, the suggested CUSUM charting statistic for detect-
ing upward shifts in the disease incidence rates is

C+
i = max

(
0,C+

i−1 +
̂̃eee(t∗i )′̂̃eee(t∗i )−m∗i√

2m∗i
− k

)
, for i≥ 1, (22)

where C+
0 = 0 and k > 0 is an allowance constant. The chart gives a signal when

C+
i > γ, (23)

where γ > 0 is a control limit. To determine γ in (23) so that the chart (22)-(23)
has a specific ARL0 value, Yang and Qiu (2019) suggested using a block bootstrap
procedure.

6 Concluding Remarks

In the previous sections, we have briefly introduced some recent research in SPC, af-
ter an introduction of four types of basic SPC charts. The recent research introduced
is mainly on nonparametric SPC, dynamic process control, and spatio-temporal pro-
cess monitoring. These research topics aim to handle cases when the regular as-
sumptions in SPC that IC process observations are independent and identically dis-
tributed with a specific parametric distribution are violated. In each of these research
topics, there are still many open questions that need to be addressed in our future
research. For instance, in the nonparametric SPC area, there have been many non-
parametric control charts proposed. Systematic comparison of these charts should
be important for them to be used in real-data applications. Also, both ranking and
data categorization would lose information in the original observed data. It should
be important to study how to minimize the lost information while keep all the favor-
able properties of nonparametric control charts. For dynamic process monitoring,
accurate estimation of the regular longitudinal pattern from the IC data is critically
important. Usually, the size of IC data is limited. In such cases, self-starting proce-
dures to expland the initial IC dataset, by combining it with observed data during
procedure monitoring after it is confirmed that the process under monitoring is IC
at the current time point, might be one way to overcome the difficulty, which needs
to be further studied in the future. Proper monitoring of spatio-temporal processes
is important but challenging. The chart (22)-(23) represents our first research ef-
fort on that topic, and many issues, including proper accommodation of important
covariates, need to be addressed in future research.
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In the big data era, SPC will find more and more applications (cf., Qiu 2017,
2018b). In these new applications, the related process monitoring problems could
become more complicated. For instance, sequential monitoring of images has broad
applications in manufacturing industries, traffic monitoring, medical diagnostics,
and more. But, images often have edges and other complicated structures. Also, im-
ages obtained at different times should be geometrically aligned properly for mean-
ing analysis of the image sequence. These features of image data, however, would
make proper monitoring of an image sequence extremely challenging. So, new SPC
methods are needed for handling such new applications.
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