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ABSTRACT

In many imaging applications, including image fusion and image sequence monitoring, we need to ge-

ometrically match up one image to another of a same scene, so that information from different images

can be compared or combined properly. This is the image registration (IR) problem that has received

much attention in recent years due to its broad applications. In the literature, early IR methods are

for analyzing 2D images. Because of the rapid progress in image acquisition technologies, 3D images

have become increasingly popular in magnetic resonance imaging (MRI) and other applications in

recent years. Since the structure of a typical 3D image is substantially more complicated than that of

a typical 2D image, 3D image registration is challenging. In this paper, we develop a new 3D image

registration method using local smoothing statistical methods. By the flexibility of local smoothing,

our method does not require any parametric form or other global regularity conditions on the related

geometric transformation. It is shown that this method works well in practice.

c© 2016 Elsevier Ltd. All rights reserved.

In many imaging applications, we need to compare two or

more images of a same object so that useful information of the

images can be combined and the difference among the images

can be detected. One such example is about the comparison

of several MRI brain images of a brain tumor patient that were

taken at different times, so that the tumor growth can be moni-

tored closely. To make the comparison meaningful, the related

images should be geometrically matched up first, because the

relative positions between the imaging device and the image

object would hardly be the same at different times when the im-

ages are taken. Image registration (IR) is for solving this and

some other problems, including inter-subject anatomical com-

parisons, anatomical atlas creation, multi-modal image fusion,

and longitudinal studies [1, 2]. It is a fundamental task in many

imaging applications, including medical imaging [3], remote

sensing [4], finger print or face recognition [5], image com-

pression [6], video enhancement [7], and so forth.

In the literature, early IR methods are for analyzing 2D im-

ages. They can be roughly divided into two groups: feature-

based and intensity-based methods. To register two images by

a feature-based method, we first select two sets of features in
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the two images under consideration, and then find a geomet-

rical transformation T to best match the two sets of features

[8, 9, 10]. Commonly used features include landmarks or con-

trol points that can be selected manually or automatically by a

computer [11], edge lines or curves that are often detected by

gradient-based methods [12], regions, centroids or templates

that are usually determined by ways of thresholding and seg-

mentation [13], and degenerate pixels of the image intensity

functions that are defined specifically for IR [10]. Because fea-

ture extraction is often a time-consuming and challenging task

with much arbitrariness involved, recent IR research focuses

more on the search of the transformation T based directly on the

observed image intensities of the two images. Such methods are

often called intensity-based image registration (IBIR) methods.

Commonly used IBIR methods include those based on paramet-

ric transformation families [14], and more flexible ones using

nonparametric transformations [15, 16, 17, 18, 19, 20]. IBIR

methods are usually computing-intensive and not always robust

to intensity biases in images.

In practice, most objects in our real life are 3D. Thanks to

the rapid development of image acquisition techniques, 3D im-

ages have become more and more popular nowadays in certain

applications (e.g., medical imaging). Consequently, 3D image

registration has been an active research problem in recent 10-15

years. Generally speaking, 3D image registration is challenging
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because 3D images have much more complicated structure than

2D images. For instance, edge locations are surfaces in 3D im-

ages which have more complicated structure than edge curves

in 2D images. So far, some 2D image registration methods have

been generalized to 3D cases. Some of them were incorpo-

rated in the software packages 3DSlicer (http://slicer.org/) and

ANTS/SyN (http://www.picsl.upenn.edu/ANTS/). Some meth-

ods in these packages will be further studied in Section III of

the paper. Another 3D IR method is based on the Iterative

Closest Point (ICP) algorithm [21, 22]. This is a feature-based

IR method based on the assumption that T has a parametric

form. To use such a method, two sets of features need to be

extracted first from the two related images. Then, the ICP al-

gorithm alternates between estimating the parameters in T and

searching for the optimal point-wise correspondence between

the two images. Some other 3D image registration methods

were discussed in papers such as [23, 24, 25, 26].

In this paper, we propose a new 3D IBIR method. This

method is designed for cases when the geometric transforma-

tion T from one image to the other is non-rigid-body. Recall

that a rigid-body transformation implies that the Euclidean dis-

tance between any two voxels in an image will not change after

the geometric transformation. Non-rigid-body transformations,

on the other hand, are much more flexible and they can cope

with articulated objects or soft bodies that change shape over

time. Typical applications of non-rigid-body IR methods can

be found in biomedical studies, where soft bodies (e.g., human

organs) are common [27, 28]. In the proposed new method,

we actually do not impose any restrictive assumptions on the

geometric transformation T. To allow this great flexibility, we

adopt the nonparametric local smoothing approach that was first

discussed in [20] in 2D cases. By such an approach, estimation

of T at a given voxel depends only on nearby image intensities

of the two 3D images. This local estimation nature makes it

possible to not impose restrictive assumptions on T. Our pro-

posed method will be described in detail in Section II. Some

numerical results are presented in Section III. Several remarks

conclude the article in Section IV.

1. Proposed 3D IBIR Method

1.1. Description of the 3D IBIR problem

The 3D image registration problem can be described as fol-

lows. Let R and M be two 3D images to register. In the litera-

ture, R is often called the reference image, and M the moved

image. Their true image intensity functions are denoted as

R(x, y, z) and M(x, y, z). It is assumed that they have the fol-

lowing relationship:

M(T1(x, y, z),T2(x, y, z),T3(x, y, z))

= R(x, y, z), for (x, y, z) ∈ Ω,
(1)

where Ω is the design space of the image R, and T(x, y, z) =

(T1(x, y, z),T2(x, y, z),T3(x, y, z)) is an unknown geometric

transformation to estimate. IBIR methods try to estimate

T(x, y, z) from the observed image intensities of the two images

following the statistical model:

ZM(xi, y j, zk) = M(xi, y j, zk) + εM(xi, y j, zk),

ZR(xi, y j, zk) = R(xi, y j, zk) + εR(xi, y j, zk),

i, j, k = 1, 2, . . . , n,

(2)

where {(xi, y j, zk)} are voxel locations, and εM(xi, y j, zk) and

εR(xi, y j, zk) are i.i.d. random errors in the two images with

mean 0 and unknown variances σ2
M

and σ2
R
, respectively. Non-

parametric IBIR methods try to estimate T(x, y, z) from the ob-

served image intensities, without imposing any parametric form

on T(x, y, z). In (2), we assume that the two observed images

contain pointwise noise only, for simplicity. In practice, they

may also contain spatial blur and other degradation [29, 30],

and the noise may be non-additive (e.g., follows the Rician

noise model) so that a biase-correction procedure should be ap-

plied in advance [31]. At a given voxel (x, y, z) ∈ Ω, we can

write 
T1(x, y, z)

T2(x, y, z)

T3(x, y, z)

 =


x

y

z

 +


b(x, y, z)

c(x, y, z)

d(x, y, z)

 ,

where b(x, y, z) = T1(x, y, z) − x, c(x, y, z) = T2(x, y, z) − y and

d(x, y, z) = T3(x, y, z) − z. Therefore, estimation of T(x, y, z)

is equivalent to estimation of (b(x, y, z), c(x, y, z), d(x, y, z)). Af-

ter the estimators of (b(x, y, z), c(x, y, z), d(x, y, z)), denoted as

(̂b(x, y, z), ĉ(x, y, z), d̂(x, y, z)), are obtained, the estimator of

T(x, y, z) can be written as

T̂(x, y, z) = (x, y, z) +
(̂
b(x, y, z), ĉ(x, y, z), d̂(x, y, z)

)
(3)

1.2. 3D IR and Non-Degenerate Voxels

It has been pointed out in the literature that the 2D image

registration problem is ill-posed at degenerate pixels [20, 17],

in the sense that the geometric transformation is not well de-

fined around the degenerate pixels. In 3D cases, we have

the similar issue, which will be discussed in this part. At a

given voxel (x, y, z) ∈ Ω, if the magnitude of the geometric

transformation T(x, y, z) is small (i.e., T(x, y, z) − (x, y, z) =

(b(x, y, z), c(x, y, z), d(x, y, z)) is small) and M has the first-order

partial derivatives at (x, y, z), then by the Taylor’s expansion, we

have
M(T1(x, y, z),T2(x, y, z),T3(x, y, z))

= M(x, y, z) + M′x(x, y, z)b(x, y, z)

+ M′y(x, y, z)c(x, y, z) + M′z(x, y, z)d(x, y, z)

+ o (‖T(x, y, z) − (x, y, z)‖) ,

(4)

where ‖·‖ is the Euclidean norm. By (1) and (4), it can

be seen that R(x, y, z) = M(T1(x, y, z),T2(x, y, z),T3(x, y, z))

can be well approximated by M(x, y, z) + M′x(x, y, z)b(x, y, z) +

M′y(x, y, z)c(x, y, z) + M′z(x, y, z)d(x, y, z) in such cases. There-

fore, (b(x, y, z), c(x, y, z), d(x, y, z)) can be chosen such that the

approximation error

R(x, y, z) −
[
M(x, y, z) + M′x(x, y, z)b(x, y, z)

+M′y(x, y, z)c(x, y, z) + M′z(x, y, z)d(x, y, z)
]

is as small as possible. In reality, however, R(x, y, z), M(x, y, z),

M′x(x, y, z), M′y(x, y, z) and M′z(x, y, z) are all unobservable.
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What observed are the image intensities {ZM(xi, y j, zk)} and

{ZR(xi, y j, zk)} defined in (2), which contain random noise. To

smooth out noise while estimate (b(x, y, z), c(x, y, z), d(x, y, z)),

we adopt the idea of local linear kernel (LLK) estimation

in statistical nonparametric regression [32] as follows. First,

the quantities M′x(x, y, z), M′y(x, y, z) and M′z(x, y, z) can be es-

timated by their conventional LLK estimators M̂′x(xi, y j, zk),

M̂′y(xi, y j, zk) and M̂′z(xi, y j, zk), respectively. Then, in a spher-

ical neighborhood of (x, y, z) with radius hn, denoted as

O(x, y, z; hn), b(x, y, z), c(x, y, z) and d(x, y, z) can be estimated

by the solution of the following minimization problem:

min
b(x,y,z),c(x,y,z),d(x,y,z)

n∑

i, j=1

[
ZM(xi, y j, zk)

− ZR(xi, y j, zk) + M̂′x(x, y, z)b(x, y, z)

+M̂′y(x, y, z)c(x, y, z) + M̂′z(x, y, z)d(x, y, z)
]2

Khn
,

(5)

where Khn
= K((xi − x)/hn, (y j − y)/hn, (zk − z)/hn), and K

is a trivariate density kernel function with unit circular sup-

port. The minimization problem (5) searches for estimators of

b(x, y, z), c(x, y, z) and d(x, y, z) such that the weighted sum of

squares of the approximation errors reaches the minimum, and

the weights are determined by the kernel function K. In the

statistical literature, K is often chosen to be the Epanechnikov

kernel function CK(1 − x2)(1 − y2)(1 − z2)I(x2 + y2 + z2 ≤ 1),

where CK is a normalization constant and I(·) is an indicator

function. By (5), if a voxel (xi, y j, zk) ∈ O(x, y, z; hn) is far-

ther away from the given voxel (x, y, z), then the corresponding

approximation error at (xi, y j, zk) would receive a less weight,

which is intuitively reasonable, because the observed image

intensity at (xi, y j, zk) would provide less information about

(b(x, y, z), c(x, y, z), d(x, y, z)) in such cases, compared to the ob-

served image intensities at voxels closer to (x, y, z). It is not dif-

ficult to check that the problem (5) has the solution given in (6).

In (6), for s1, s2 = x, y, z,

Ks1 s2
=

n∑

i, j,k=1

M̂′s1
(xi, y j, zk)M̂′s2

(xi, y j, zk)Khn
,

K∗s1
=

n∑

i, j,k=1

[
ZR(xi, y j, zk) − ZM(xi, y j, zk)

]
M̂′s1

(xi, y j, zk)Khn
,

and the conventional LLK estimators of M′x(x, y, z), M′y(x, y, z)

and M′z(x, y, z) are: for s = x, y, z,

M̂′s =

∑
i jk(si − s)ZM(xi, y j, zk)Kh(xi − x, y j − y, zk − z)
∑

i jk(si − s)2Kh(xi − x, y j − y, zk − z)
.

From the above description, we know that formula (6) is ob-

tained in the ideal situation when (i) ‖T(x, y, z) − (x, y, z)‖

is small such that the first-order approximation to

M(T1(x, y, z),T2(x, y, z),T3(x, y, z)) in (4) is good, (ii) M

has the first-order partial derivatives at (x, y, z), and (iii) the

denominator on the right-hand-side of (6) is not zero. The

above conditions (i) and (ii) imply that the estimator defined

by (3) and (6) may not estimate T(x, y, z) well at places where

the transformation is relatively large or where M is not smooth

(e.g., edge locations of M). Condition (iii) implies that the

estimator is not well defined at places where the following

equation holds:

KxxKyyKzz + KxyKyzKxz + KxyKyzKxz

−KyyK2
xz − KzzK

2
xy − KxxK2

yz = 0.
(7)

Mathematically, it can be proved that: (1) M̂′x(xi, y j, zk),

M̂′y(xi, y j, zk) and M̂′z(xi, y j, zk) would converge to M′x(x, y, z),

M′y(x, y, z) and M′z(x, y, z), respectively, in regions where M has

continuous first order derivatives, when n gets larger and larger,

and (2) if M̂′x(xi, y j, zk), M̂′y(xi, y j, zk) and M̂′z(xi, y j, zk) are re-

placed by M′x(x, y, z), M′y(x, y, z) and M′z(x, y, z) in (7), then M

satisfies equation (7) in the neighborhood O(x, y, z; hn) if and

only if there is a continuously differentiable univariate function

ψ and a constant ρ such that

M(x′, y′, z′) = ψ(ρx′ + y′),

for any (x′, y′, z′) ∈ O(x, y, z; hn).
(8)

Intuitively, if M satisfies (8) in O(x, y, z; hn), then its inten-

sity levels are the same on the line segment ρx′ + y′ = ρ0 in

O(x, y, z; hn), for any appropriate constant ρ0 such that the line

segment is contained in O(x, y, z; hn). In such cases, the trivari-

ate function M is degenerate locally in O(x, y, z; hn), and it is

impossible to uniquely determine T(x, y, z) because any small

move along the line direction would not change the value of

M(x′, y′, z′) for any (x′, y′, z′) ∈ O(x, y, z; hn). In this paper, a

voxel (x, y, z) ∈ Ω is called a local degenerate voxel of M if

M has partial derivatives at (x, y, z) and there exists a neighbor-

hood O(x, y, z; hn) such that equation (8) holds. Other voxels at

which M has partial derivatives are called local non-degenerate

voxels. Similarly, we can define local degenerate voxels and lo-

cal non-degenerate voxels for the reference image R. Therefore,

around local degenerate voxels, the image registration problem

is actually not well defined in the sense that the geometrical

transformation T(x, y, z) cannot be uniquely determined.

1.3. Proposed Image Registration Procedure

From the description in Section 1.2, it can be seen that the

geometrical transformation T(x, y, z) can be properly estimated

only around local non-degenerate voxels or places where the

image intensity function of the reference image R is not smooth.

Based on that result, we propose an IBIR procedure consisting

of four major steps, as described below.

Step 1 Detect edge voxels for the observed reference image

ZR using an edge detector. See Chapter 6 in [32] for a discussion

about existing edge detectors.

Step 2 At a given voxel (x, y, z) in R, consider its circular

neighborhood with radius r1, denoted as O(x, y, z; r1). If the

number of detected edge voxels in O(x, y, z; r1) is smaller than

[nr1], where [s] denotes the integer part of s, then (x, y, z) is re-

garded as a continuity voxel of R. In such a case, if the denomi-

nator on the right-hand-side of equation (6) (after M is replaced

by R) is larger than or equal to a pre-specified threshold value

µn, then (x, y, z) is regarded as a local non-degenerate voxel of

R; otherwise, it is regarded as a local degenerate voxel.
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
b̂(x, y, z)

ĉ(x, y, z)

d(x, y, z)

 =


KyyKzz − K2

yz −(KxyKzz − KyzKxz) KxyKyz − KyyKxy

−(KxyKyy − KxyKyz) KxxKzz − K2
xz −(KxxKyz − KxyKxz)

KxyKyz − KxyKyy −(KxxKyz − KxzKxy) KxxKyy − K2
xy



(KxxKyyKzz + KxyKyzKxz + KxyKyzKxz − KyyK2
xz − KzzK2

xy − KxxK2
yz)


K∗

1

K∗
2

K∗
3

 (6)

Step 3 Let D be the set of all local non-degenerate vox-

els of R or voxels whose circular neighborhoods with radius

r1 contain at least [nr1] detected edge voxels. Then, for any

(x, y, z) ∈ D,T(x, y, z) is computed by the following algorithm.

For any voxel x′, y′, z′ ∈ O(x, y, z; r1) of the moved image, con-

sider its circular neighborhood O(x′, y′, z′; r2), where r2 is a ra-

dius that could be different from r1. Compute the mean squared

difference (MSD)

MSD((x′, y′, z′); (x, y, z)) =
1

Ñ

∑

(x′+s,y′+t,z′+u)∈O(x′,y′,z′;r2)

[
ZM(x′ + s, y′ + t, z′ + u) − ZR(x + s, y + t, z + u)

]2
,

where Ñ is the number of voxels in O(x′, y′, z′; r2). Then,

T̂ (x, y, z) is defined to be the minimizer of

min
(x′,y′,z′)∈O(x,y,z;r1)

MSD((x′, y′, z′); (x, y, z)).

See Figure 1 for a demonstration.

Step 4 If (x, y, z) is a local degenerate point of R, then

T̂(x, y, z) is defined as follows. First, find a voxel in D that

is closest to (x, y, z), which is denoted as (x(1), y(1), z(1)). Then,

let

T̂∗(x, y, z) = (x, y, z)+

(̂b(x(1), y(1), z(1)), ĉ(x(1), y(1), z(1)), d(x(1), y(1), z(1)))

Define T̂(x, y, z) = T̂ ∗(x, y, z) if

MSD(T̂∗(x, y, z); (x, y, z)) ≤ MSD((x, y, z); (x, y, z)).

Otherwise, define T̂(x, y, z) = (x, y, z).

Fig. 1. A demonstration of Step 3 of the proposed 3D image registration

algorithm.

Note that the above IBIR procedure can only properly handle

interior voxels in Ω whose Euclidean distances from the border

of Ω are at least r1 + r2. For a boundary voxel of Ω whose

Euclidean distance from the border of Ω is smaller than r1 + r2,

we define the geometrical transformation at that voxel to be the

same as that at the interior voxel who is closest to the boundary

voxel.

At the end of this section, we make several remarks about

the above image registration procedure. First, at local non-

degenerate voxels of R, instead of using formulas (3) and (6),

we use the searching algorithm described in Step 3 for comput-

ing T̂(x, y, z). That is because formula (6) is valid only when

‖T(x, y, z) − (x, y, z)‖ is small. From our numerical studies, the

estimator by the searching algorithm would perform better than

the one by (3) and (6) for most realistic T(x, y, z) functions. Sec-

ond, from the discussion in Section 1.2, it seems that, to define

T(x, y, z) properly, (x, y, z) should be a non-degenerate voxel of

M, instead of R. Again, this discussion is based on the assump-

tion that ‖T(x, y, z) − (x, y, z)‖ is small so that the Taylor’s ex-

pansion is valid. In practice, it is more reasonable to require

(x, y, z) to be a non-degenerate voxel of R. Third, in Step 3,

MSD is used as the matching criterion. Actually, other crite-

ria, including the cross correlation and entropy of image differ-

ence (cf., their definitions in Section 3), can also be considered

here. Fourth, computation involved in the searching algorithm

described in Step 3 is actually not very extensive because vox-

els in D represent only about 10% of all voxels for a typical

image. Fifth, performance of the proposed image registration

procedure depends on the three parameters hn, r1 and r2. Based

on many numerical experiments, we found that the results are

reasonably good if we choose hn/n ∈ [0.1, 0.2], r1 = 2r2, and

r2/n ∈ [0.1, 0.2].

2. Numerical Study

We have performed numerical studies with more than 10 dif-

ferent pairs of 3D test images. The evaluation is made in com-

parison with certain methods included in the well-known soft-

ware packages 3D Slicer and ANTS/SyN. The existing meth-

ods from 3D Slicer considered here include the free-form de-

formation method based on B-splines, denoted as B-Spline, the

IR method using the affine invariant geometric transformation,

denoted as Affine, and the method using the rigid-body geo-

metric transformation, denoted as Rigid. The existing methods

from ANTS/SyN include the rigid+affine+deformable syn, de-

noted as RAD-SyN, and the rigid+affine+deformable B-spline

syn, denoted as RADB-SyN. These methods represent differ-

ent state-of-the-art 3D IBIR methods in the literature. The ver-

sion of the 3D Slicer software used here is its latest release

4.5.0, that is available at http://www.slicer.org/. The version of

ANTS/SyN package used here is its latest release 2.1.0, that is

available at http://www.picsl.upenn.edu/ANTS/. Our proposed

method is denoted as NEW. For comparison purposes, we also

include results when no image registration is performed. This

case is denoted as No-Registration.

To evaluate the numerical performance of all related meth-

ods, we use three popular measures, including the root residual

mean squares (RRMS), the correlation coefficient (CC), and the

entropy of image difference (EID). RRMS is the conventional

and most widely used measure. When evaluating an estimator
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T̂(x, y, z) of the geometrical transformation T(x, y, z), it is de-

fined to be

RRMS =


1

n3

n∑

i, j,k=1

[
ZR(xi, y j, zk) − ZM(T̂(xi, y j, zk))

]2


1
2

.

Basically, RRMS is the Euclidean distance between

{ZR(xi, y j, zk)} and {ZM(T̂(xi, y j, zk))}. Therefore, if its value is

smaller, then the registration is regarded better. The CC mea-

sure is defined to be the Pearson’s sample correlation coefficient

of the bivariate data {ZR(xi, y j, zk),ZM(T̂(xi, y j, zk))}. Intuitively,

if the estimator T̂(xi, y j, zk) is good, then ZM(T̂(xi, y j, zk))

would be close to ZR(xi, y j, zk). Consequently, the CC measure

would be close to its maximum value 1. The EID measure

became popular recently. It is defined by

EID = −
∑

d∈D

p(d) log p(d),

where D = {ZR(xi, y j, zk)−ZM(T̂(xi, y j, zk)), i, j, k = 1, 2, . . . , n}.

So, EID is basically the negative entropy of D. Intuitively, if

T̂(xi, y j, zk) is a good estimator of T(xi, y j, zk), then the ran-

domness in the elements of D should be large. Consequently,

EID should be small because the entropy
∑

d∈D p(d) log p(d) is

a good measure of the randomness of D. Therefore, by this

measure, the registration is better if the EID value is smaller.

For the methods B-Spline, Affine, and Rigid in the software

package 3D Slicer and the methods RAD-SyN and RADB-SyN

in the software package ANTS/SyN, we use their default set-

tings in the software. The proposed method NEW has three pa-

rameters hn, r1 and r2. Based on the practical guidelines given

in Section 1.3, we choose hn = 10, r1 = 20, and r2 = 10.

In the first example, the 3D reference

image is downloaded from the web page

http://www.slicer.org/slicerWiki/images/3/31/CT-chest.nrrd,

which is a human chest image with 128 × 128 × 69 voxels. Its

10 slices at z = 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 are shown

in the first row of Figure 2. First, we apply the following

transformation to all slices along the z−axis to obtain the

moved image: for y = 32, 33, . . . , 75, move the voxel at (x, y, z)

to (x + 5 sin(4πy/180), y, z). By this transformation, voxels

located between 32nd and 75th rows along the y−axis move

along the x−axis by the amount of 5 sin(4πy/180), for all

slices along the z−axis. Then, we apply rotate, translation,

and scale transformations on the above image by randomly

generating values of the transformation parameters as follows:

each of (α, β, γ) was generated from the Uniform distribution

on [3, 3], each of (∆x,∆y,∆z) was generated from the Uni-

form distribution on {3, 2, 1, 0, 1, 2, 3}, and the scale factor

s was generated from the Uniform distribution on [0.9, 1].

The corresponding parameter values are -2.54, 1.27, -1.60,

-1, -3, -1, 0.98 for (α, β, γ,∆x,∆y,∆z, s). The 10 slices at

z = 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 of the moved image are

shown in the second row of Figure 2. From the images, we can

see that the chest shape has been changed in the moved image

and it becomes more asymmetric.

We then apply the proposed IBIR method NEW to the two

images, along with the methods B-Spline, Affine, Rigid, No-

Registration, RAD-SyN, and RADB-SyN. The corresponding

slices of the restored reference image by NEW, defined as

M(T̂(x, y, z)), are shown in the last row of Figure 2. It can be

seen that the restored reference image is very close to the orig-

inal reference image.

To compare different methods, the values of the performance

evaluation criteria RRMS, CC and EID of the methods No-

Registration, B-Spline, Affine, Rigid, RADB-SyN, RAD-SyN

and NEW are shown in Table 1. From the table, it can be

seen that (i) NEW is uniformly better than No-Registration, B-

Spline, Affine, and RAD-SyN in all three performance criteria,

and (ii) NEW is better than RADB-SyN in terms of RRMS and

CC in quite large margins and slightly worse in terms of EID.

The 20th and 40th slices along the z−axis of the residual im-

ages, defined as R(x, y, z)−M(T̂(x, y, z)), of the related methods

are shown in Figure 3. The conclusions from these results are

consistent with those from Table 1.

Table 1. Performance measures of the seven IR methods in the chest image

local distortion example.

No-

Registration

B-

Spline
Affine Rigid

RADB-

SyN

RAD-

SyN
NEW

RRMS 40.504 28.534 37.517 31.347 28.243 27.695 8.739

CC 0.692 0.852 0.742 0.807 0.839 0.843 0.982

EID 4.855 3.854 4.167 3.852 3.205 3.459 3.445

Next, we consider a real IR problem in which an AIDS pa-

tient took 3D MRI brain images before and after a medical treat-

ment. The image before the treatment is used as a reference im-

age, and the one after the treatment is used as the moved image.

Each image has 128×128×88 voxels. The 1st, 10th, 20th, 30th,

40th, 50th, 60th, 70th, 80th, and 88th slices along the z−axis of

the reference image are shown in the first row of Figure 4, and

the corresponding slices of the moved image are shown in the

second row of Figure 4. It can be seen that the slices of the two

images look quite different, implying that the relative position

between the imaging device and the patient’s head is different

when taking the two images. The corresponding slices of the

restored image by the proposed method NEW are shown in the

last row of Figure 4. It can be seen that they look much more

similar to the ones in the first row, compared to the ones in the

second row. This example shows that the method NEW is effec-

tive in registering the two real 3D MRI images in this example.

The performance measures of the 7 competing methods are pre-

sented in Table 2, from which it can be seen that the proposed

method NEW is the best in terms of all performance measures

in this example. The 30th and 60th slices of the residual images

of the 7 methods are shown in Figure 5. Again, the ones of the

Table 2. Performance measures of the seven IBIR methods in the AIDS

patient example.

No-

Registration

B-

Spline
Affine Rigid

RADB-

SyN

RAD-

SyN
NEW

RRMS 25.347 16.499 17.598 17.739 16.263 16.221 13.812

CC 0.745 0.912 0.899 0.896 0.914 0.915 0.920

EID 6.133 5.606 5.646 5.653 5.582 5.585 5.377
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Fig. 2. Chest image local distortion example. Images in the first row are the 10 slices at z = 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 of the reference image. The

ones in the second row are the corresponding slices of the moved image, and the ones in the last row are the corresponding slices of the restored reference

image by NEW, defined as M(T̂(x, y, z)).

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Chest image local distortion example. (a)-(g) The 20th (top) and 40th (bottom) slices of the residual images of the methods No-Registration, B-Spline,

Affine, Rigid, RADB-SyN, RAD-SyN, and NEW.

method NEW seem to contain less pattern compared the ones

of the other 6 methods.

3. Conclusion

In the previous sections, we have described our proposed

method for intensity-based 3D image registration. The pro-

posed method is flexible in the sense that it does not impose

any parametric form on the related geometric transformation.

Numerical examples show that it works well in different appli-

cations. There are still some issues about the proposed method

to be properly addressed in our future research. For instance,

our proposed method NEW has three parameters to choose be-

fore the method can be actually used. Some data-driven param-

eter selection procedures might be helpful. The current version

of NEW does not require any restrictive assumptions on the ge-

ometric transformation T(x, y, z), and it even allows T(x, y, z) to

be discontinuous. However, in most applications, it is reason-

able to assume that T(x, y, z) is a continuous transformation. It

needs much future research effort to suggest proper modifica-

tions of NEW so that such reasonable regularity assumptions

can be accommodated while the flexibility of the method can

still be kept.
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