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3D Image Registration Using Distributed Parallel

Computing
Huajun Song, and Peihua Qiu

Abstract—3D images have become increasingly popular in
practice. They are commonly used in medical imaging appli-
cations. In such applications, it is often critical to compare two
3D images, or monitor a sequence of 3D images. To make the
image comparison or image monitoring valid, the related 3D
images should be geometrically aligned first, which is called image
registration. However, image registration for 3D images would
take much computing time, especially when a flexible method is
considered, which does not impose any parametric form on the
underlying geometric transformation. In this paper, we explore
a fast-computing environment for 3D image registration based
on the distributed parallel computing. The selected 3D image
registration method is based on the Taylor’s expansion and 3D
local kernel smoothing. It is flexible, but involves much com-
putation. We demonstrate that this fast-computing environment
can effectively handle the computing problem while keeping
the good properties of the 3D image registration method. The
method discussed in the paper is therefore useful for applications
involving big data.

Index Terms—Big data; Function approximation; Geometric
transformation; Image mapping; Kernel estimation; Spark clus-
ter; Distributed parallel computing.

I. INTRODUCTION

IN practice, images are widely used as a medium of

information extraction. To know an image object, we

often take multiple images of the object and then compare

different images for combining their useful information about

the object. To this end, image registration (IR) is a necessary

pre-processing step to geometrically align different images and

make their comparison meaningful [1], [2]. For different IR

applications, see papers such as [3], [4], [5], [6], [7].

In the literature, most IR methods are proposed in 2D

cases. These methods are either feature-based or intensity-

based [8]. Feature-based methods need to extract features

from the observed images first, which is often computing

intensive. Also, we need to choose threshold values, etc., when

extracting features, and objective decisions for such tasks are

usually difficult. For these reasons, intensity-based methods

get more and more popular, which estimate the geometric

transformation T in the IR problem from the observed image

intensities of the related images directly. Some existing 2D

intensity-based IR (IBIR) methods describe T parametrically,

and some others adopt nonparametric transformations [10],

[11], [12], [13], [14], [15], [16]. In real life, we need to handle

3D objects. Thanks to the rapid development of imaging

techniques, we can obtain 3D images in some applications
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[17]. However, existing discussion about 3D IR is limited.

Some people generalized certain 2D IR methods into 3D cases

[18], [19]. See, for instance, the 3D IR procedures included in

3DSlicer (http://slicer.org/). Another example is the Iterative

Closest Point (ICP) method [20], [21], which is for matching

two 3D point cloud data that are substantially different from

the observed image intensity data of 3D images.

In this paper, we focus on 3D image registration. In such

cases, if a flexible nonparametric IR method (e.g., the one in

[19]) is used, then computation involved is extensive because

of the big data volume of 3D images and the flexibility

of the 3D IR method. This computing issue is especially

relevant when we try to monitor a sequence of 3D images

(e.g., in applications of fMRI). In the literature, there are

three main methods for handling the computing issue, all

of which are based on parallel computing now [22]. First,

the multicore CPU parallel computing method is developed

based on OpenMP, which is one of the single-instruction-

multiple-data (SIMD) models. This method splits a problem

into independent sub-problems that are solved by threads in

parallel. Each thread is mapped to a CPU core for execution.

Second, the graphics processing unit (GPU) parallel computing

method is developed in the framework of compute unified

device architecture (CUDA). By this method, a problem

is also splitted into independent sub-problems. These sub-

problems are solved in blocks in parallel. Differing from the

CPU parallel computing method, the GPU parallel computing

method can further split each sub-problem and solved it by

the synergic threads within a block. Third, the heterogeneous

parallel computing method combines the strengths of GPUs

and multicore CPUs to fully exploit the computer performance.

In this model, GPU and CPU can be managed through task-

parallelism or data-parallelism.

To address the computing problem, we propose to use a

high performance computing (HPC) system to speed up the

3D IR algorithm in this paper. This system consists of clusters

or dedicated hardware devices, such as the GPU and Field-

Programmable Gate Array (FPGA). In the literature [23],

[24], some researchers accelerate their algorithms using GPU.

However, GPU and FPGA memory are difficult to store big

3D image data and a single system has a limited speed and

a complex programming structure. To resolve the problem

of big data processing, Hadoop and Spark were proposed in

the literature [25], [26]. Hadoop is an open cloud computing

framework that can deploy and dispatch each node in the

cluster [25]. It runs a MapReduce job [27] for processing data

in-parallel on clusters and generating big data-sets. However,

MapReduce could not effectively process interactive and it-
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erative computation. As an alternative, Spark was developed

by Berkeley AMP laboratory [26]. The RDD (Resilient Dis-

tributed Datasets) model in Spark can speed up data processing

[28], so that Spark runs faster than Hadoop in interactive

and iterative computation. It has become the most popular

computation platform with the potential to handle big data

applications in image processing, data mining, remote data

processing, and visual object recognition. Spark has already

be used for processing SAR images [29]. In this paper, we

propose a high speed distributed parallel computing algorithm

for 3D image registration based on the Spark framework,

which is critically important for effective 3D image registration

due to the big data volume involved. As far as we know, high

speed computation has not been discussed in the literature yet

for 3D image registration. Hope this paper can attract more

attention from researchers to tackle this important computing

problem.

To describe the proposed distributed parallel computing

algorithm, we first briefly described the local smoothing 3D

IR method that was originally suggested in [19] in Section

II. Then, the proposed Spark HPC framework for high speed

computing is presented in Section III. To study the numerical

performance of the proposed methods, we present some nu-

merical results in Section IV. Finally, we conclude with several

remarks in Section V.

II. 3D NONPARAMETRIC INTENSITY-BASED IMAGE

REGISTRATION

In this section, we briefly introduce the nonparametric IR

method that was originally discussed in [19]. This method is

based on local smoothing estimation. It does not impose any

parametric form on the geometric transformation describing

the location difference between two images to register. Thus,

it is flexible; but, the price to pay is its extensive computing.

Assume that R and M are two 3D images to register,

where R is called reference image and M is called moved

image. Their true image intensity functions have the relation-

ship M(T1(u, v, w), T2(u, v, w), T3(u, v, w)) = R(u, v, w),
for (u, v, w) ∈ Ω, where Ω is the design space of the image R,

and T(u, v, w) = (T1(u, v, w), T2(u, v, w), T3(u, v, w)) is an

unknown transformation for describing the location difference

between the images R and M. The major goal of IBIR methods

is to estimate T(u, v, w) from the observed image intensities

that are assumed to follow the model

ZM (ui, vj , wk) = M(ui, vj , wk) + εM (ui, vj , wk),

ZR(ui, vj , wk) = R(ui, vj , wk) + εR(ui, vj , wk),

i, j, k = 1, 2, . . . , n,

(1)

where {(ui, vj , wk)} are voxel locations, and εM (ui, vj , wk)
and εR(ui, vj , wk) are zero-mean pointwise noise of the

images M and R, respectively. In (1), besides pointwise

noise, we can also consider spatial blur and other degrada-

tions [30], [31]. At a given point (u, v, w) ∈ Ω , define

b(u, v, w) = T1(u, v, w)−x, c(u, v, w) = T2(u, v, w)− y and

d(u, v, w) = T3(u, v, w)−z. Then, estimation of T(u, v, w) is

equivalent to estimation of (b(u, v, w), c(u, v, w), d(u, v, w)).
Let O(u, v, w : hn) be a spherical neighborhood of

(u, v, w) with radius hn. Then, by the Taylor’s expansion of

M(T(ui, vj , wk)) at (ui, vj , wk) and by the local weighted

least square estimation, we can estimate b(u, v, w), c(u, v, w)
and d(u, v, w) by

min
b(u,v,w),c(u,v,w),d(u,v,w)

n∑

i,j=1

[
ZM (ui, vj , wk)− ZR(ui, vj , wk)

+M̂
′

x(ui, vj , wk)b(u, v, w) + M̂
′

y(ui, vj , wk)c(u, v, w)

+M̂
′

z(ui, vj , wk)d(u, v, w)
]2

Khn
,

(2)

where Khn
= K((ui − x)/hn, (vj − y)/hn, (wk − z)/hn),

K is a trivariate kernel function with unit rounded sup-

port, and M̂
′

u(ui, vj , wk), M̂
′

v(ui, vj , wk), and M̂
′

w(ui, vj , wk)
are the local linear kernel estimates of M

′

u(ui, vj , wk),
M

′

v(ui, vj , wk), and M
′

w(ui, vj , wk). In this paper, we choose

K(u, v, w) = (1− u2)(1− v2)(1−w2). By (2), the estimates

are weighted averages of observed intensities in the neigh-

borhood O(u, v, w : hn), and the weights are smaller if the

related voxels are farther away from (u, v, w) (cf., Section 2.3

in [32]). By some algebraic operations, we can check that (2)

has a solution only in cases when

k11k22k33 + k12k23k13 + k12k23k13 − k22k
2
13−

k33k
2
12 − k11k

2
23 6= 0,

(3)

where, for s, t = 1, 2, 3,

kst =
n∑

i,j,k=1

[
M̂ ′

x(ui, vj , wk)
]I(s=1) [

M̂ ′

x(ui, vj , wk)
]I(t=1)

×
[
M̂ ′

y(ui, vj , wk)
]I(s=1) [

M̂ ′

y(ui, vj , wk)
]I(t=1)

×
[
M̂ ′

z(ui, vj , wk)
]I(s=1) [

M̂ ′

z(ui, vj , wk)
]I(t=1)

Khn
.

It can be checked that (3) is true when the image intensity

function of M is a degenerate function around (u, v, w).
In such cases, voxel (u, v, w) is called a degenerate voxel.

Otherwise, it is called a non-degenerate voxel. See a related

discussion in [15] in 2D setup. So, T(u, v, w) is well defined

and can be properly estimated by (2) only around non-

degenerate voxels. Based on that result, a 3D IBIR algorithm

was suggested in [19], which is described below.

Step 1. By an edge detection method, properly detect all

edge voxels in ZR (cf., Chapter 6 in [32]).

Step 2. For a voxel (u, v, w) in R, let O(u, v, w; r1) be

its rounded neighborhood with radius r1. In cases when the

number of detected edge voxels in O(u, v, w; r1) is smaller

than [nr1] and the left-hand-side of formula (3) with R in

place of M is not smaller than a given number µn, then we

claim that (u, v, w) is a non-degenerate voxel of R; otherwise,

it is a degenerate voxel.

Step 3. Let (u, v, w) be a non-degenerate voxel of R, or

a voxel whose neighborhood O(u, v, w; r1) contains [nr1] or

more detected edge voxels. Then, we estimate T(u, v, w) as

follows. For any voxel (u′, v′, w′) ∈ O(u, v, w; r1) in M,
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consider O(x′, y′, z′; r2), where r2 might be different from

r1. The mean squared difference (MSD) is then defined by

MSD((u′, v′, w′); (u, v, w)) =
1

N

∑

(u′+x,v′+y,w′+z)∈O(u′,v′,w′;r2)

[ZM (u′ + x, v′ + y, w′ + z)− ZR(u+ x, v + y, w + z)]
2
,
(4)

where N denotes the number of voxels in O(u′, v′, w′; r2).
Then, T(u, v, w) is estimated by the minimizer of

min
(u′,v′,w′)∈O(u,v,w;r1)

MSD((u′, v′, w′); (u, v, w)).

Step 4. Let (u, v, w) be a degenerate voxel of R. Then,

T(u, v, w) is estimated by the following algorithm. First,

find a non-degenerate voxel, or a voxel (u′, v′, w′) whose

neighborhood O(u′, v′, w′; r1) contains [nr1] or more

detected edge voxels, that is closest to (u, v, w). That voxel

is denoted as (u(1), v(1), w(1)). Let T̂∗(u, v, w) = (u, v, w) +
(̂b(u(1), v(1), w(1))), ĉ(u(1), v(1), w(1)), d̂(u(1), v(1), w(1))).
Define T̂(u, v, w) = T̂

∗(u, v, w) if

MSD(T̂∗(u, v, w); (u, v, w)) ≤ MSD((u, v, w); (u, v, w));
Otherwise, define T̂(u, v, w) = (u, v, w).

III. DISTRIBUTED PARALLEL COMPUTING FRAMEWORK

A. Building of Spark Computing Platform

As discussed in Section I, the 3D IBIR procedure described

in Section II is quite computing extensive, partly because (i)

3D images often have millions of voxels, (ii) there are a

large number of 3D images to handle in many applications

(e.g., monitoring of a sequence of fMRI images), and (iii)

the considered 3D IBIR procedure is flexible by allowing the

underlying geometric transformation T(u, v, w) to be nonpara-

metric. In this part, we describe the structure of our proposed

distributed parallel computing framework using Spark and

RDD. As mentioned earlier, Spark is an in-memory cluster

computing platform that is designed specifically for iterative

calculation, and an RDD is a read-only collection of records

partitioned across a set of computers. Because Spark with

RDD has been demonstrated to be much faster than Hadoop in

handling iterative and interactive jobs [26], it is appropriate to

use here for the computing of the 3D IBIR procedure described

in Section II.

Our proposed Spark platform is designed using the master-

slave model and implemented on a computer cluster. The

designed computer cluster consists of one master node, also

called driver program, and a set of slave nodes, also called

data nodes, both of which are physical machines. Fig. 1

demonstrates the platform with four data nodes. The driver

program runs the main function of the application and creates

the Spark Context. Spark Context is the entrance of the Spark

platform, which is responsible for connecting the Spark cluster,

creating RDD, initialization of the computing algorithms, and

so forth. In the Spark platform, the driver program serves

as the master, and the data nodes serve as workers. In each

data node, there could be multiple CPU cores to execute

different tasks, and cache is the high performance memory

for storing data. The two most critical parts in Hadoop are the

Driver Program

Spark Context Cluster Manager

Data Node

Executor

Task Task

Cache

Data Node

Executor

Task Task

Cache

Data Node

Executor

Task Task

Cache

Data Node

Executor

Task Task

Cache

Fig. 1. Demonstration of the proposed Spark distributed parallel computing
framework with one master node and four slave nodes.

MapReduce and the HDFS (Hadoop Distributed File System).

Spark improves the MapReduce by using RDD, while keeping

HDFS, to speed up the overall computation. For all numerical

experiments presented in Section IV, we use a Spark platform

with the hardware configuration specified in Table I and

software configuration specified in Table II.

TABLE I
HARDWARE CONFIGURATION OF THE SPARK PLATFORM USED IN ALL

NUMERICAL EXAMPLES.

Role quantity Memory (GB) CPU

Driver Program 1 6
Intel Core(TM)
CPU i3-3220 @

3.3 GHz 4

Data Node 4 4
Intel Core(TM)
CPU i3-3220 @

3.3 GHz 4

TABLE II
SOFTWARE CONFIGURATION OF THE SPARK PLATFORM USED IN ALL

NUMERICAL EXAMPLES.

Software Version

Operating system CentOS 7.0

Spark Spark-1.6.1

Hadoop Hadoop-2.6.0

Scala Scala-2.10.6

Java Jdk1.7.0 21
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B. Computing Complexity of the 3D IBIR Procedure

In the proposed 3D local registration algorithm, the amount

of computation is mainly contributed by (4). This formula

computes the squared difference for each voxel in the spherical

neighborhood with radius r2 of a given voxel (u, v, w). Also,

we need to search for the minimum of all computed MSDs by

the formula immediately below (4). Let the total number of

voxels in the reference image be S, and the numbers of voxels

in the spherical neighborhoods with radius of r1 and r2 be

P and N , respectively. Then, the computational complexity

of the 3D IBIR procedure involves 2N × P × S additions,

(N + 1)× P × S multiplications, and P × S comparisons.

Assume that the computer’s clock cycle is T . Then, the com-

puter dominant frequency is f = 1/T . Let the computation

cycles of addition or comparison be aT , and the computation

cycles of multiplication be bT . Then, the computing time t of

a Spark system with m CPU cores should be

t =
SP ((2a+ b)N + b+ a)

mf
,

where the parameters a, b and f are related to the performance

of the computer and their values can be found from the CPU

manual.

Now, assume that the reference image has S = W ×H×D
voxels, where W , H , and D are the numbers of rows in the

three dimentions, respectively. Then, the total computing time

can be expressed as

t =
4WHDr31(4(2a+ b)r32 + b+ a)

mf
, (5)

in which we have approximated the values of P = 4
3πr

3
1 and

N = 4
3πr

3
2 by P = 4r31 and N = 4r32 , respectively.

IV. NUMERICAL STUDY

A. Evaluation of the 3D IBIR Procedure

In this part, we present some numerical results regarding

the performance of the local smoothing 3D IR procedure

described in Section II, which is denoted as LS3DIR. When

implementing this procedure, we use the proposed Spark

platform with 8 CPU cores and other hardware and software

configurations specified in Tables I and II. To geometrically

match up two related images, the reference image is divided

into slides along the z-axis and different CPU cores are

assigned to handle image registration for different slides.

When registering one slide of the reference image with the

moved image, the whole moved image is available. So, the

division of the original image registration task into separate

registrations between individual slides of the reference image

and the moved image will not change the registration results,

and it will only affect the computing time. In the numerical

study, besides LS3DIR, we also consider certain methods in

the software package 3DSlicer for comparison purposes. These

methods include the free-form deformation method based on

B-splines, denoted as B-Spline, the IR method using the affine

invariant geometric transformation, denoted as Affine, and

the method using the rigid-body geometric transformation,

denoted as Rigid. These methods represent different state-

of-the-art 3D IBIR methods in the literature. The version

of 3DSlicer used here is the latest release 4.5.0, available

at http://www.slicer.org/. For comparison purposes, we also

include results when no image registration is performed. This

case is denoted as No-Registration.

Three popular performance measures are used here, which

include the root residual mean squares (RRMS), the correlation

coefficient (CC), and the entropy of image difference (EID)

[33]. Image registration is regarded better if RRMS and EID

are smaller, or CC is larger.

For the methods B-Spline, Affine, and Rigid in the

software package 3DSlicer, we use their default settings

in the software. The method LS3DIR has three parameters

hn, r1 and r2. Based on many numerical experiments, we

found that the results are reasonably good if we choose

hn/n ∈ [0.1, 0.2], r1 = 2r2, and r2/n ∈ [0.1, 0.2].
In the first example, we choose hn = 10, r1 = 20,

and r2 = 10. The 3D reference image is downloaded from

http://www.slicer.org/slicerWiki/images/5/59/RegLibC011.nrrd.

It is a 3D brain image with 128 × 128 × 56 voxels. Its

10 slices at z = 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 are

shown in the first row of Fig. 2. The moved image is

obtained as follows: for y = 32, 33, . . . , 75, we move the

voxel at (u, v, w) to (x + 5 sin(4πy/180), y, z). By this

transformation, voxels located between 32th and 75th rows

along the y-axis are moved along the x-axis by the amount

of 5 sin(4πy/180), for all slices along the z-axis. After

the local distortion transformation, we rotate the resulting

reference image by 2, 1.5, 2.5 degrees along the x-, y-, and

z-axes, respectively, and then move the rotated image by

-3, 2 and -2 voxels along the three axes. The 10 slices at

z = 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 of the moved image

are shown in the second row of Fig. 2. By comparing these

slices with the slices of the reference image, we can see

that the geometric transformation changed the shape of the

reference image quite dramatically.

We then apply the five IBIR methods to this dataset. The 10

slices of the restored image of the proposed method LS3DIR

are shown in the last row of Fig. 2. It can be seen that

the restored image by LS3DIR looks almost the same as the

original reference image. The performance measures of the

related 5 methods are presented in Table III. It can be seen

that the methods Affine and Rigid are slightly better than the

method No-Registration in this example, because part of the

true geometric transformation is rigid-body (i.e., the rotation

and translation part) although the remaining part is not affine-

invariant (i.e., the local distortion part). The method B-Spline

is effective in this example, and the proposed method LS3DIR

is much more effective than the other four competing methods.

The 20th and 40th slices along the z-axis of the residual

images of the five IR methods are shown in Fig. 3. It can be

seen that the ones of the proposed method LS3DIR have the

least pattern, compared to the ones of the other four methods.

B. Evaluation of the Proposed Spark Platform

In this part, we evaluate the computing complexity of

the proposed Spark platform, and the acuracy of the for-
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Fig. 2. Downloaded brain image example. Images in the first row are the 10 slices at z = 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 of the reference image. The
ones in the second row are the corresponding slices of the moved image, and the ones in the last row are the corresponding slices of the restored reference

image by LS3DIR, defined as M(T̂ (u, v, w)).

(a) (b) (c) (d) (e)

Fig. 3. Downloaded brian image example. (a)-(e) The 20th (top) and 40th (bottom) slices of the residual images of the methods No-Registration, B-Spline,
Affine, Rigid, and LS3DIR, respectively.

TABLE III
PERFORMANCE MEASURES OF THE FIVE IBIR METHODS IN THE

DOWNLOADED BRAIN IMAGE EXAMPLE.

No-Registration B-Spline Affine Rigid LS3DIR

RRMS 18.435 9.305 14.388 15.823 5.769

CC 0.649 0.919 0.804 0.762 0.966

EID 4.241 3.338 3.729 3.954 1.487

mula (5). To this end, we use the following two datasets.

The first one is a 3D chest image downloaded from

http://www.slicer.org/slicerWiki/images/3/31/CT-chest.nrrd. It

has 128× 128× 69 voxels, and is used as a reference image

here. Its 10 slices are shown in the first row of Fig. 4. The

second dataset is a patient’s 3D brain image obtained in a

recent medical study at University of Florida (UF). It has

128×128×88 voxels and its 10 slices are shown in the first row

of Fig. 5. This image is different from the one considered in

the previous example in Section IV-A. We then apply the same

geometric transformation as the one in the previous example

to these two reference images to obtain the two moved images.

Their corresponding slices are shown in the second rows of

Fig. 4 and Fig. 5, respectively.

We then apply the 3D IBIR procedure LS3DIR under the

proposed Spark platform to these two datasets. In the IBIR

procedure, the selected values of the two parameters r1 and

r2 are given in Table IV, together with the dimensionality of

the images. These values are chosen because they can give
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Fig. 4. Chest image example. The ones in the first row are the 10th, 15th, . . ., and 55th slices along the z-axis of the 3D reference image, and those in the
second row are the corresponding slices of the moved image.

Fig. 5. UF Patient’s brain image example. The ones in the first row are the 10th, 15th, . . ., and 55th slices along the z-axis of the 3D reference image, and
those in the second row are the corresponding slices of the moved image.

reasonably good image registration results. The Spark platform

still has 4 data nodes and its other hardware and software

configurations are specified in Tables I and II. Our computers’

addition clock cycle number is 5, their multiplication clock

cycle number is 95. The number of CPU cores is changed

among 4, 8, 12 and 16. In each case, the actual computing time

is recorded and presented in Table V and Fig. 6, along with the

computing time calculated by formula (5). From Table V and

Fig. 6, it can be seen that (i) the more CPU cores we use, the

less computing times, (ii) the actual and theoretical computing

times are very close, and (iii) the actual computing times are

slightly larger than the theoretical computing times. Results (i)

and (ii) are intuitively reasonable. One explanation for result

(iii) is that we only include the major computing operations

(e.g., additions and multiplications) in the formula (5), and

some less time-consuming operations and data processing

(e.g., checking whether a give voxel is in the neighborbood of

another voxel) are neglected.

TABLE IV
DIMENSIONS OF THE CHEST IMAGE AND THE UF PATIENT’S BRAIN IMAGE

USED IN EVALUATING THE PROPOSED SPARK PLATFORM, AND THE

SELECTED VALUES OF THE PARAMETERS r1 AND r2 IN THE IBIR
PROCEDURE LS3DIR.

W H D r1 r2

Chest Image 128 128 69 10 6

Brain Image 128 128 88 12 8

In the above example, for comparison purposes, we also

consider an alternative parallel computing platform GPU that

TABLE V
THE ACTUAL AND THEORETICAL COMPUTING TIMES OF THE IBIR

PROCEDURE LS3DIR USING THE PROPOSED SPARK PLATFORM WITH

DIFFERENT NUMBERS OF CPU CORES. THE LAST COLUMN GIVES THE

COMPUTING TIMES OF THE ALTERNATIVE PARALLEL COMPUTING

PLATFORM GPU WITH 768 CUDA CORES.

CPU cores Actual time Theoretical time GPU

Chest Image

4 9h 8.6h

2.7h
8 4.6h 4.3h

12 3.2h 2.9h

16 2.4h 2.2h

UF Brain Image

4 45.8h 45.12h

13.9h
8 23.3h 22.56h

12 16.2h 15.04h

16 12.2h 11.28h

uses NVIDIA GTX1050 TI and has 768 CUDA cores, 4G

high-speed internal memory, and 1.3GHz core frequency. To

finish the same image registration tasks using LS3DIR, its

computing time is 2.7h for the chest image and 13.9h for

the UF brain image. By comparing the computing times of

the proposed Spark platform with the ones of this alternative

platform (cf., Table V), we can see that the proposed platform

with 16 CPU cores can already outperform the GPU with 768

CUDA cores. Therefore, the former is much more efficient in

saving computing time.

It should be pointed out that the computing time of an

image registration task using the IBIR procedure LS3DIR and

the proposed Spark platform depends mainly on the size of
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Fig. 6. The actual and theoretical computing times of the IBIR procedure
LS3DIR under the proposed Spark platform with different numbers of CPU
cores.

the original reference image and the parameters r1 and r2 in

LS3DIR. See formula (5) and the related discussion in Section

III-B. Next, we use the UF brain image as an example and

consider six cases with different values of image size and

(r1, r2) that are listed in Table VI. In each case, the first

D rows of the original reference and moved images along

the z-axis are used in the study. Then, the proposed method

is applied and its actual and theoretical computing times are

presented in Table VII. In the table, besides cases with 4,

8, 12 and 16 CPU cores, we also consider the case with

only 1 CPU core. This case is equivalent to the case when

LS3DIR is executed traditionally without using the proposed

Spark platform. From the table, we can see that the actual

and theoretical computing times are generally close to each

other in this example, as in Table V, and the proposed Spark

platform can save computing times dramatically, as compared

to the computing times when only 1 CPU core is used.

TABLE VI
SIX CASES WITH DIFFERENT VALUES OF THE UF BRAIN IMAGE SIZE AND

THE PARAMETERS r1 AND r2 IN THE IBIR PROCEDURE LS3DIR.

Case W H D r1 r2

(i) 128 128 4 20 10

(ii) 128 128 8 20 10

(iii) 128 128 12 16 8

(iv) 128 128 14 16 8

(v) 128 128 69 10 6

(vi) 128 128 88 10 6

V. CONCLUDING REMARKS

We have described our proposed Spark distributed parallel

computing platform for 3D image registration. Numerical

study shows that this platform can reduce the computing

time dramatically while keeping the same performance in

image registration. Thus, it is appropriate to use in 3D image

registration, where the data volume is usually big and it is

important to keep the computing time within a reasonable

TABLE VII
THE ACTUAL AND THEORETICAL COMPUTING TIMES OF THE IBIR

PROCEDURE LS3DIR UNDER THE PROPOSED SPARK PLATFORM WITH

DIFFERENT NUMBERS OF CPU CORES.

Case CPU cores Actual time Theoretical time

(i)

1 2.48h 2.23h

4 0.73h 0.56h

8 0.35h 0.28h

12 0.23h 0.19h

16 0.18h 0.14h

(ii)

1 18.47h 17.80h

4 4.9h 4.45h

8 2.5h 2.23h

12 1.7h 1.48h

16 1.3h 1.11h

(iii)

1 22.03h 21.87h

4 6h 5.47h

8 3h 2.73h

12 2h 1.83h

16 1.5h 1.37h

(iv)

1 29.79h 29.77h

4 8h 7.44h

8 4h 3.72h

12 2.7h 2.48h

16 2h 1.86h

(v)

1 35.21h 34.57h

4 9h 8.64h

8 4.6h 4.32h

12 3.2h 2.88h

16 2.4h 2.16h

(vi)

1 46.23h 44.09h

4 12.5h 11.02h

8 6.4h 5.51h

12 4.3h 3.67h

16 3.2h 2.76h

time frame. In the current version of the Spark platform,

individual CPU cores are assigned to handle image registration

for different slices along the z-axis of a reference image. We

have not studied whether there is a better job assignment

scheme yet. Also, there are data nodes and CPU cores involved

in the proposed Spark platform, where different data nodes

represent different computers, and then each computer may

have multiple CPU cores. So far, we have not studied the best

combination of data nodes and CPU cores yet in terms of

computing efficiency. These issues should be further studied

in future research.
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