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Abstract

This paper offers new multivariate statistical process monitoring schemes to study the process shift

supported by a component-wise assessment. The proposed procedures help determine whether one or

more features have undergone a shift or whether the shift is in the dependence structure but not in the

study variables. We use the marginal distributions and pseudo copula observations to effectively apply

component-wise rank-based Lepage and Cucconi tests. The rank-based statistics induce nonparamet-

ric properties to the proposed chart. Therefore, its in-control performance is highly robust and nearly

distribution-free. It is shown that the new chart gives better results for detecting scale shifts in one

or more quality variables than some representative existing nonparametric charts. Some Monte-Carlo

simulation studies have been performed to establish the effectiveness of the new charting scheme. A

real application involving the production quality of cork stoppers is considered to illustrate the use of

the proposed schemes in manufacturing and production. Some encouraging component-wise assessment

properties are observed.

Keywords: Cucconi statistic; Lepage statistic; Multivariate processes; Principal component score;

Pseudo copula; Statistical process control.

1 Introduction

In monitoring the stability of a process, statistical process monitoring (SPM) plays an essential role (Qiu

2014). Data variation in process observations can be due to random noise (called common-cause variation)

or attributable to a particular cause (called special-cause variation). Understanding the source of data

variation through process monitoring is essential to guarantee the stability of a process. SPM charts are

explicitly designed to distinguish special causes of variation from common causes. The actual reasons for

special causes of variation can be figured out promptly once an SPM chart detects the special causes of

variation. In addition, they are easy to implement with visual presentations. Thus, they provide an effective

and convenient tool for the sequential monitoring of process data over time. It should be pointed out that

early SPM charts were developed mainly for monitoring industrial production lines (Shewhart 1931). In

recent years, they have been used in many other applications, including quality management of cab services

(Song, Mukherjee, and Tao 2020), call centre services (Mukherjee and Marozzi 2017), and post-sales online

review processes (Zhang, He, Zhao, and Qu 2021).

Consider the problem of monitoring cork stoppers or piston rings where one needs to monitor length and

diameter simultaneously. The two quality characteristics are often correlated. Similarly, in cab services, the

waiting time, the trip duration, and the trip distances are often recorded daily to monitor service quality.
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Here also, quality characteristics are often found correlated. Thus joint monitoring of several quality char-

acteristics simultaneously should be considered, and it comes under the multivariate SPM problem in the

literature (Qiu 2014, Chapters 7 and 9). In the multivariate SPM literature, traditional methods assume

that the joint distribution of several quality characteristics has a known parametric distribution (e.g., multi-

variate Gaussian distribution). Then, control charts based on Hotelling’s T 2 statistic are popular. However,

such a multivariate parametric distribution assumption is often invalid in practice. Various literature has

demonstrated that control charts based on this assumption would be unreliable when the assumption is

invalid (e.g., Qiu and Hawkins 2001). Some nonparametric SPM methods have been developed to overcome

this limitation. See, for instance, Qiu and Hawkins (2001, 2003), Qiu (2008), Liu, Tsung and Zhang (2014),

Qiu and Zhang (2015), Li, Jeske, Zhou, and Zhang (2019), and Hou and Yu (2020). For recent overviews

on multivariate SPM, see Qiu (2018) and Chakraborti and Graham (2019).

In recent years, Qiu (2020) introduced some contemporary SPM methods and discussed their potential

in many big data applications. Mukherjee and Marozzi (2020) designed some Shewhart-type nonparametric

schemes to monitor multiple quality characteristics based on specific distance metrics. Xue and Qiu (2021)

developed a nonparametric CUSUM scheme for monitoring multivariate serially correlated processes. Song,

Mukherjee, and Zhang (2021) proposed two adaptive approaches for detecting the signal source in a bivariate

process. In addition, the machine learning algorithm, including dimension reduction tools such as principal

component analysis, has emerged as a powerful tool that can be integrated with SPM control charts to

deal with massive data from a continuous process. Interested readers can see the book Tran (2022) for an

excellent survey and the paper by Qiu and Xue (2021) for a recent methodology. For some earlier works,

see, for instance, Zou, Wang, and Tsung (2012), Li, Zou, Wang, and Huwang (2013), and Chen, Zi, and Zou

(2016).

One necessary property for a multivariate monitoring scheme to be helpful in an application is its

effectiveness in accurately locating the source of assignable causes when a shift is detected. However, in

multidimensional cases, identifying the signal source or variables responsible for the shifts is often more

complex. Since several mutually correlated quality characteristics are involved in multivariate cases, it is

often hard to figure out which ones cause the shift. There is still a lack of available diagnostic methods that

can offer exhaustive diagnostic information when a multivariate process is declared out of control (OOC).

To overcome this difficulty, Song, Mukherjee, and Zhang (2021) developed some adaptive SPM procedures

for identifying the signal source in a bivariate process after a shift is detected in the location vector, the

scale matrix, or both. Their method capitalised on Sklar’s principle that any multivariate joint distribution

function can be written using univariate marginal distribution functions and a copula. The copula describes

the dependence structure among different quality characteristics.

The control charts described in Song, Mukherjee, and Zhang (2021) are Shewhart charts and are limited

to bivariate cases. Each plotting statistic of their proposed charts comprises three component statistics:

two statistics respectively for the two marginal process distributions and one for the copula to monitor

dependence structure. Their proposed charting statistic directly computed the Lepage or Cucconi statistic

and corresponding p-values to compare the marginal process distributions. Song, Mukherjee, and Zhang

(2021) used a Euclidean Distance based statistic to monitor the equality of two empirical copulas. It

computed the Euclidean distance of pseudo-observations of the reference sample and a test sample from the

origin (0,0) as the reference and test copula distance sample. Subsequently, the Lepage or Cucconi statistics

and corresponding p-values are computed based on the reference and test copula distances.
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The control charts described in Song, Mukherjee, and Zhang (2021) are Shewhart charts. Consequently,

they are less sensitive to small and persistent shifts. Apart from that, there are two other limitations of

this method. First, the pseudo-observations of the copula are correlated, and the corresponding p-value

does not follow a Uniform distribution in the interval (0,1). Moreover, when the test sample size is small, a

typical case in SPM applications, the method is not sensitive enough to detect correlation shifts. This paper

monitors the marginal distributions and the copula function simultaneously, as in Song, Mukherjee, and

Zhang (2021). However, unlike them, it proposes some exponentially weighted moving average (EWMA)

monitoring schemes to detect if there is any change in the multivariate processes. Intuitively, EWMA charts

would be more effective than the Shewhart charts for detecting small to moderate shifts (cf., Qiu 2014,

Chapters 5 and 7). Further, while we consider the same approach, as in Song, Mukherjee, and Zhang (2021),

for developing the component statistics for monitoring marginal distributions, the component statistic for

monitoring copula (dependence structure) is very different in the current context.

This paper suggests a better and more powerful statistic for monitoring the equality of copula using

eigenvalues. Therefore, the current proposal uses a multivariate EWMA (MEWMA) setup and employs a

different (and new) plotting statistic for the dependence component. The new approach for the dependence

structure considers the pseudo copula observations of the combined reference sample and a test sample

and subsequently computes the principal component scores (PCS). The maximum of the Lepage or Cucconi

statistic for test and reference PCS is computed to detect pseudo-copula changes, ensuring the corresponding

p-value follows uniform distribution in the interval (0,1). The simulation results show that the modified

multivariate charts perform much better in detecting pure downward correlation shifts, despite the small

test sample size.

The following describes the outline of the remaining paper. Section 2 presents our model framework and

some statistical test procedures. Section 3 summarises the implementation steps and related algorithms of

the proposed multivariate EWMA monitoring schemes. Section 4 is devoted to introducing a review of some

representative existing nonparametric charts. We carry out a detailed performance analysis using Monte

Carlo in Section 5. Section 6 presents a real data example to show the implementation of newly designed

schemes. We offer a summary and some concluding remarks in Section 7.

2 Statistical Framework

Consider any d-dimensional cumulative distribution function (CDF) F d and a random vector V =

(V1, V2, . . . , Vd) having joint distribution F d with continuous marginal CDFs F1, F2, . . . , Fd. Sklar (1959)

presented that the d-variate CDF F d of V can be uniquely written in the form:

F d(v1, v2, . . . , vd) = C{F1(v1), F2(v2), . . . , Fd(vd)},

where C is a distinctive copula function defined as the joint CDF of F1, F2, . . . , Fd. Note that C holds

all information on the dependence structure between the components of V whereas the marginal CDFs

F1, F2, . . . , Fd encompass all information on the marginal distributions.

Sklar’s theorem clarifies how any multivariate joint distribution can be expressed via its univari-

ate marginal distribution functions and copula. Consequently, we can effectively monitor a multivari-

ate process by conveniently monitoring each marginal distribution and the copula function. Unlike the
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parametric procedures, we need not elucidate the distribution types and estimate the distribution pa-

rameters in advance but require a Phase-I data set from an in-control (IC) process as the reference

sample in the monitoring schemes. To this end, we suppose the subsequent model framework. Let

Ψ0m = {(X10i, X20i, · · · , Xd0i), i = 1, 2, · · · ,m} be a set of m reference sample observations from a d-

variate IC process with a continuous but unknown CDF F0 ≡ F0(x1, x2, · · · , xd). It is worth noting that

one needs to establish a reference sample through a suitable Phase-I analysis. To establish a Phase-I sam-

ple, see Jones-Farmer, Woodall, Steiner, and Champ (2014) and Capizzi and Masarotto (2018). Suppose

Ψjn =
{
(X1ji′ , X2ji′ , · · · , Xdji′), i′ = 1, 2, · · · , n

}
be the jth (j = 1, 2, . . .) test sample of size n, collected

successively during the Phase-II monitoring, from a CDF F1 ≡ F1(x1, x2, · · · , xd). A test sample is mutually

independent of the reference sample. Ideally, two CDFs F0 and F1 should be identical in all aspects when

the process is IC. Therefore, the monitoring problem can be transformed into the following hypothesis:

H0 : F0(x1, x2, · · · , xd) = F1(x1, x2, · · · , xd); H1 : F0(x1, x2, · · · , xd) ̸= F1(x1, x2, · · · , xd)

Suppose that Fp0(x) and Fp1(x), p = 1, 2, · · · , d are the d continuous marginal CDFs of F0 and F1,

respectively. According to Sklar’s theorem, F0(x1, x2, · · · , xd) = C0{F10(x1), F20(x2), · · · , Fd0(xd)}, and

F1(x1, x2, · · · , xd) = C1{F11(x1), F21(x2), · · · , Fd1(xd)}. Using Sklar’s theorem, it is easy to see that the

equivalence of joint distributions F0 and F1 can be established by testing the equivalence of marginal

distributions Fp0 and Fp1 for p = 1, 2, · · · , d as well as the copula functions C0(·) and C1(·). Therefore, one
may equivalently test the H0 by jointly evaluating d + 1 hypotheses, say, H0p : Fp0(x) = Fp1(x), p =

1, 2, · · · , d, and H00 : C0(x1, x2, · · · , xd) = C1(x1, x2, · · · , xd). When the process is OOC, at least one of

the H0p′ , p′ = 0, 1, · · · , d is violated.

Motivated by this, Song, Mukherjee and Zhang (2021) developed two Shewhart-type procedures, denoted

as the Lepage-Copula and Cucconi-Copula schemes, based on the p-values of three nonparametric tests, two

for the equality of individual marginal distributions and the other for equality of two copulas. However, they

restricted themselves to d = 2 only and Shewhart-type charts. In this paper, we propose two MEWMA-type

schemes for monitoring multivariate processes. We also modify the component test statistic for copula. In

the subsequent subsections, we introduce several relevant test procedures.

2.1 The Lepage and Cucconi tests statistics

Marozzi (2013) showed that the Lepage and Cucconi statistics perform well for various distributions in

testing location-scale problems. The Lepage test is the sum of squares of two standardised statistics: the

Wilcoxon rank-sum (WRS) statistic for location and the Ansari-Bradley (AB) statistic for scale. On the

other hand, Nishino and Murakami (2019) established that the Cucconi statistic is half the sum of squares

of two standardised statistics: the WRS statistic for location and the Mood (MD) statistic for scale. Song,

Mukherjee, Marozzi, and Zhang (2020) gave three possible representations of the Cucconi statistic as a

quadratic combination of two orthogonal statistics. We use the most straightforward form offered by Nishino

and Murakami (2019).

Let {Ui|i = 1, 2, . . . ,m} be the reference sample of size m, drawn from univariate distribution GU . Let

{Wi′ |i′ = 1, 2, . . . , n} be the test sample of size n, collected from univariate population GW = GU

(
x−θ
δ

)
.

Here, −∞ < θ < +∞, δ > 0, are the unknown location and scale parameters, respectively. We further

assume that the test sample is mutually independent of the reference sample. Combining the reference and
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test samples and arranging all N = m+ n observations in ascending order, the rank of W ’s can be denoted

by Rk, k = 1, 2, .., n. The WRS, AB and MD statistics are respectively given by:

TW =
n∑

k=1

Rk, TAB =
n∑

k=1

∣∣∣∣N + 1

2
−Rk

∣∣∣∣ and TMD =
n∑

k=1

(
N + 1

2
−Rk

)2

.

The Lepage and Cucconi statistics are, respectively, given by

L =

(
TW − µTW

σTW

)2

+

(
TAB − µTAB

σTAB

)2

, (1)

and

C =
1

2

[(
TW − µTW

σTW

)2

+

(
TMD − µTMD

σTMD

)2
]
. (2)

Here µT∗ and σT∗ are, respectively, the mean and standard deviations of the corresponding statistic. These

expressions, along with references, can be found in Song, Mukherjee, Marozzi, and Zhang(2020). It is easy

to see that E(L|IC) = 2, and E(C|IC) = 1. Further, irrespective of the type and the direction of the shift,

E(L|OOC) > 2 and E(C|OOC) > 1. Consequently, a one-sided scheme based on the Lepage or Cucconi

statistic is desired to detect a shift in any direction.

In an interesting development, Li and Qiu (2014) proposed dynamic nonparametric monitoring via the

p-value method in detecting the location shift of a process. They argued that there are several benefits of

employing the p-value approach. Motivated by this, Chong, Mukherjee, and Khoo (2019) developed three

distribution-free schemes using different combining metrics for the p-values. They considered joint monitor-

ing of the process location and scale parameters in a univariate setup. Furthermore, Song, Mukherjee, and

Zhang (2021) proposed two adaptive procedures for monitoring bivariate processes by combining appropri-

ate transforms of the three p-values of the component testing. In the line of Song, Mukherjee, and Zhang

(2021), for both the Lepage and Cucconi statistics, the permutation-based upper one-sided p-value formula

is given by

p-value =
Number of test statistic ≥ observed test statistic(

m+n
m

) .

Note that if
(
m+n
n

)
is large, the total number of permutations increases exponentially. To avoid this, we

suggest adopting 10000 randomly selected permutations to calculate the p-values of the Lepage or Cucconi

statistics, as the case may be.

For monitoring a deviation in either location or scale or both in any of the marginal distributions during

Phase-II, we consider a traditional location-scale model given by Fp1(x) = Fp0

(
x−θp
δp

)
, p = 1, 2, · · · , d.

−∞ < θp < +∞, δp > 0, where the constants θp and δp stand for the unknown location and scale parameters

of the pth marginal distribution, respectively. The marginal distribution, but not the entire process, is

considered IC when θp = 0 and δp = 1 for p = 1, 2, · · · , d. Suppose that, 0d and 1d are the d-dimensional

vectors of 0’s and 1’s, respectively. Note that (θ1, θ2, · · · , θd) ̸= 0d and (δ1, δ2, · · · , δd) = 1d, indicates a

pure shift in the location vector; whereas (θ1, θ2, · · · , θd) = 0d and (δ1, δ2, · · · , δd) ̸= 1d, represents only a

shift in the diagonals of the scale matrix.

For any given p and at any stage j, identify, {Xp0i|i = 1, 2, . . . ,m} with Ui’s and {Xpji′ |i′ = 1, 2, . . . , n}
with Vi’s. Subsequently, using Equations (1) and (2), we obtain Lepage and Cucconi statistics for the pth

marginal distribution as Lpj and Cpj for testing the hypothesis H0p. The correlation shift is indicated by
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testing H00 and will be discussed in the next subsection. Although originally developed only to test the

joint location-scale problems, both Lepage and Cucconi statistics appear to be highly efficient in testing

more general alternatives. See, for example, Marozzi (2019). Therefore, the proposed schemes are equally

applicable if the location-scale for Fp1(x) is violated.

2.2 Testing equality of the two empirical copulas

The copula is popularised in multivariate statistical approaches as it allows practitioners to model the joint

distributions of random vectors separately by evaluating marginal CDFs and the copula function. However,

most existing copula methods in the literature are parametric, and their functional forms relate to the

underlying distributions. We use the pseudo-observations based on ranks corresponding to empirical copula

to circumvent this problem and design a robust monitoring procedure.

Let Γj be the matrix of pseudo observations corresponding to empirical copula of {Ψ0m,Ψjn},
the combined reference sample and jth test sample, as a matrix size (m + n) × d. Note that it

is straightforward with the R code pobs of the package copula. The pth column of Γj is given by(
Rp01

m+n+1 , · · · ,
Rp0m

m+n+1 ,
Rpj1

m+n+1 , · · · ,
Rpjn

m+n+1 ,
)
, where Rp0i and Rpji′ are, respectively, the ranks of Xp0i and

Xpji′ in the combined vector {Xp01, · · · , Xp0m, Xpj1, · · · , Xpjn} for any p. That is, in the case of no ties in

any of the coordinate samples, the pseudo-observations can be calculated component-wise by applying the

marginal empirical distribution functions to the data and scaling the results by m+n
m+n+1 . The scaling factor

is asymptotically negligible. It ensures that the pseudo observations fall inside the open unit hypercube.

The adjustment has some practical advantages, for example, avoiding density evaluation problems at the

boundaries. When there are ties in the observations, we may use random allocations in tied places.

Suppose that Θj be a (m + n) × d matrix of PCS corresponding to Γj , and d columns of Θj are

linearly independent of each other. Let Zl = (ξp01[j], . . . , ξp0m[j], ξpj1, . . . , ξpjn) be the pth column of Θj ,

p = 1, 2, . . . , d; j = 1, 2, . . .. We have noted earlier that a shift in the dependence structure of F0 to F1 is

expected to be captured by testing H00. Intuitively, it can be verified through the structural difference in

the distribution of {ξp0i[j]|i = 1, 2, . . . ,m} and {ξpji′ |i′ = 1, 2, . . . , n}. In case, C0(·) = C1(·), naturally the

parent distribution of {ξp0i[j]} and {ξpji′} are also identical for all p (p = 1, 2, . . . , d).

Identifying {ξp0i[j]} with Ui’s and {ξpji′} withWi′ ’s, we compute the Lepage statistic Lp0j and the Cucconi

statistic Cp0j at the jth stage of inspection, for joint monitoring of the location and scale parameters of the

parent distributions of {ξp0i[j]} and {ξpji′} using Equations (1) and (2). We can obtain d such Lepage or

Cucconi statistics for d columns of the Θj , and define the pivot statistic

L0j = max{L10j , L20j , . . . , Ld0j}. (3)

Similarly, the pivot statistic based on Cucconi is given by

C0j = max{C10j , C20j , . . . , Cd0j}. (4)

In the next section, we shall discuss the model construction of EWMA-type monitoring schemes based on

combining appropriate transforms of the d+ 1 p-values of the component testing.
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3 Design and implementation of the MEWMA-LC and MEWMA-CC

scheme

Inspired by the wide use of p-value approaches in hypothesis testing in business and industry, we develop two

MEWMA plotting statistics, denoted as the MEWMA-Lepage-Copula (MEWMA-LC) and the MEWMA-

Cucconi-Copula (MEWMA-CC). To this end, we consider d+1 p-values, d p-values for testing the equality

of d marginal distributions separately, and the (d + 1)th for testing the equality of dependence structures

between the variables. Now we provide the detailed implementation steps of the proposed MEWMA-LC

and MEWMA-CC schemes based on Tippett’s combining function to combine the p-values.

Step 1: Collect a Phase-I sample of size m from an IC process and establish it as a reference sample Ψ0m

using Phase-I analysis.

Step 2: Inspect a batch of test samples of size n sequentially and set the jth test sample as Ψjn, j = 1, 2, . . . .

Step 3: At any stage j = 1, 2, . . . , and for any p = 1, 2, . . . d, calculate the p-values for testing Hp0 of equality

of the pth marginal distributions in reference and test samples against Hp1 following discussions of

subsection 2.1. That is, obtain the p-values:

A. {PLpj} using the Lepage statistic Lpj for the MEWMA-LC scheme;

B. {PCpj} using the Cucconi statistic Cpj for the MEWMA-CC scheme.

Step 4: Compute the PCS matrix of pseudo-observation corresponding to empirical copula as Θj following

the discussion of subsection 2.2 for testing H00, the equality of dependence structure against H01.

Precisely, obtain:

A. the Lepage statistic L0j as in Equation (3) and corresponding p-value, say {PL0j} for the MEWMA-

LC scheme;

B. the Cucconi statistic C0j as in Equation (4) and corresponding p-value, say {PC0j} for the MEWMA-

CC scheme.

Step 5: A. Construct the MEWMA-LC plotting statistic in the following way. Define,

EL,p′,j = λ
(
−lnPLp′j − 1

)
+ (1− λ)EL,p′,j−1, p′ = 0, 1, . . . , d,

where λ is the smoothing parameter, ln stands for natural logarithm. With some elementary probability

calculus, for large samples and regularity, one can obtain E
(
−lnPLp′j |IC

)
= 1. Consequently, the

starting value is taken as EL,p′,j may be set to 0. That is, EL,p′,0 = 0. Then, we can define and compute

the jth MEWMA-LC plotting statistic as

ELCj = max{EL,p′,j |p′ = 0, 1, 2, . . . , d}.

B. Construct the MEWMA-CC plotting statistic in the following way. Define,

EC,p′,j = λ
(
−lnPCp′j − 1

)
+ (1− λ)EC,p′,j−1, p′ = 0, 1, . . . , d,

where λ and ln carry similar meaning as above. Also, by similar argument as above E
(
−lnPCp′j |IC

)
=

1, and EC,p′,0 = 0. Subsequently, we can define and compute the jth MEWMA-CC plotting statistic

7



as

ECCj = max{EC,p′,j |p′ = 0, 1, 2, . . . , d}.

Step 6: At the jth stage of monitoring plot:

A. the observed value of the statistic ELCj against HL, for the MEWMA-LC scheme;

B. the observed value of the statistic ECCj against HC , for the MEWMA-CC scheme.

Here HL and HC are the upper control limit (UCL) corresponding to the MEWMA-LC and MEWMA-

CC schemes, respectively. Determination of HL and HC are deferred to the subsequent subsection.

Step 7: We obtain an OOC signal at the jth test sample if:

A. ELCj > HL, for the MEWMA-LC scheme;

B. ECCj > HC , for the MEWMA-CC scheme.

Subsequently, a follow-up procedure for searching assignable causes begins. Otherwise, the process is

considered IC and the inspection is continued.

Step 8: A systematic and thorough examination of signals following an alarm is critical in multivariate SPM.

Identifying the OOC components is difficult with most traditional multivariate SPM schemes. Our

proposed schemes are very effective to this end. A follow-up analysis helps identify actual sources

of variations. Song, Mukherjee, and Zhang (2021) proposed a straightforward post-signal follow-up

procedure in the bivariate Shewhart-type charts. We draw motivation from their article and present

how the proposed MEWMA charts can be used for diagnosis analysis. If the scheme signals at the jth

test sample, we recommend the rules shown in Table 1 to determine the source of deterioration.

Table 1: Diagnosis Analysis after the scheme signals at the jth stage.

MEWMA-LC

EL,0,j < HL EL,0,j < HL . . . EL,0,j > HL EL,0,j > HL EL,0,j > HL . . .

EL,1,j < HL EL,1,j < HL . . . EL,1,j < HL EL,1,j < HL EL,1,j < HL . . .

. . . . . . . . . . . . . . . . . . . . .

EL,k,j > HL EL,k,j > HL . . . EL,k,j < HL EL,k,j > HL EL,k,j > HL . . .

. . . . . . . . . . . . . . . . . . . . .

EL,r,j < HL EL,r,j > HL . . . EL,r,j < HL EL,r,j < HL EL,r,j > HL . . .

. . . . . . . . . . . . . . . . . . . . .

MEWMA-CC

EC,0,j < HC EC,0,j < HC . . . EC,0,j > HC EC,0,j > HC EC,0,j > HC . . .

EC,1,j < HC EC,1,j < HC . . . EC,1,j < HC EC,1,j < HC EC,1,j < HC . . .

. . . . . . . . . . . . . . . . . . . . .

EC,k,j > HC EC,k,j > HC . . . EC,k,j < HC EC,k,j > HC EC,k,j > HC . . .

. . . . . . . . . . . . . . . . . . . . .

EC,r,j < HC EC,r,j > HC . . . EC,r,j < HC EC,r,j < HC EC,r,j > HC . . .

. . . . . . . . . . . . . . . . . . . . .

Source of a shift only in shifts in both the kth . . . a shift only in shifts in both the shifts in the kth and . . .

variations the kth-variate and rth variables . . . the correlation kth-variate and correlation rth variables and correlation . . .

4 A review of competing schemes

The subsequent section presents a detailed performance comparison of our proposed EWMA schemes with

four existing robust EWMA charts. Boone and Chakraborti (2012) proposed the Shewhart-type scheme

based on the component-wise sign statistic. Chapter 9 of the book by Qiu (2014) extended it to the EWMA

procedures, denoted as MEWMA-NS. As a competitor, we include this MEWMA-NS scheme. On the other

hand, Mukherjee and Marozzi (2021) introduced a class of distribution-free charts based on specific distance
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metrics for monitoring multivariate and high-dimensional processes. For a fair comparison, we construct

three EWMA-Lepage schemes following the line of Mukherjee and Marozzi (2021), namely MEWMA-OR,

MEWMA-IP and MEWMA-GM schemes. Next, we first introduce the designs of four competitive schemes

in brief.

4.1 The MEWMA-NS scheme

The MEWMA-NS chart is EWMA-type and based on the multivariate forms of the sign, which is a sim-

ple and versatile nonparametric test. Suppose Ψjn =
{
(X1ji′ , X2ji′ , · · · , Xdji′), i′ = 1, 2, · · · , n

}
be the

jth (j = 1, 2, . . .) test sample of size n, collected successively during the Phase-II monitoring. Let

µ0 = (µ01, µ02, . . . , µ0d)
′ be the d−dimensional location vector of the IC process distribution that is as-

sumed known. For each of the d variables, we can define the componentwise sign statistic as follows:

ξjk =
n∑

i′=1

sgn
(
Xkji′ − µ0k

)
, k = 1, 2, . . . , d,

where sgn(·) is the sign function defined as

sgn
(
Xkji′ − µ0k

)
=

{
1 if Xkji′ − µ0k > 0,

−1 if Xkji′ − µ0k < 0.

It is well-known that ξjk is expected to be about 0 when the process is IC. If one or more components

of test sample Ψjn have location shifts at the jth monitoring stage, the corresponding components of

ξj = (ξj1, ξj2, . . . , ξjd)
′ would deviate from 0. Therefore, the sign statistic can be used for monitoring shifts

in the location parameters and the multivariate sign Shewhart charting statistic proposed by Boone and

Chakraborti (2012) is

T 2
j = ξ′jV̂

−1
j ξj ,

where V̂j denotes the estimator of the scale matrix of ξj . The components ν̂jl1l2 of V̂j, l1, l2 = 1, 2, . . . , d

can be computed by

ν̂jl1l2 =

{
n if l1 = l2,∑n

i′=1 sgn
(
Xl1ji′ − µ0l1

)
sgn

(
Xl2ji′ − µ0l2

)
if l1 ̸= l2.

Shewhart schemes efficiently detect large and isolated shifts but are ineffective in monitoring small and

persistent shifts. Consequently, Qiu (2014) introduced the multivariate EWMA charting statistic as follows:

ENSj = λξj + (1− λ)ENSj−1, for j ≥ 1,

where E0 = 0, and λ ∈ (0, 1] is a weighting parameter. Then, the MEWMA-NS scheme gives a signal of

process mean shift if

ENS′
jΣ

−1
ENSj

ENSj > HNS ,

where Σ−1
ENSj

= 2−λ
λ V̂−1

j , and HNS is the UCL chosen to achieve a target MRL0 value.
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4.2 The MEWMA-OR scheme

Mukherjee and Marozzi (2021) proposed a class of Shewhart schemes using the Euclidean distance from

the origin. In this subsection, we extend the Shewhart-type charts to the EWMA procedures. Suppose

(D01, D02, . . . , D0m) be the Euclidean distances of the size m reference sample from the origin. Analogously,

let (Dj1, Dj2, . . . , Djn) be the jth test sample of size n of the Euclidean distances from origin (OR). Re-

call that the reference samples and test samples are independent, and therefore, (D01, D02, . . . , D0m) and

(Dj1, Dj2, . . . , Djn) are also independent. Keep in mind that any process location or scale shifts is most

likely indicated in the distribution of distance measures, see Jurec̆ková and Kalina (2012) for more details.

To this end, Mukherjee and Marozzi (2021) considered comparing reference samples and test samples us-

ing univariate two-sample linear rank tests based on the rankings of the pooled sample distance measures

of (D01, D02, . . . , D0m) and (Dj1, Dj2, . . . , Djn). They constructed and evaluated three control charts using

Wilcoxon, Ansari-Bradley and the Lepage statistics. Their studies showed that the monitoring scheme based

on the Lepage statistic performed the best in most cases. Moreover, the Lepage control charts can be used

to monitor the location and scale shifts jointly, and Marozzi (2009) showed that the Lepage test works well

also for the general problem. Motivated by this, we only investigate the EWMA scheme based on the OR

distance and Lepage statistic, denoted as the MEWMA-OR chart.

Revisit the Lepage statistic as shown in Equation (1) in subsection 2.1. Combining the reference distances

and test distances and organizing all N = m+ n distance observations in ascending order, the rank of test

distances (Dj1, Dj2, . . . , Djn) can be denoted as Ri′ , i
′ = 1, 2, . . . , n. The Lepage statistic is given by

L =

(
TW − µTW

σTW

)2

+

(
TAB − µTAB

σTAB

)2

, (5)

where

TW =
n∑

i′=1

Ri′ , TAB =
n∑

i′=1

∣∣∣∣N + 1

2
−Ri′

∣∣∣∣ ,
and µT∗ and σT∗ can be found in Song, Mukherjee, Marozzi, and Zhang(2020). The EWMA plotting statistic

is designed by accruing the Lepage statistic sequentially as follows:

EORj = λLj + (1− λ)EORj−1,

where the starting value is set EOR0 = 2. As mentioned in subsection 2.1, regardless of the shift’s nature,

the EWMA-Lepage statistic is anticipated to have a larger value when the process is OOC. Consequently,

we only consider an UCL for the MEWMA-OR scheme in detecting any possible process changes.

4.3 The MEWMA-IP scheme

Commonly, the origin vector is remote from high-dimensional data clusters. To this end, Mukherjee and

Marozzi (2021) suggested randomly selecting one reference sample to compute the interpoint (IP) distance

metric rather than the origin and proposed a Shewhart-Lepage scheme. Analogously, we extend the Shewhart

chart to the EWMA procedure, denoted as the MEWMA-IP scheme. Consider an arbitrary point X0it of
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the reference sample, where 1 ≤ r ≤ m. Subsequently the IP distance can be computed by

D0is,it = ∥X0is −X0it∥, s = 1, 2, . . . , (m− 1); is ̸= it,

Dji′,it = ∥Xji′ −X0it∥, i′ = 1, 2, . . . , n; j = 1, 2, . . . .

It is easy to see that the distance vector
(
D0i1,it , D0i2,it , . . . , D0im−1,it

)
denotes the reference sample of size

m − 1 and (Dj1,it , Dj2,it , . . . , Djn,it) corresponds to the jth test sample of size n. Note that, conditional

independence of m− 1 distance reference samples and n distance test samples at the jth monitoring stage,

one can compute the Lepage statistic Lj as in (6). Therefore, Mukherjee and Marozzi (2021) proposed a

Shewhart-Lepage chart using IP reference and test distances. Then we design the corresponding EWMA-

type charting statistic as follows:

EIPj = λLj + (1− λ)EIPj−1.

The process is deemed OOC if we see the monitoring statistic EIPj for any j surpassing the associated

UCL.

4.4 The MEWMA-GM scheme

Finally, Mukherjee and Marozzi (2021) argued that it is preferable to compute the distances of the reference

and test samples using the spatial (geometric) median of the reference sample. The geometric median (GM)

can minimise the total distances in Euclidean space to a discrete group of sample locations. The authors also

noted that the GM distance-based scheme is nonparametric but not entirely distribution-free. Under the

condition that the test sample size is not too small, this method is quite robust. Therefore, we also include

the EWMA-Lepage scheme based on the GM distance as a competitor, abbreviated by the MEWMA-GM

scheme.

Suppose X0gm be the geometric median of the reference sample. Then the GM distances can be calcu-

lated by

D0i,0gm = ∥X0i −X0gm∥, i = 1, 2, . . . ,m,

Dji′,0gm = ∥Xji′ −X0gm∥, i′ = 1, 2, . . . , n; j = 1, 2, . . . .

Hereafter, we may define the distance vector (D01,0gm, D02,0gm, . . . , D0m,0gm) for the reference sample and

for the test sample, (Dj1,0gm, Dj2,0gm, . . . , Djn,0gm). Then we can write the Lepage statistic Lj similar to

that discussed in Equation (6) based on m GM distances of the reference sample and n GM distances of the

jth test sample. Then, the EWMA plotting statistic is given by

EGMj = λLj + (1− λ)EGMj−1.

The starting value EGM0 = 2, and we only consider an UCL for the MEWMA-GM scheme in detecting

any possible process changes.

5 Numerical results and performance comparisons

This section discusses the IC and OOC performance of the proposed monitoring schemes, say, the MEWMA-

LC and MEWMA-CC. The statistical performance of the monitoring scheme is generally deeply investigated
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in terms of some RL properties. The average run length (ARL) is popularly used to evaluate the performance

of the schemes. However, the run-length distribution is likely to be right-skewed. It may be misleading to

choose ARL as the performance evaluation indicator, which has been pointed out by several authors in

recent ten years, like Khoo et al. (2012), Teoh et al. (2014), Hu, Castagliola, Tang and Zhong (2021),

Mukherjee and Marozzi (2021). Therefore, we use the Median Run Length (MRL) instead of the ARL in

this paper. The main advantage of MRL is its robustness, as the skewness of the run-length distribution

has a lesser effect on it.

5.1 Determination of the control limits HL and HC.

To implement the proposed schemes, we need to determine the control limits achieving a pre-specified IC

MRL, denoted as MRL0. The nonlinear equation Median(RL(UCL))-MRL0=0 for the UCL, such as HL

and HC , is solved using Monte-Carlo simulation as the proposed charts are highly IC robust. One can also

use bootstrapping in this regard. In this paper, we utilise the bisection method since this technique does

not require derivatives of the underlying function. For each iteration of the bisection algorithm, we estimate

the median using 10,000 independent runs, i.e., 10,000 times we run the control chart with simulated data

until there is a signal.

A detailed guide for a practitioner on how to estimate the control limit could consist of the next steps:

Step 1: Choose two starting values A1, A2 in a way that Median(RL(A1))-MRL0 < 0 and Median(RL(A2))-

MRL0 > 0;

Step 2: Check the sign of Median(RL((A1 + A2)/2))-MRL0. If it is larger than 0, set A2 := (A1 + A2)/2,

otherwise set A1 := (A1 +A2)/2;

Step 3: Keep performing step 2 till the absolute difference between the computed Median(RL((A1 + A2)/2))

and MRL0 is less than or equal to 5. Then adopt (A1 +A2)/2 as the UCL;

5.2 IC performance

We need to determine the charting constants to implement the proposed procedures in advance. We utilise

the R.4.0.5 software to calculate HL and HC based on the bisection algorithm described in subsection 5.1.

One may simulate random samples from any continuous multivariate distribution, for example, generate

both the reference sample and each test sample from a d−variate normal distribution. In this section, we

present d = 2 and d = 3 for simplicity. The extension of the study for higher dimensions is straightforward.

We consider the location parameters as µ0 = 0d and the scale matrix Σ = (σ0ij) as

σ0ij =

{
σ2
0 if i = j

ρ0ijσ0iσ0j if i ̸= j.
(6)

Here, we set σ0i = σ0j = σ0 = 1 for all i, j = 1, . . . , d and ρ0ij = 0.5, for all i ̸= j. To investigate the IC

performance, we select the reference sample size m = 100, 150, and the test sample size n = 10, 15. We

set λ = 0.05, 0.1, 0.15 and 0.2 for the smoothing parameter. Finally, we choose the nominal MRL0 as 250.

We tabulate in Table 2 the computed UCL for the selected (m,n, λ) and target MRL0. From Table 2, we

observe that the UCL increases with λ when both m and n are fixed. Table 2 helps determine control
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limits in some situations in practice. An R programme for computing the control limits is available from

the authors upon request for different choices of charting parameters. Moreover, to assess the IC robustness

of the proposed schemes, we consider some well-known continuous multivariate distributions, i.e. d−variate

t(3), Cauchy and exponential distributions. As expected, the obtained UCLs are also applicable for these

non-normal distributions. That is, the attained MRL0 is close to the target value of 250 in these situations.

The details are shown and discussed in subsection 5.3.

Table 2: UCL values of the MEWMA-LC and MEWMA-CC schemes with some selected (m,n, λ) for the
target MRL0 = 250.

m = 100, n = 10 m = 100, n = 15 m = 150, n = 15

Dimension λ MEWMA-CC MEWMA-LC MEWMA-CC MEWMA-LC MEWMA-CC MEWMA-LC

d = 2

0.05 1.5381 1.5481 1.5228 1.5232 1.5351 1.5452

0.1 1.8503 1.8752 1.8491 1.8802 1.8451 1.8692

0.15 2.1722 2.1631 2.1474 2.1821 2.1633 2.1691

0.2 2.4482 2.4524 2.4255 2.4592 2.4383 2.4651

d = 3

0.05 1.6214 1.6256 1.6294 1.6394 1.6211 1.6391

0.1 1.9892 1.9714 1.9681 2.0112 1.9721 1.9791

0.15 2.2911 2.2993 2.2934 2.3251 2.2991 2.3282

0.2 2.5793 2.6051 2.5792 2.5892 2.5992 2.6083

5.3 OOC performance comparisons

In this context, we compare the OOC performance of the above six multivariate EWMA schemes in terms

of MRL. For the IC case, we consider the same parameter settings described in subsection 5.2. We select

various combinations of (m,n, λ, d) values in the OOC simulation design. Specifically, m and n are set

to 100 and 15, d is set to either 2 or 3, and λ is taken as four values 0.05, 0.1, 0.15 and 0.2. We also

consider four representative distributions, namely d-variate normal (symmetric light-tailed), d-variate t with

3 d.f. (symmetric heavy-tailed), d-variate cauchy (symmetric very heavy-tailed) and d-variate exponential

(skewed). Further, we consider the following shift settings when analyzing OOC performance. Define OOC

location vector as µ1 = µ0 + θ, with each component in θ being θp = µ1p − µ0p, p = 1, 2, . . . , d. Recall that

we set µ0 = 0d, then the OOC location vector is

µ1 = θ.

On the other side, the OOC scale matrix Σ1 = (σ1ij) is stated as

σ1ij =

{
σ2
1p if i = j = p, p = 1, 2, . . . , d.

ρ1ijσ1iσ1j if i ̸= j, i, j = 1, 2, . . . , d.

We examine the effectiveness of the six schemes by taking into account the shifts following four different

kinds in the location vector, scale matrix or both:

i. Shifts only in location vector, denoted as “LS”, is acquired by examining the following two

different location shift situations, keeping the IC scale matrix invariant:

LS1. We change only the first component µ01 of the IC location vector from 0 to µ11 = θ1, where θ1 is

set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8 and 2.
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LS2. We consider only two elements of the IC location vector shifting simultaneously, i.e., we change

µ01 to µ11 = θ1, as described in the LS1 scenario, whilst shifting the second element µ02 of the

IC location vector from 0 to µ12 = θ2 = 0.5.

ii. Shifts only in the diagonals of the scale matrix, referred to as “DS”, is achieved by shifting

the diagonal components of the IC scale matrix from σ2
0 to σ2

1p = δp, where δp is the shift size, with

the off-diagonal components are left unchanged. To be specific, we consider two cases as follows:

DS1. The DS1 case is only the first element of the diagonal has a shift of size δ1, where δ1 =

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.

DS2. The DS2 case is changing the first component of the diagonal to δ1; meanwhile, the second

element of the diagonal shifts to the fixed value δ2 = 1.5. That is, the DS1 case considers only one

component changing, whereas the second investigates two components shifting simultaneously.

iii. Shifts only in the off-diagonals of the scale matrix, called “OD”, is obtained by changing

only the (1, 2) off-diagonal element ρ012 of the IC scale matrix from 0.5 to ρ112, where ρ112 takes the

values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

iv. Mixed shifts in both location vector and scale matrix, named “MS”, stands for simultaneous

location and scale matrix shifts. For a comprehensive assessment, we consider three diverse shift

circumstances as follows:

MS1. In MS1 case, we keep µ01 shift from 0 to 0.5. In the meantime, we change the first element of the

diagonal from 1 to δ1, where δ1 is taken as 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 2. In contrast,

the other IC elements are invariant.

MS2. In MS2 case, we change the first element of the diagonal from 1 to 1.5. We change the

first component µ01 of the IC location vector from 0 to µ11 = θ1, where θ1 is selected to

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. Apart from that, the other components are IC.

MS3. We change µ01 in MS3 case from 0 to 0.5 and the first diagonal element from 1 to 1.5. At the

same time, the (1, 2) off-diagonal element ρ012 of the IC scale matrix shifts from 0.5 to ρ112, where

ρ112 is chosen to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9.

The results of the above shift scenarios for d = 2 and d = 3 are given in Figures 1-14. We also conducted

simulations with various shift types, and the results show that the general conclusions below are valid. For

conciseness, we omit the details for the other combinations.

From Figures 1-8, in the case of the d-variate (d = 2, 3) Normal processes, we see the following results:

i The MEWMA-NS scheme is the best in detecting a pure small location change in only one of the

variables, say LS1 shift, but the proposed MEWMA-LC and MEWMA-CC schemes remain very com-

petitive. It is expected as the MEWMA-NS scheme is designed mainly for monitoring location pa-

rameters of multivariate processes. When there are shifts in two location parameters, our proposed

EWMA schemes perform almost the same as the MEWMA-NS scheme, especially with small λ. It is

noteworthy that the median of the process is assumed known when using the MEWMA-NS scheme.

In addition, the MEWMA-NS chart is not distribution-free for small samples, and the scale matrix of

the multivariate component-wise sign statistic may be singular in some cases.
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ii The MEWMA-CC scheme is outstanding for DS1 shift, i.e., one of the variables has a pure scale shift.

The MEWMA-LC scheme also gives better results. These findings are valid irrespective of the value of

λ and more obvious when d = 3. For simultaneous scale shifts in two variables (DS2), the MEWMA-GM

scheme performs slightly better than the other schemes in most situations. The proposed MEWMA-

CC scheme offers better performance for small scale shift (θ1 = 1.1, 1.2) with large λ, λ = 0.15, 0.2. It

is worth noting that the MEWMA-NS scheme shows severe MRL bias (MRL1 >MRL0).

iii In the case of OD shift, when there is a downward shift in off-diagonal of the scale matrix (ρ112 < 0.5),

the proposed MEWMA-LC and MEWMA-CC schemes offer the best performance, while the other

charts show severe MRL bias. For upward shifts (ρ112 > 0.5), all considered schemes perform similarly

except that the MEWMA-NS scheme has MRL bias. The MEWMA-OR and MEWMA-IP schemes

perform the best for small upward shifts in off-diagonal of the scale matrix. However, for a moderate

to large shift, the MEWMA-LC stands for the best scheme, especially with small λ.

iv For the three cases of MS shift, the proposed MEWMA-LC and MEWMA-CC schemes offer the

best performance in all considered scenarios. The MEWMA-NS scheme also gives a competitive

performance in most cases.

The OOC performance of six competing schemes for three multivariate non-normal processes is presented

in Figures A1-A6 in the Appendix. To save space, we only present the results of λ = 0.1. The results for

other choices of λ are comparable to the general conclusions given below.

i The numerical results of comparison with d-variate t(3) distribution are similar to the case under

multivariate Normal distribution. However, the MRL1 value corresponding to each shift case under

t(3) distribution is larger than that under the Normal distribution. This finding indicates that all

considered schemes have better detection ability under Normal distribution than t(3) distribution.

ii The comparison outcomes under the d-variate Cauchy distribution are analogous to those under the

multivariate Normal and t(3) distributions. Moreover, compared with t(3) distribution, all charts’

capability in monitoring Cauchy processes is less as the corresponding MRL1 increases. We also

observe that our proposed two schemes outperform other charts in detecting mixed shifts for Normal

and t(3) distributions. In contrast, the MEWMA-NS scheme performs slightly better than the proposed

MEWMA-LC and MEWMA-CC charts for Cauchy distribution.

iii When the distribution is d-variate exponential, the conclusions for LS, DS and OD shifts are close

to those under Normal and t(3) distributions, except for the following two points: (i) The inspection

efficiency of all considered charts are significantly improved in detecting pure location shifts (LS2);

(ii) The performance of the MEWMA-OR scheme under Cauchy distribution is enhanced compared

with its previous results under other distributions. Under exponential distribution, the proposed two

charts and the MEWMA-NS chart perform much better than the other charts in monitoring mixed

shift.

The OOC performance of different EWMA monitoring schemes may not be comparable with the same

weighting parameter λ, as pointed out in Qiu (2018). Therefore, we further compare their optimal OOC

performance to make a fair comparison. That is, we select the weighting parameter of each chart by

15



minimizing the MRL1 value for detecting a given shift. All other settings are similar to those in the previous

comparison. We present the calculated minimum MRL1 of the six schemes for d-variate Normal distribution

in Figures 9 and 10. The figures show that similar conclusions to those in the previous comparison can be

made here regarding the optimal performance of the six schemes. For the other non-normal distribution,

the results are also similar. The details are omitted here to save space.

Overall, we can conclude that our proposed EWMA procedures are always the best available scheme

or the nearest rival of the best available scheme, especially for scale shifts. Apart from that, it is worth

mentioning that our proposed procedures can identify which of the variables is the source of assignable causes

or the dependence structure is responsible for the signal. Next, we discuss the implementation strategies of

the above six procedures with real data.

6 Real data applications

This section exhibits a real data study to illustrate the practical applications of the proposed charts and the

comparison among the six competitive schemes as described in the previous section. Next, we consider the

joint monitoring of the lengths and diameters of cork stoppers from the manufacturing industry.

The length and diameter are two essential physical characteristics of cork stoppers that are required to

monitor simultaneously. Also, it is essential to identify if the shift happened in length, diameter, or both in

case an OOC signal is produced. We illustrate the six EWMA schemes using the available data obtained

from a manufacturing unit. Figueiredo and Gomes (2013) and Li, Mukherjee, Su, and Xie (2016) monitored

the same in other contexts where component-wise assessment issues were not considered. We first focus on

establishing a Phase-I sample. To this end, 180 pairs of observations on corks’ lengths and diameters are

collected. We employ various methods of distribution-free Phase-I analysis using different codes available

in the R package dfphase1: Interested readers may see Capizzi and Masarotto (2018) for more details. The

results show that there is no OOC signal. Therefore, these 180 pairs of observations may safely be taken as

Phase-I samples. That is, the reference sample size is m = 180.

Next, we proceed to Phase-II monitoring. We consider 34 subgroups of size n = 10 as the Phase-II

data (test data). We present the reference data and test data in Figure 11. Finally, based on Section 3,

we illustrate the implementation of the proposed schemes for 34 subgroups of size n = 10 to monitor the

lengths and diameters of cork stoppers. We conduct a simulation study, as in Section 5.1, to compute the

UCLs HL and HC of the MEWMA-LC and MEWMA-CC charts, respectively, for m = 180, n = 10, λ = 0.1

and a target MRL0 = 250. For the other four competitive schemes, we also employ Monte-Carlo simulation

to calculate UCLs to achieve MRL0 = 250. We enumerate the values of UCL for each scheme in Table 3. In

the same table, we tabulate 34 plotting statistics for each chart and indicate the test samples that trigger

an OOC signal in bold. It is interesting to note that some values of the plotting statistics are infinity (∞)

in Table 3, resulting from at least one of the estimated p-values corresponding to the components of the

proposed charts being zero. A p-value of zero indicates that the relevant Lepage or Cucconi statistic is very

large, which is strong evidence of process OOC signal. Subsequently, we display the observed values of 34

plotting statistics for the six schemes in Figure 12.

One needs to address the post-signal follow-up procedure in implementing a joint monitoring scheme using

a single plotting statistic. It is worth noting that only our proposed charts can additionally indicate which

variable has the problem. We carry out a diagnostic check following the guidelines of Table 1. To this end,
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we calculate the coordinates (EL,0,j , EL,1,j , EL,2,j) for the MEWMA-LC scheme and (EC,0,j , EC,1,j , EC,2,j)

for the MEWMA-CC scheme, j = 1, 2, . . . , 34, which can be obtained following the implementation steps

outlined in Section 3. Note that the coordinates represent a sample’s length, diameter and scale components

to identify which of the two variables is responsible for the shift or whether the dependence structure is

responsible for the signal. We tabulate the three component values in Table 3. We use the bold to indicate

which component(s) is (are) the cause of deterioration.

Table 3 and Figure 12 both display that the proposed schemes show signals from the 16th test sample

onwards, which strongly indicates a shift in the process. The MEWMA-NS chart gives the first signal at test

sample 25. Overall, seven out of 34 subgroups are providing OOC signals. The MEWMA-IP chart offers the

signals from test sample 16 to sample 21. Test samples from 22 until 32 return to the IC state, but the values

for the 33th and 34th samples exceed the corresponding UCL again. Based on the MEWMA-OR scheme,

only the values of the plotting statistics for the last three test samples are above UCL. The MEWMA-GM

scheme shows a signal quickly at the 11th test sample, and the values for test samples 12 to 22 fall marginally

above or below the UCL. Finally, test samples 32 to 34 indicate strong OOC signals.

Following the signals, diagnosing the sources of assignable causes is interesting. Based on the MEWMA-

LC scheme, we observe that from test sample 16 until sample 34, the values of both the length and scale

components exceed the HL. Still, the diameter component values are larger than the HL from the 23th test

sample onwards: Thus, we can conclude that there is evidence of a shift in the length and scale components

for test samples 16 to 34. Whereas, for the 23rd to 34th test samples, all three components are the source of

variations. On the other hand, we observe from the diagnostic results for the MEWMA-CC chart that the

values of the scale component from test sample 16 to sample 34 are above the HC . The values of the length

component for test samples 16, 17, 18 and 34 exceed the HC . Moreover, the diameter component values are

larger than the HC from the 24th test sample onwards: Therefore, the MEWMA-CC scheme shows that

the possible assignable cause of test samples 16 to 18 is both length and scale components. The diagnosis

analysis for the 19th to 23rd test samples indicates a possibility of shift only in the scale element. Further,

there is evidence of a shift in the diameter and scale components from test sample 24 to sample 33, and the

possible assignable cause of test sample 34 is all three components.

7 Concluding Remarks

In this paper, we develop two robust EWMA-type procedures for monitoring multivariate processes, referred

to as the MEWMA-LC and MEWMA-CC schemes. The newly designed plans can monitor the location-

scale of the components in tandem, say, the marginal distributions and the copula. The copula describes the

dependence structure between the variables. We present the implementation steps and investigate the IC and

OOC performance of the proposed schemes. A performance comparison of our proposed schemes is made

with four existing nonparametric schemes under four representative multivariate models by an extensive

simulation study. The overall performance of the MEWMA-CC scheme is found attractive for a class of

shifts, especially for monitoring scale shifts. Moreover, unlike many existing schemes, the two proposed

schemes offer excellent post-signal follow-up procedures that can classify the signal source, whether the shift

occurs in the variable(s) or the dependence structure.

We illustrate six EWMA schemes using a real dataset, which is monitoring bivariate processes involving

the lengths and diameters of cork stoppers. We may conclude that our proposed schemes are pretty helpful in

17



practice. Designing CUSUM charts using the plotting statistics developed in this article will be interesting.

More research in this direction is required for the dependent sequence of observations. We leave this for

future research.
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(a) d = 2 (b) d = 3

Figure 1: OOC performance comparisons of six multivariate EWMA schemes under d-variate Normal
distribution for LS and DS shifts with m = 100, n = 15,λ = 0.05 and the target MRL0 = 250. Note that
the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns
are for d = 3. The first row is OOC performance under shift situation-LS and the second row is OOC
performance under shift situation-DS.
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(a) d = 2 (b) d = 3

Figure 2: OOC performance comparisons of six multivariate EWMA schemes under d-variate Normal
distribution for OD and MS shifts with m = 100, n = 15,λ = 0.05 and the target MRL0 = 250. Note
that the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns
are for d = 3. The first figure in the first row is OOC performance under shift situation-OD and the others
are OOC performance under shift situation-MS.
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(a) d = 2 (b) d = 3

Figure 3: OOC performance comparisons of six multivariate EWMA schemes under d-variate Normal
distribution for LS and DS shifts with m = 100, n = 15,λ = 0.1 and the target MRL0 = 250. Note that
the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns
are for d = 3. The first row is OOC performance under shift situation-LS and the second row is OOC
performance under shift situation-DS.
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(a) d = 2 (b) d = 3

Figure 4: OOC performance comparisons of six multivariate EWMA schemes under d-variate Normal
distribution for OD and MS shifts with m = 100, n = 15,λ = 0.1 and the target MRL0 = 250. Note that
the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns are
for d = 3. The first figure in the first row is OOC performance under shift situation-OD and the others are
OOC performance under shift situation-MS.
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(a) d = 2 (b) d = 3

Figure 5: OOC performance comparisons of six multivariate EWMA schemes under d-variate Normal
distribution for LS and DS shifts with m = 100, n = 15,λ = 0.15 and the target MRL0 = 250. Note that
the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns
are for d = 3. The first row is OOC performance under shift situation-LS and the second row is OOC
performance under shift situation-DS.
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(a) d = 2 (b) d = 3

Figure 6: OOC performance comparisons of six multivariate EWMA schemes under d-variate Normal
distribution for OD and MS shifts with m = 100, n = 15,λ = 0.15 and the target MRL0 = 250. Note
that the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns
are for d = 3. The first figure in the first row is OOC performance under shift situation-OD and the others
are OOC performance under shift situation-MS.

24



(a) d = 2 (b) d = 3

Figure 7: OOC performance comparisons of six multivariate EWMA schemes under d-variate Normal
distribution for LS and DS shifts with m = 100, n = 15,λ = 0.2 and the target MRL0 = 250. Note that
the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns
are for d = 3. The first row is OOC performance under shift situation-LS and the second row is OOC
performance under shift situation-DS.

25



(a) d = 2 (b) d = 3

Figure 8: OOC performance comparisons of six multivariate EWMA schemes under d-variate Normal
distribution for OD and MS shifts with m = 100, n = 15,λ = 0.2 and the target MRL0 = 250. Note that
the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns are
for d = 3. The first figure in the first row is OOC performance under shift situation-OD and the others are
OOC performance under shift situation-MS.
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(a) d = 2 (b) d = 3

Figure 9: Computed optimal MRL1 values of six multivariate EWMA schemes under d-variate Normal
distribution for LS and DS shifts with m = 100, n = 15 and the target MRL0 = 250. Note that the figures
in the first and second columns are for d = 2 and the figures in the third and fourth columns are for d = 3.
The first row is OOC performance under shift situation-LS and the second row is OOC performance under
shift situation-DS.
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(a) d = 2 (b) d = 3

Figure 10: Computed optimal MRL1 values of six multivariate EWMA schemes under d-variate Normal
distribution for OD and MS shifts with m = 100, n = 15 and the target MRL0 = 250. Note that the
figures in the first and second columns are for d = 2 and the figures in the third and fourth columns are
for d = 3. The first figure in the first row is OOC performance under shift situation-OD and the others are
OOC performance under shift situation-MS.
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Figure 11: The Phase-I and Phase-II data on corks’ lengths and diameters.
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Figure 12: Six schemes for monitoring and diagnosis of corks’ lengths and diameters. Note: the plotting
statistics of the Phase-II MEWMA-LC and MEWMA-CC schemes can theoretically be infinity and thus
any value greater than twice the UCL is shown by an asterisk at the 2×UCL, while exact values are shown
with a solid point.
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(a) d = 2 (b) d = 3

Figure A1: OOC performance comparisons of six multivariate EWMA schemes under d-variate t(3) distri-
bution for LS and DS shifts with m = 100, n = 15,λ = 0.1 and the target MRL0 = 250. Note that the
figures in the first and second columns are for d = 2 and the figures in the third and fourth columns are for
d = 3. The first row is OOC performance under shift situation-LS and the second row is OOC performance
under shift situation-DS.
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(c) d = 2 (d) d = 3

Figure A2: OOC performance comparisons of six multivariate EWMA schemes under d-variate t(3) distri-
bution for OD and MS shifts with m = 100, n = 15,λ = 0.1 and the target MRL0 = 250. Note that the
figures in the first and second columns are for d = 2 and the figures in the third and fourth columns are
for d = 3. The first figure in the first row is OOC performance under shift situation-OD and the others are
OOC performance under shift situation-MS.
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(e) d = 2 (f) d = 3

Figure A3: OOC performance comparisons of six multivariate EWMA schemes under d-variate Cauchy
distribution for LS and DS shifts with m = 100, n = 15,λ = 0.1 and the target MRL0 = 250. Note that
the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns
are for d = 3. The first row is OOC performance under shift situation-LS and the second row is OOC
performance under shift situation-DS.
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(g) d = 2 (h) d = 3

Figure A4: OOC performance comparisons of six multivariate EWMA schemes under d-variate Cauchy
distribution for OD and MS shifts with m = 100, n = 15,λ = 0.1 and the target MRL0 = 250. Note that
the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns are
for d = 3. The first figure in the first row is OOC performance under shift situation-OD and the others are
OOC performance under shift situation-MS.
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(i) d = 2 (j) d = 3

Figure A5: OOC performance comparisons of six multivariate EWMA schemes under d-variate exponential
distribution for LS and DS shifts with m = 100, n = 15,λ = 0.1 and the target MRL0 = 250. Note that
the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns
are for d = 3. The first row is OOC performance under shift situation-LS and the second row is OOC
performance under shift situation-DS.
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(k) d = 2 (l) d = 3

Figure A6: OOC performance comparisons of six multivariate EWMA schemes under d-variate exponential
distribution for OD and MS shifts with m = 100, n = 15,λ = 0.1 and the target MRL0 = 250. Note that
the figures in the first and second columns are for d = 2 and the figures in the third and fourth columns are
for d = 3. The first figure in the first row is OOC performance under shift situation-OD and the others are
OOC performance under shift situation-MS.
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