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Abstract

In medical studies, composite indices and/or scores are routinely used for predicting
medical conditions of patients. These indices are usually developed from observed
data of certain disease risk factors, and it has been demonstrated in the literature that
single index models can provide a powerful tool for this purpose. In practice, the ob-
served data of disease risk factors are often longitudinal in the sense that they are
collected at multiple time points for individual patients, and there are often multiple
aspects of a patient’s medical condition that are of our concern. However, most exist-
ing single index models are developed for cases with independent data and a single
response variable, which are inappropriate for the problem just described in which
within-subject observations are usually correlated and there are multiple mutually
correlated response variables involved. This paper aims to fill this methodological
gap by developing a single index model for analyzing longitudinal data with multi-
ple responses. Both theoretical and numerical justifications show that the proposed
new method provides an effective solution to the related research problem. It is also
demonstrated using a dataset from the English Longitudinal Study of Aging.
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1 INTRODUCTION

Combining information from different aspects can reduce complexity in both feature selection and interpretation. While it may

help gain feasibility in analysis, a composite score or index is argued to bemore accessible for advocacy and political intervention

decisions1. In health and clinical research, well-designed indices can be used to monitor and predict health outcomes of interest.

For instance, World Health Organization developed the Urban Health Index that measured disparities in health determinants
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and outcomes in the urban area and can utilize it to monitor the status of urban areas and determine the effects of program

interventions2. In this paper, we focus on constructing such indices when multiple outcomes of interest need to be studied

simultaneously and longitudinally.

To construct a composite index, it has been demonstrated in the literature that single index models can provide a powerful

tool (e.g., Wu and Tu3). A single-index model is a semi-parametric model that can reduce the dimensionality of predictors and

build a flexible relationship between the outcomes and predictors. It links the mean of the response to a linear combination of the

predictors through an unknown nonparametric link function, where the linear combination of predictors is used to suppress the

multidimensional predictors into a single index and avoid the so-called “curse of dimensionality”. Moreover, the nonparametric

link function is used to accommodate a potential nonlinear relationship between the outcome and the index. In the literature,

there is an extensive discussion on the estimation of the index coefficients and the link function as well as the statistical properties

of their estimators. See, for instance, Hardle and Stoker4, Hardle et al.5, Ichimura6, Xia et al.7, Xia8, and Yu and Ruppert9.

However, all these works were for cases with independent data and a single response variable.

In practice, especially in clinical research, repeated measurements are routinely taken for individual subjects. With the goal

of incorporating within-subject serial correlation, investigators have extended conventional model-fitting approaches for inde-

pendent data to the longitudinal setting. For instance, in linear regression modeling, mixed-effects models have been a popular

tool for analyzing longitudinal data. By introducing subject-specific random effects, the resulting mixed-effects model allows

subjects to have their own subject-specific mean trajectories over time10. Proper specification of the random effects can accom-

modate the covariance structure among the outcome variables as well. To take advantage of random-effects modeling, Pang and

Xue11 proposed a single-index model with random-effects terms included to accommodate within-subject data correlation, and

used the generalized estimating equations (GEE) to estimate model coefficients. Since a working covariance structure should

be specified in the GEE approach, their estimation of the random components was limited to the variance of a random intercept

and the variance of the pure measurement error. In addition, Wu and Tu3 extended the penalized spline estimation method orig-

inally proposed by Yu and Ruppert9 to estimate their single-index model with random effects. Whilst penalized splines had a

mixed-effects model representation with unpenalized (fixed) and penalized (random) components12, all of the index-coefficient

parameters, variance components, and the smoothing parameter were estimated directly by the restricted maximum likelihood

method (REML).

In practice, there are often multiple response variables of interest. In some medical studies, for instance, they can measure

different aspects of the medical condition of a patient. To accommodate their mutual correlation, Wu and Tu13 further extended

their penalized spline method to a multivariate setting. Given the same set of predictors for each response variable, their approach

allows for different link functions used for modeling different response variables. However, the index coefficients for different

response variables are assumed to be the same in their approach, whichmeans that a common index is used for predicting different
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response variables. While some well-defined medical indices like BodyMass Index (BMI) are routinely used to predict different

response variables in practice for convenience, the assumption that different response variables depend on a set of disease risk

factors through a common index could be questionable in some scenarios. As an example, assume that we want to predict

the incidence of stroke and liver cancer (two response variables) from a set of disease risk factors like alcohol consumption,

cholesterol level, systolic blood pressure, and more. In this example, the relative importance of individual disease risk factors

should be quite different in predicting the two response variables. For instance, alcohol consumption might be more relevant to

liver cancer although it is also an important risk factor of stroke. Similarly, cholesterol level and systolic blood pressure should

be more relevant to stroke. In such cases, it might be more appropriate to use two different indices to predict the two response

variables. In addition, the penalized spline method mentioned above needs a pre-specified set of knots for defining the basis

functions used. Even if the penalty term can protect the procedure from over-fitting, the choice of the number and positions of the

knots, which may be highly dependent on the true mean curve and variance structure, can be tricky and may lead to inefficient

estimation of the index parameters.

In this paper, we propose a flexible single-index model to describe longitudinal data with multiple response variables. In

our proposed model, the index coefficient parameters for different response variables could be different, and the within-subject

correlation could also be accommodated by including random-effects terms in the model. Then, the model is estimated in the

context of a multivariate single-index model with random effects. Namely, the index coefficient parameters are estimated by

combining the ideas of the refined conditional minimum average variance estimation (rMAVE) method proposed by Xia et al.7

and the expectation-maximization (EM) algorithm introduced byDempster et al.14, and the link functions for individual response

variables are estimated locally by the local linear kernel smoothing method. To our knowledge, this is the first multivariate

single-indexmodel that can allow different sets of index coefficient parameters for different response variables and accommodate

within-subject data correlation as well. Both theoretical and numerical justifications show that it is an effective single-index

model for describing longitudinal data with multiple response variables.

The rest of the paper is organized as follows. Section 2 describes specification and estimation of the proposed multivariate

single-index model with random effects. Some asymptotic results about the estimated model are given in Section 3. Simulation

studies evaluating its numerical performance are presented in Section 4. In Section 5, we apply the proposed method to a dataset

from the English Longitudinal Study of Aging (ELSA). Section 6 concludes the article with some remarks.
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2 METHODOLOGY

2.1 Model specification

In cases with a univariate response variable Y and a p-dimensional vector of predictors X ∈ ℝp, a single-index model takes the

form ofE(Y |X) =  (�TX), where � is the p-dimensional vector of coefficients and (⋅) is an unknown smooth link function. For

model identifiability reasons, one often assumes that �T� = 1 and the first element of � is nonnegative. While �TX suppresses

the multidimensional vector X into a single index of dimension one, the link function  (⋅) preserves some flexibility in the

relationship between the response variable and the constructed index.

Now, we generalize the univariate single-index model to a multivariate one with random-effects to describe longitudinal data

with multiple response variables. Assume that there are a total of M subjects included in the longitudinal data. For the i-th

subject, mi repeated measurements are taken on both the q response variables and p predictors. We want to use the data of the

p predictors to construct q single indices for the q response variables. Let Yijk be the observed k-th response variable of the

i-th subject at the j-th observation time tij ∈ [T0, T1], for i = 1,… ,M , j = 1,… , mi, and k = 1,… , q. It is assumed that the

observation times are independent not only with each other but also with both the observed response variables and predictors.

The observed vector of predictors for the i-th subject at the j-th observation time is denoted as Xij = (Xij1,… , Xijp)T ∈ ℝp.

Then, the proposed multivariate single-index model with random effects is defined to be

Yijk =  k(�TkXij) + b
T
ikg(tij) + "ijk, (1)

for i = 1,… ,M , j = 1,… , mi, and k = 1,… , q. In Model (1),  k(⋅) is the link function for the k-th response variable, �k is

a p-dimensional vector of index coefficients that satisfies the identifiability conditions mentioned above, bik = (bik1,… , biks)T

is the vector of random-effects corresponding to the k-th response variable of the i-th subject, g(tij) = [g1(tij),… , gs(tij)]T is a

vector of pre-specified functions of tij that potentially accounts for the complexity in the subject-specific trajectory of the mean

response over time, and "ijk is the pure measurement error. For simplicity and adequacy, we consider s = 2 and g(tij) = (1, tij)T ,

which results in the commonly used random intercept and random slope random-effects model. Among the limited literature

on the single-index models with random effects, no existing work considered random effects more than the random intercept.

Let bi = (bTi1,… ,bTiq)
T be the vector of all random effects for the i-th subject. Then, it is assumed that bi follows a multivariate

normal distribution with mean zero and covariance matrix �b. For the i-th subject at the j-th observation time, the correlation

between the k-th and k′-th response variables is induced by the correlation between bik and bik′ . For different subjects, the

vectors of random effects are assumed to be independent. For all i, j and k, the pure measurement errors {"ijk} are assumed to

be independent with each other, and each of them follow a normal distribution with mean zero and an outcome-specific variance

�2k. The independence between random effects and pure measurement errors is also assumed.
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2.2 Model estimation

In Model (1), the index coefficients �k and the link functions  k(⋅) are the two main parts to be estimated. In this section, we

describe how to estimate �k and  k(⋅) by combining the ideas of the EM algorithm and an extended version of the rMAVE

method. The EM algorithm is a commonly used tool to numerically fit mixed-effects models15. More specifically, we can regard

the random effects as unobserved data and write out the log-likelihood for the complete data lc(�;Y,b), where Y is the vector

of the observed data, b is the vector of the random effects, and � is the vector of all unknown parameters. Then, we iteratively

update the parameter estimates by maximizing Q(�,�∗) = Eb|Y,�∗{lc(�;Y,b)|Y,�∗} until convergence, where �∗ denotes the

parameter estimates obtained in the previous iteration.

In our setting, letYi∙k = (Yi1k,… , Yimik)
T be the observations of subject i on the k-th response variable,Yi∙∙ = (YTi∙1,… ,YTi∙q)

T

be the vector of all observations of the i-th subject, Y∙∙k = (YT1∙k,… ,YTM∙k)
T be the vector of all observations on the k-th

response variable, and Y = (YT∙∙1,… ,YT∙∙q)
T be the vector of all observed response variables. Denote � as a collection of all

unknown parameters ({�k}, {�2k},�b) and the unknown link functions { k(⋅)}. Then, the log-likelihood of the complete data

has the following expression:

lc(�;Y,b) = log
{

f (Y|b, { k}, {�k}, {�2k})f (b|�b)
}

=
M
∑

i=1

mi
∑

j=1

q
∑

k=1

[

−1
2
log(�2k) −

1
2�2k

{Yijk −  k(�TkXij) − g(tij)
Tbik}2

]

+

M
∑

i=1

{

−1
2
log |�b| −

1
2
bTi �

−1
b bi

}

+ C, (2)

where C denotes the terms omitted that have nothing to do with �, and |�b| denotes the determinant of �b.

If the link functions are known, then we can use the conventional EM algorithm directly by updating the parameter estimates

iteratively using the following formulas: for k = 1,… , q,

�̂k = argmax
�k

E
b|Y,�̂b,{�̂2k},{�̃k}

{

log f (Y|b, �k, �̂2k)
|

|

|

|

|

Y, �̂b, {�̂2k}, {�̃k}
}

, (3)

�̂2k = argmax
�2k

E
b|Y,�̂b,{�̃2k},{�̂k}

{

log f (Y|b, �̂k, �2k)
|

|

|

|

|

Y, �̂b, {�̃2k}, {�̂k}
}

, (4)

�̂b = argmax
�b

E
b|Y,�̃b,{�̂2k},{�̂k}

{

log f (b|�b)
|

|

|

|

|

Y, �̃b, {�̂2k}, {�̂k}
}

, (5)
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where

log f (Y|b, �k, �2k) =
M
∑

i=1

mi
∑

j=1

[

−1
2
log(�2k) −

1
2�2k

{Yijk −  k(�TkXij) − g(tij)
Tbik}2

]

,

log f (b|�b) =
M
∑

i=1

{

−1
2
log |�b| −

1
2
bTi �

−1
b bi

}

,

�̂k, �̂2k and �̂b are the parameter estimates in the current iteration, �̃k, �̃2k and �̃b are the parameter estimates obtained in the

previous iteration.

To accommodate the estimation of the link functions, Equation (3) is modified into a two-step procedure that updates the esti-

mates of {�k} and { k(⋅)} separately. Following the idea of rMAVE, for any given k and Xi′j′ , E(Yijk|Xij) can be approximated

by a linear expansion at �TkXi′j′ , i.e., E(Yijk|Xij) ≈ ai′j′k + ci′j′k�Tk (Xij −Xi′j′). Then, E{Yijk − g(tij)
Tbik −E(Yijk|�TkXij)}

2 can

be approximated by
M
∑

i,i′=1

mi
∑

j=1

mi′
∑

j′=1

[

Yijk − g(tij)Tbik − {ai′j′k + ci′j′k�Tk (Xij − Xi′j′)}
]2wiji′j′ ,

where

wiji′j′ =
Kℎ1k{�

T
k (Xij − Xi′j′)}

∑M
i=1

∑mi
j=1Kℎ1k{�

T
k (Xij − Xi′j′)}

,

Kℎ1k(⋅) = K(⋅∕ℎ1k)∕ℎ1k, for k = 1,… , q, K(⋅) is a density kernel function, and {ℎ1k} are bandwidths used for the q response

variables.

Notably, minimizing E{Yijk − g(tij)Tbik − E(Yijk|�TkXij)}
2 with respect to each �k is equivalent to optimizing the complete

data log-likelihood. Therefore, under the EM framework, for the k-th response variable, we update the estimates of {�k} by

minimizing the following loss function with respect to �k, ak, and ck:

M
∑

i,i′=1

mi
∑

j=1

mi′
∑

j′=1
Eb|Y

(

[Yijk − g(tij)Tbik − {ai′j′k + ci′j′k�Tk (Xij − Xi′j′)}]
2wiji′j′ |Y, �̂

)

, (6)

where ak and ck are the vectors of ai′j′k and ci′j′k, respectively, that permute i′ and j′ in the same way as Yk, and the expectation

is over the posterior distribution of b that depends on the collection of current estimates of all parameters and the estimates of

the link functions to be discussed soon. For convenience, we use �̂ to denote the collection of all current parameter estimates.

After obtaining the estimates of {�k}, denoted as {�̂k}, a vector of single indices corresponding to the
∑M
i=1 mi observations

can be computed for each response variable. Similar to the definition of the vectors of the observed response variables, let

	i∙k = [ k(�̂
T
kXi1),… ,  k(�̂

T
kXimi)]

T be the vector of mean response for the k-th response variable of the i-th subject conditional

on the estimates of the single indices,	i∙∙ = (	T
i∙1,… ,	T

i∙q)
T be the vector of all conditional mean responses for the i-th subject,

and 	∙∙k = (	T
1∙k,… ,	T

M∙k)
T be the vector of all conditional mean responses for the k-th response variable. For k = 1,… , q,

we estimate all individual elements of	∙∙k by using the local linear kernel smoothing procedure. More specifically, let X be the

(
∑M
i=1 mi) × p matrix of all covariate data whose [

∑i−1
l=1 ml + j]-th row is XTij , for 1 ≤ j ≤ mi and 1 ≤ i ≤M . Then, for a given u
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in the range of all elements of X�̂k, the local linear kernel estimator of  k(u) is given by

 ̂k(u) = eT1

⎧

⎪

⎨

⎪

⎩

M
∑

i=1

mi
∑

j=1
Kℎ2k(�̂

T
kXij − u)

⎛

⎜

⎜

⎜

⎝

1

�̂
T
kXij − u

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1

�̂
T
kXij − u

⎞

⎟

⎟

⎟

⎠

T
⎫

⎪

⎬

⎪

⎭

−1

×

M
∑

i=1

mi
∑

j=1
Kℎ2k(�̂

T
kXij − u)

⎛

⎜

⎜

⎜

⎝

1

�̂
T
kXij − u

⎞

⎟

⎟

⎟

⎠

Yijk, (7)

where e1 = (1, 0)T , and ℎ2k is a bandwidth chosen properly to accommodate the correlated data Y∙∙k, for k = 1,… , q. Details

about bandwidth selection will be discussed in the next subsection.

After {�̂k} and {	̂∙∙k} are computed, the posterior distribution of b and the estimates of �2k and �b can be updated using

Equations (4) and (5). Practically, most optimization procedures mentioned above can be simplified using closed-form formulae.

For clarity, our proposed model estimation method is summarized in the following algorithm.

1. Obtain estimates of the index coefficient parameters and variance components for each response variable, say {�̂k}, {�̂2k}

and {�̂bk}, by independently fitting q linear mixed effects models with random intercept and random slope across time.

Then, define �̂
(0)
k = �̂k∕||�̂k|| and �̂

2(0)
k = �̂2k as the initial value of �k and �

2
k, respectively, for k = 1,… , q, where || ⋅ ||

denotes the L2-norm of the underlying vector. Set the initial values of �b as �̂
(0)
b = diag{�̂b1,… , �̂bq} which is a 2q × 2q

block diagonal matrix of {�̂bk}.

2. Use the estimates obtained from the (r − 1)-th iteration to update estimates of {�k} and {	∙∙k} evaluated at the current

indices vectors {X�̂
(r)
k }, as described below.

2.1 Use {�̂
(r−1)
k } as the initial value to iteratively solve the following equation system: for k = 1,… , q,

⎛

⎜

⎜

⎜

⎝

âi′j′k

ĉi′j′k

⎞

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎣

M
∑

i=1

mi
∑

j=1
Kℎ1k{�̂

T
k (Xij − Xi′j′)}

⎛

⎜

⎜

⎜

⎝

1

�̂
T
k (Xij − Xi′j′)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1

�̂
T
k (Xij − Xi′j′)

⎞

⎟

⎟

⎟

⎠

T
⎤

⎥

⎥

⎥

⎦

−1

×
M
∑

i=1

mi
∑

j=1
Kℎ1k{�̂

T
k (Xij − Xi′j′)}

⎛

⎜

⎜

⎜

⎝

1

�̂
T
k (Xij − Xi′j′)

⎞

⎟

⎟

⎟

⎠

(Yijk − ẑ
(r−1)
ijk ),

for i′ = 1,… ,M, j′ = 1,… , mi, (8)

�̂k =

[ M
∑

i,i′=1

mi
∑

j=1

mi′
∑

j′=1
Kℎ1k{�̂

T
k (Xij − Xi′j′)}ĉ

2
i′j′k(Xij − Xi′j′)(Xij − Xi′j′)

T ∕f̂�k,x(�̂
T
kXi′j′)

]−1

×
M
∑

i,i′=1

mi
∑

j=1

mi′
∑

j′=1
Kℎ1k{�̂

T
k (Xij − Xi′j′)}ĉi′j′k(Xij − Xi′j′)(Yijk − âi′j′k − ẑ

(r−1)
ijk )∕f̂�k,x(�̂

T
kXi′j′),

with f̂�k,x(�̂
T
kXi′j′) =

1
∑M
i=1 mi

M
∑

i=1

mi
∑

j=1
Kℎ1k{�̂

T
k (Xij − Xi′j′)}. (9)
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Here, {ℎ1k} are the bandwidths that need to be selected properly once {�̂k} are updated, ẑ(r−1)ijk =

g(tij)T E(bik|Y, �̂
(r−1)

), �̂
(r−1)

is the collection of all parameter estimates and the link function estimates obtained

from the (r − 1)-th iteration, and E(bik|Y, �̂
(r−1)

) is a vector consisting of the (2k − 1)-th to 2k-th elements of the

vector

E(bi|Y, �̂
(r−1)

) = �̂
(r−1)
b ZTi (Zi�̂

(r−1)
b ZTi + �̂

(r−1)
i )−1(Yi∙∙ − 	̂

(r−1)
i∙∙ ),

where Zi is the design matrix of bi, which is a block diagonal matrix with q blocks, i.e., Zi = diag{Gi,… ,Gi}

where Gi = [g(ti1),… , g(timi)]
T , and �̂

(r−1)
i is a diagonal matrix with diagonal elements (�̂2(r−1)1 1Tmi ,… , �̂2(r−1)q 1Tmi)

in which 1mi is a vector of ones with length mi. Then, we define {�̂
(r)
k } to be the convergent values of �̂k in (9), for

k = 1,… , q. Note that {�̂k} should be standardized in each iteration when solving the equation system (8) and (9).

2.2 Update the indices {X�̂
(r)
k } and apply the local linear kernel smoothing procedure described in (7) to obtain 	̂

(r)
∙∙k,

for k = 1,… , q.

3. Use the estimates from step 2 to compute

�̂2(r)k = 1
∑M
i=1 mi

[

(Y∙∙k − 	̂
(r)
∙∙k)

T (Y∙∙k − 	̂
(r)
∙∙k) +

M
∑

i=1
tr{GT

i Gi E(bikbTik|Y, �̂
(r−1)∗

)}

−2
M
∑

i=1
(Yi∙k − 	̂

(r)
i∙k)

TGi E(bik|Y, �̂
(r−1)∗

)

]

, for k = 1,… , q, (10)

where tr(⋅) denotes the trace of a matrix,

E(bikbTik|Y, �̂
(r−1)∗

) = Var(bik|Y, �̂
(r−1)∗

) + E(bik|Y, �̂
(r−1)∗

)E(bik|Y, �̂
(r−1)∗

)T

with E(bik|Y, �̂
(r−1)∗

) and var(bik|Y, �̂
(r−1)∗

) obtained respectively from the proper entries of

E(bi|Y, �̂
(r−1)∗

) = �̂
(r−1)
b ZTi (Zi�̂

(r−1)
b ZTi + �̂

(r−1)
i )−1(Yi − 	̂

(r)
i ), and

Var(bi|Y, �̂
(r−1)∗

) = {(�̂
(r−1)
b )−1 + ZTi (�̂

(r−1)
i )−1Zi}−1.

4. Update the estimates of the covariance matrix of the random effects via

�̂
(r)
b = 1

M

M
∑

i=1

[

var(bi|Y, �̂
(r−1)∗∗

) + E(bi|Y, �̂
(r−1)∗∗

)E(bi|Y, �̂
(r−1)∗∗

)T
]

, (11)

where

E(bi|Y, �̂
(r−1)∗∗

) = �̂
(r−1)
b ZTi (Zi�̂

(r−1)
b ZTi + �̂

(r)
i )−1(Yi∙∙ − 	̂

(r)
i∙∙), and

Var(bi|Y, �̂
(r−1)∗∗

) = {(�̂
(r−1)
b )−1 + ZTi (�̂

(r)
i )−1Zi}−1.
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5. Repeat steps 2, 3, and 4 until convergence of all parameter estimates. The final estimates of the link functions are based

on indices computed from the final estimates of {�k}.

Derivation of Equations (8)-(11) is provided in the supplementary materials.

Since the above model estimation method estimates the index coefficients, variance components and link functions simulta-

neously, its computational cost would be higher than the previous methods like rMAVE that assume data independence. More

specifically, in each iteration of the proposed iterative model estimation algorithm for updating all parameter estimates in con-

cern, updating the q sets of index coefficients can be regarded as q implementations of the conventional rMAVE approach. Note

that the closed-form formulae have been obtained for updating the variance components. So, updating �̂2k’s and �̂b in each itera-

tion is actually quite straightforward. But, calculation of the inverse of some 2q×2q matrices could be computationally intensive

when q is large. Therefore, the current version of the proposed method is mainly for cases when q is small (e.g., q ≤ 10). In

cases when q is large, it might be helpful to incorporate a variable selection procedure in the proposed method to reduce the

dimensionality of the response variables, which is left to our future research.

2.3 Selection of the kernel function and the bandwidths

Since the local linear kernel smoothing procedure is used when updating the coefficients {�k} and the vectors of the conditional

mean responses {	∙∙k}, the kernel functions K(⋅) should be specified in advance, and the bandwidths {ℎ1k} and {ℎ2k} should

be selected properly based on the updated indices {X�̂k}.

Given the good theoretical properties of the Epanechnikov kernel function illustrated in the kernel smoothing literature16,

K(⋅) is chosen to be that kernel function, which takes the form ofK(x) = 0.75(1−x2)I(|x| ≤ 1). For the k-th response variable,

the bandwidth ℎ1k is used when solving the minimization problem (6), which is a modified version of the loss function used

in rMAVE. Empirically, the difference between the random effects bi and E(bi|Y, �̂) becomes negligible as the algorithm runs.

Therefore, for each k, we view Yijk − g(tij)T E(bik|Y, �̂) as independent observations, for i = 1,… ,M and j = 1,… , mi, and

choose the bandwidth ℎ1k simply by the rule of thumb provided in Mack and Silverman17. This was also suggested by Xia8

when they implemented the rMAVE method for independent data. In practice, it is not feasible to choose {ℎ1k} by using a

cross-validation (CV) procedure because the bandwidths {ℎ1k} need to be updated once the indices are changed due to the new

estimates of {�k} in each sub-iteration described in step 2.1 of the proposed algorithm discussed in the previous subsection.

The bandwidth ℎ2k is used in the estimation of the conditional mean response {	∙∙k}. We choose {ℎ2k} by applying a modified

CV (MCV) procedure suggested by De Brabanter et al.18, which can accommodate potential correlation among the observed

data by using a bimodal kernel function. Namely, for the k-th response variable, ℎ2k is chosen by minimizing the MCV score
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below.

MCV(ℎ2k) =
1
M

M
∑

i=1

[

1
mi

mi
∑

j=1

{

 ̂k,−(ij)(�̂
T
kXij) − Yijk

}2
]

, (12)

where  ̂k,−(ij)(�̂
T
kXij) is the leave-one-out estimate of  k(�̂

T
kXij) obtained by a modified version of (7) in which the observation

(Yijk, �̂
T
kXij) is omitted in the computation and K(⋅) is changed to

K�(u) =
4

4 − 3� − �3

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3
4
(1 − u2)I(|u| ≤ 1), if |u| ≥ �,

3(1−�2)
4�

|u|, otherwise,
(13)

where � ∈ (0, 1) is a pre-specified constant. We use � = 0.1 by adopting the suggestion in De Brabanter et al.18 which was

justified there by numerical studies.

3 ASYMPTOTIC RESULTS

In this section, we establish the asymptotic normality of the estimated index coefficient parameters for different response vari-

ables. Following Jiang and Wang19, for k = 1,… , q, the initial value � (0)
k is assumed to be in the

√

n−neighborhood of the

true value �k. The kernel function K(⋅) is assumed to be a symmetric density function. For simplicity, it is also assumed that

∫ u2K(u)du = 1. This can be achieved by any symmetric density kernel function after proper normalization. For the k-th

response variable, let ��k,x(x) = E(Xij|�TkXij = �Tk x), ��k,x(x) = ��k,x(x) − x, w�k,x(x) = E(XijXTij|�
T
kXij = �Tk x), and

W(x) = w�k,x(x) − ��k,x(x)��k,x(x)
T , for i = 1,… ,M and j = 1,… , mi. Then, we have the following asymptotic property.

Theorem 1. Under the regularity conditions given in Appendix B.1, we have

√

M(�̂k − �k)
d
→ N(0,W+

 k
�kW+

 k
), for k = 1,… , q,

whereW k = E{ ′
k(�

T
kX)

2W(X)}∕2, the superscript ”+” denotes the Moore-Penrose generalized inverse, and

�k = lim
M→∞

1
M

M
∑

i=1
Var

{

1
m

mi
∑

j=1
 ′
k(�

T
kXij)��k,x(Xij)

(

"ijk + zijk − ẑijk
)

}

,

m = M−1∑M
i=1 mi, zijk = g(tij)Tbik, ẑijk = g(tij)T E(bik|Y, �̂), and �̂ denotes the collection of the estimates of �b, {�2k} and

{	∙∙k}.

If we check the regularity conditions given in Web Appendix B.1, it can be found that the asymptotic normality of {�̂k}

given in Theorem 1 actually does not require the pure measurement errors to be normally distributed. The proof of Theorem 1

is provided in Web Appendix B.2 in the supplementary materials. While ẑijk is denoted like an estimate, it is actually a function

of the response vector Y and hence a random variable.
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4 SIMULATION STUDY

We conduct two sets of simulations to assess the performance of our proposed method in estimating the multivariate single-index

model (1) with random effects. The first set of simulations aims to evaluate its finite-sample performance when the number of

subjects and the number of observation times increase. The second set of simulations compares our method with the rMAVE

method proposed by Xia8 and the p-spline method proposed by Wu and Tu13 under different scenarios. In all simulation studies,

mi’s are the same to be m, and four sample sizes withM = 50 or 100 and m = 5 or 10 are considered in the main article.

4.1 Finite-sample performance of the proposed method

Assume that there are two correlated outcome variables and their observations are generated from the following model:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Yij1 = exp(�11Xij1 + �12Xij2 + �13Xij3) + bi11 + bi12tij + �ij1

Yij2 = (�21Xij1 + �22Xij2 + �23Xij3)2 + bi21 + bi22tij + �ij2,

where the single-indices are linked to the conditional mean responses via the link functions  1(u) = exp(u) and  2(u) = u2. The

true values of the index coefficients are �1 = (�11, �12, �13)T = (1, 2, 1.5)T ∕
√

7.25 and �2 = (�21, �22, �23)T = (2,−1, 3)T ∕
√

14.

For i = 1,… ,M and j = 1,… , m, we assume tij ∈ [0, 1], and the j-th observation time for the i-th subject is generated from

the uniform distribution U((j − 1)∕m, j∕m). The predictors at each observation time are generated as follows: Xij1 is generated

from U(0, 1), Xij2 is generated from U(−1, 1), and Xij3 is generated by a random number from U(1, 2) multiplying by the

corresponding observation times tij . Thus, the first two predictors are time-independent and the third predictor is time-dependent.

For each subject, the random-effects (bi11, bi12, bi21, bi22)T are generated from a multivariate normal distribution N4(0,�b) with

�b =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.4 0 0 0

0 0.4 0 0

0 0 0.6 0

0 0 0 0.6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0.5 0.25 0.25

0.5 1 0.25 0.25

0.25 0.25 1 0.5

0.25 0.25 0.5 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.4 0 0 0

0 0.4 0 0

0 0 0.6 0

0 0 0 0.6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�11 �12 �13 �14

�12 �22 �23 �24

�13 �23 �33 �34

�14 �24 �34 �44

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.16 0.08 0.06 0.06

0.08 0.16 0.06 0.06

0.06 0.06 0.36 0.18

0.06 0.06 0.18 0.36

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (14)

The pure measurement errors �ij1 and �ij2 are generated independently fromN(0, 0.01) andN(0, 0.04), respectively.
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To assess the finite-sample performance of our proposed method, we first compare the parameter estimates with their true

values under different sample sizes by reporting some summary statistics based on 250 repeated simulation runs. Tables 1 and 2

present the mean values of the parameter estimates, their mean biases, their variances (Var), and the mean squared errors (MSE)

underm = 5 and 10, respectively. From the tables, it can be seen that i) the index coefficient estimates are overall estimated more

accurately than the variance components with respect to bias and variance, and ii) the MSE values of all parameter estimates

decrease as either the number of subjects or the number of repeated measurements of each subject increases.

[Table 1 about here]

[Table 2 about here]

We also studied the estimation of the link functions under different sample sizes. Figures 1 and 2 compare the true link function

with their estimates in different sample size cases. From the figures, it can be seen that the averaged pointwise estimates of both

link functions are almost identical to the true functions, illustrating the good performance of our proposed model estimation

method. The mean integrated squared error (MISE) values are also reported in different cases. As expected, they decrease as the

number of subjects and/or the number of repeated measurements increase.

[Figure 1 about here]

[Figure 2 about here]

In Appendix C of the supplementary materials, we present another set of simulation results under a more complex scenario

with q = 5 response variables, p = 10 predictors, and a larger sample size. These results also show that our proposed method

can estimate the index coefficients and link functions accurately.

4.2 Method comparison

In this part, we compare the numerical performance of our proposed method with the competing rMAVE method and the

multivariate p-spline method discussed in Section 1. The comparison is conducted in four scenarios corresponding to four

different assumptions on the correlation structure of the response variables. In Section 1, we have discussed the main features

of the rMAVE and multivariate p-spline methods. The rMAVE method was proposed to handle cases with a univariate response

variable and independent data, and it cannot accommodate the within-subject correlation and the correlation among different

response variables. The p-spline method describes the within-subject correlation by including random intercepts in its model.

However, while the link functions can be different for different response variables, this method assumes the index coefficients
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are the same for different response variables. When implementing the p-spline method, we follow the suggestions by Wu and

Tu13 to choose the cubic splines with 20 knots.

Similar to the setups of the simulation study in Section 4.1, assume that there are two continuous outcome variables whose

observations are generated from the following model:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Yij1 = exp(�11Xij1 + �12Xij2 + �13Xij3) + eij1

Yij2 = (�21Xij1 + �22Xij2 + �23Xij3)2 + eij2,

where eij1 and eij2 are the error terms. Then, the following four scenarios are considered.

• Scenario 1: Let �1 = (�11, �12, �13)T = �2 = (�21, �22, �23)T = (2,−1, 3)T ∕
√

14. The error terms only includethe pure

measurement error, i.e., eij1 = "ij1 and eij2 = "ij2. The pure measurement errors �ij1 and �ij2 are generated independently

fromN(0, 0.01) andN(0, 0.04), respectively.

• Scenario 2: Let �1 = (�11, �12, �13)T = �2 = (�21, �22, �23)T = (2,−1, 3)T ∕
√

14. The error terms consist of a random

intercept and a pure measurement error, i.e., eij1 = bi1 + "ij1 and eij2 = bi2 + "ij2. The random-effects terms (bi1, bi2)T are

generated from N2(0,�b) with

�b =
⎛

⎜

⎜

⎜

⎝

0.4 0

0 0.6

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1 0

0 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

0.4 0

0 0.6

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0.16 0

0 0.36

⎞

⎟

⎟

⎟

⎠

.

The pure measurement errors �ij1 and �ij2 are generated in the same way as that in Scenario 1.

• Scenario 3: Let �1 = (�11, �12, �13)T = �2 = (�21, �22, �23)T = (2,−1, 3)T ∕
√

14. The error terms consist of a random

intercept, a random slope, and a pure measurement error, i.e., eij1 = bi11 + bi12tij + "ij1 and eij2 = bi21 + bi22tij + "ij2. The

random-effects terms (bi11, bi12, bi21, bi22)T are generated from N4(0,�b) with �b be the 4 × 4 matrix given in (14). The

pure measurement errors �ij1 and �ij2 are generated in the same way as that in Scenario 1.

• Scenario 4: Same as the one considered in Section 4.1. This scenario can be viewed as a modified version of Scenario 3

above with different index coefficients for the two response variables. Namely, �1 = (�11, �12, �13)T = (1, 2, 1.5)T ∕
√

7.25

and �2 = (�21, �22, �23)T = (2,−1, 3)T ∕
√

14.

For k = 1, 2, the sum of squares of the estimation errors,
∑3
p=1(�̂kp − �kp)2, is used to measure the estimation errors in

each case considered. Table 3 presents the results under different scenarios described above, where "MK" denotes our proposed

method that is based on themultivariate kernel smoothing procedure. From the table, it can be seen that the rMAVEmethod has

the best performance in Scenario 1 when the observed data are independent over time and among different response variables.

This is reasonable because both the p-spline and MK methods need to estimate the variance components in addition to the

index coefficient parameters, which would result in some extra variability in the estimates of the index coefficients. However,



14 TIAN AND QIU

in Scenarios 2-4 with some random-effects terms included in the model, the MK method overperforms the other two methods

unanimously, with themargins getting larger fromScenario 2 to Scenario 4. Even in Scenario 2when the truemodel only contains

random intercepts, our proposed method gives the smallest estimation error. It is intuitively reasonable for MK to outperform

rMAVE in this case because the latter assumes independent data which is invalid in this scenario. A possible reason for the p-

spline method underperforming ours is as follows. In the original work of Wu and Tu13, they only considered cases with two

covariates. When they implemented the proposed estimation procedure, the Nelder-Mead algorithm was used to optimize the

index coefficients given the estimates of spline parameters in each iterative. This could be inefficient even when the dimension

of the index coefficient vector increase from 2 to 3. Besides, in Scenario 4 when the true indices have different coefficient

parameters, it can be seen that the p-splinemethod is not capable of handling this scenario with different index coefficient vectors.

[Table 3 about here]

5 CASE STUDY

Maintaining cognitive functioning is a key component of healthy aging20. Previous studies have shown the association between

cognitive decline and the increased risk ofmortality, disability, and poor quality of life21,22.While cognitive decline is a long-term

process, Zheng et al.23 found through their prospective studies that a greater number of cognitive assessments were preferable

when studying the impact of risk factors on the subsequent trajectory of cognitive function. Over the last decade, there was

sizable literature on studying the predictors of the progression of cognitive decline. By applying different analytic methods,

including the linear mixed-effects model and the linear growth curve model, some existing studies have figured out a series of

key predictors, including age variation, positive well-being, physical activity level, and more24,25,26,27,23.

With the goal of a better understanding of the association between cognitive function and its key predictors under the longi-

tudinal setting and in a more flexible manner (e.g., taking into account the potential heterogeneity in subject-specific trends over

time), we apply the proposed methodology to the analysis of a dataset from the English Longitudinal Study of Aging (ELSA).

The ELSA project is an ongoing panel study of adults aged 50 and over. The study commenced in 2002, and the participants have

been followed up roughly every 2 years. Most of the raw data were collected through face-to-face interviews and self-completed

questionnaires. See Cadar et al.28 and Steptoe et al.29 for more detailed information about the ELSA project. In this paper, we

choose two major domains of cognitive function, i.e., memory and executive function, as the main endpoints to investigate. To

quantify the two endpoints of interest, we follow the data preparation procedure suggested in Zaninotto et al.27 to define the

memory score to be the sum of scores on the immediate and delayed recall tests (ranging from 0 to 20), and the executive func-

tion score to be the score on the animal naming task (ranging from 0 to 50). Since the cognitive function measures were fully

assessed only at each of the first 5 waves of data collection, we consider the observation times ranged from 0 to 10 years. Then,
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the age, assessments of positive well-being, and frequency of engaging in physical activities are chosen to be the predictors for

constructing the single indices. The well-being that measures the quality of life is quantified by the CAPS-19 index, which is the

sum of 19 self-reported items with a common 4-point Likert scale coded as 0 to 330. Higher scores on CAPS-19 index represent

higher levels of positive well-being. In ELSA, the frequency of doing physical activities was originally asked in three questions

about frequencies in engaging in mildly energetic, moderately energetic, and vigorous activities, respectively. For simplicity, we

proceed with the responses to those questions as a vector of ordinal variables with the same levels of 0, 1, 2, and 3, and then

compute a physical activity index as their summation. Higher scores on the activity index represent more frequent participation

in physical activities.

In our analysis, we randomly selectM = 200 subjects with complete data on all variables of interest. Then, the number of

repeated measurements on each subject is m = 5. To get more intuitive interpretations of the index coefficients, we standardize

each predictor to have zero mean and unity variance. For i = 1,… ,M and j = 1,… , m, Yij1 and Yij2 denote the executive

function score and memory score, respectively. For the i-th subject, let Xij1, Xij2 and Xij3 be the well-being index, physical

activity index, and age in years of the subjects measured at the j-th observation time respectively. We assume that the conditional

mean of the executive function scores and the memory scores are linked to their corresponding single indices (�11Xij1+�12Xij2+

�13Xij3) and (�21Xij1 + �22Xij2 + �23Xij3) through the link functions  1(⋅) and  2(⋅), respectively. Then, the index parameters

�1 = (�11, �12, �13)T and �2 = (�21, �22, �23)T , and the unknown link functions  1(⋅) and  2(⋅) need to be estimated using the

following model:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Yij1 =  1(�11Xij1 + �12Xij2 + �13Xij3) + bi11 + bi12tij + �ij1

Yij2 =  2(�21Xij1 + �22Xij2 + �23Xij3) + bi21 + bi22tij + �ij2.

Table 4 presents the estimated index coefficient parameters for the two response variables, together with their standard errors

(SE) estimated by a bootstrap procedure with 250 bootstrap samples. Figure 3 shows the estimated link functions. From the

figure, it can be observed that when the single index value does not take an extreme value (e.g., between -2 to 4), the derived

single index 1 has a roughly negative association with the corresponding executive function score. When the index is less than

-2 or greater than 4, we find the underlying association becomes positive, and the variability of the curve becomes larger. The

relationship between the derived single index 2 and the memory score has a clearer pattern depending on the value of the single

index. When the index ranges between -2 to 3, the memory score is negatively associated with the underlying index, and it is

positively associated with the index when the index value is greater than 3. The interpretation of the index coefficient parameters

can be more straightforward when the estimated link function is monotonic. For instance, for the executive function scores, for

moderate values of the single index, the positive estimate of the coefficient of the well- being index indicates that positive well-

being or better quality of life is positively associated with the decline in executive function. Similarly, frequent engagement in
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physical activities is negatively associated with a decline in executive function. The considerable standard error corresponding

to the coefficients of age makes it hard to conclude anything about its role in the decline of executive function without any further

explorations. Since we have standardized the predictors used to construct the single indices, we can have further conclusions

about the relative importance of different factors in affecting the response variables. When the estimated link function has a more

complicated shape than a monotonic curve, the interpretation of the index coefficients should be more careful. For instance,

if the estimated link function shows a clear pattern of piecewise monotonicity, then it might be reasonable to make separate

conclusions in different intervals with monotonic patterns of the estimated link function.

[Table 4 about here]

[Figure 3 about here]

By using the estimates of the variance components of the two response variables, we can compute the correlation between

them at each measurement time as follows: for each i and j,

Ĉorr(Yij1, Yij2) =
�̂13 + tij(�̂14 + �̂23) + t2ij �̂24

√

(�̂11 + 2tij �̂12 + t2ij �̂22 + �̂
2
1)(�̂33 + 2tij �̂34 + t2ij �̂44 + �̂

2
2)
,

where �̂l1l2 , for l1, l2 = 1, 2, 3, 4, denote the estimates of the covariance between two random effects as in Equation (14), and

�̂21 and �̂
2
2 are the variance estimates of the pure measurement error for the two response variables. Figure 4 shows the estimate

of the correlation between the two response variables over time. From the figure, the two response variables are positively

correlated, although the correlation changes slightly over time, which is consistent with our intuition that our cognitive function

and executive function would roughly increase or decrease together.

[Figure 4 about here]

6 CONCLUDING REMARKS

In previous sections, we have described a new methodology for analyzing multivariate longitudinal data with multiple response

variables using amultivariate single-indexmodel with random-effects. The proposedmodel allows for different link functions for

different response variables and can accommodate within-subject correlation and mutual correlation among different response

variables. Both theoretical justifications and numerical studies confirm that it can work well in practice. However, there are

still some issues related to the proposed method. First, while the consistency of the index coefficients has been established

in the paper, the statistical properties of the estimated variance components still need to be explored. More future research is

needed to establish the consistency of the estimated variance components and explore whether there are appropriate methods
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(e.g., the Restricted Maximum Likelihood approach) to reduce the bias in the estimated variance components. With a better

understanding of the impact of the local linear kernel smoothing technique used in estimating the link functions in the proposed

method on the estimation of the variance components, it might be possible to develop some information criteria like AIC and

BIC, and/or statistical tests like the likelihood ratio test and tests based on the restricted likelihood estimation to assess the

goodness-of-fit of the estimated model. Second, in the current model formulation, the single-indices used in Model (1) are

defined to be linear combinations of the predictors. Although the nonparametric link functions used in the model allow for a

quite flexible relationship between the response variables and their single indices, it might be more reasonable to define single

indices to be certain parametric functions of the predictors (e.g., linear functions of parametrically transformed predictors) in

some applications. In addition, the current method can only handle cases when all response variables are continuous. In many

applications, however, there could be binary or categorical response variables (e.g., whether a patient is recovered from a disease

or not). Generalization of the current method to such cases may not be straightforward. All these issues require much future

research to address.

SUPPORTING INFORMATION

Some supplementary materials on the proposed estimation procedure in Section 2, the asymptotic normality theorem in Section

3, and an additional set of simulation study mentioned in Section 4 can be found in the online supplementary file available at

the Wiley Library Online.
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Table 1 Summary of parameter estimates under M = 50 or 100 and m = 5. The true parameter values are �11 = 0.3714,
�12 = 0.7428, �13 = 0.5571, �21 = 0.5345, �22 = −0.2673, �23 = 0.8018, �21 = 0.01, �22 = 0.04, �11 = 0.16, �12 = 0.08,
�13 = 0.06, �14 = 0.06, �22 = 0.16, �23 = 0.06, �24 = 0.06, �33 = 0.36, �34 = 0.18, and �44 = 0.36. The Var and MSE
values are both in the unit of 10−3.

M = 50 M = 100

Parameter Mean Bias Var MSE Mean Bias Var MSE
�11 0.3717 0.0003 0.1561 0.1562 0.3711 -0.0003 0.0687 0.0688
�12 0.7356 -0.0072 0.0798 0.1310 0.7417 -0.0011 0.0260 0.0272
�13 0.5660 0.0089 0.1189 0.1985 0.5586 0.0015 0.0495 0.0519
�21 0.5261 -0.0084 0.5935 0.6647 0.5352 0.0006 0.2190 0.2194
�22 -0.2643 0.0030 0.2595 0.2682 -0.2679 -0.0006 0.1196 0.1199
�23 0.8076 0.0059 0.2276 0.2620 0.8009 -0.0009 0.0968 0.0976
�21 0.0140 0.0040 0.0127 0.0290 0.0137 0.0037 0.0046 0.0186
�22 0.0482 0.0082 0.0730 0.1411 0.0475 0.0075 0.0311 0.0866
�11 0.1519 -0.0081 0.4070 0.4721 0.1546 -0.0054 0.1279 0.1574
�12 0.0719 -0.0081 0.3035 0.3696 0.0739 -0.0061 0.1391 0.1759
�13 0.0574 -0.0026 0.4489 0.4558 0.0573 -0.0027 0.2159 0.2234
�14 0.0569 -0.0031 0.8106 0.8201 0.0575 -0.0025 0.3867 0.3932
�22 0.1608 0.0008 0.9369 0.9377 0.1587 -0.0013 0.4253 0.4270
�23 0.0548 -0.0052 0.7363 0.7637 0.0558 -0.0042 0.3448 0.3628
�24 0.0565 -0.0035 1.2275 1.2394 0.0554 -0.0046 0.5234 0.5444
�33 0.3486 -0.0114 2.3939 2.5235 0.3502 -0.0098 1.0481 1.1445
�34 0.1670 -0.0130 1.9169 2.0851 0.1645 -0.0155 0.9415 1.1826
�44 0.3512 -0.0088 9.3728 9.4501 0.3541 -0.0059 3.2946 3.3299
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Table 2 Summary of parameter estimates underM = 50 or 100 andm = 10. The true values of the parameters are �11 = 0.3714,
�12 = 0.7428, �13 = 0.5571, �21 = 0.5345, �22 = −0.2673, �23 = 0.8018, �21 = 0.01, �22 = 0.04, �11 = 0.16, �12 = 0.08,
�13 = 0.06, �14 = 0.06, �22 = 0.16, �23 = 0.06, �24 = 0.06, �33 = 0.36, �34 = 0.18, and �44 = 0.36. The Var and MSE
values are both in the unit of 10−3.

M = 50 M = 100

Parameter Mean Bias Var MSE Mean Bias Var MSE
�11 0.3713 -0.0001 0.0587 0.0587 0.3711 -0.0003 0.0297 0.0298
�12 0.7409 -0.0019 0.0401 0.0435 0.7417 -0.0011 0.0234 0.0246
�13 0.5595 0.0024 0.0932 0.0989 0.5586 0.0016 0.0492 0.0516
�21 0.5347 0.0002 0.2170 0.2170 0.5339 -0.0006 0.1340 0.1344
�22 -0.2681 -0.0009 0.1002 0.1010 -0.2672 0.0001 0.0474 0.0474
�23 0.8011 -0.0007 0.1039 0.1043 0.8021 0.0003 0.0582 0.0582
�21 0.0141 0.0041 0.0053 0.0223 0.0128 0.0028 0.0025 0.0105
�22 0.0471 0.0071 0.0265 0.0766 0.0448 0.0048 0.0118 0.0345
�11 0.1520 -0.0080 0.3339 0.3979 0.1565 -0.0035 0.1122 0.1244
�12 0.0714 -0.0086 0.2273 0.3006 0.0759 -0.0041 0.0904 0.1075
�13 0.0578 -0.0022 0.3375 0.3421 0.0592 -0.0008 0.1683 0.1689
�14 0.0555 -0.0045 0.5467 0.5665 0.0578 -0.0022 0.2255 0.2304
�22 0.1565 -0.0035 0.5669 0.5791 0.1580 -0.0020 0.2691 0.2730
�23 0.0531 -0.0069 0.4174 0.4652 0.0564 -0.0036 0.1960 0.2091
�24 0.0557 -0.0043 0.6434 0.6617 0.0563 -0.0037 0.3023 0.3159
�33 0.3518 -0.0082 1.6286 1.6963 0.3527 -0.0073 0.6559 0.7094
�34 0.1641 -0.0159 1.2756 1.5289 0.1719 -0.0081 0.5500 0.6157
�44 0.3448 -0.0152 6.7558 6.9857 0.3489 -0.0111 1.9506 2.0741

Table 3 Estimation errors
∑3
p=1(�̂1p − �1p)

2 and
∑3
p=1(�̂2p − �2p)

2 computed based on 250 repeated simulations under different
scenarios. All values are in the unit of 10−3, and the smallest value in each case among the three methods is in bold.

rMAVE P-spline MK

Scenario M m �1 �2 �1 �2 �1 �2

1
50 5 0.0714 0.6153 1.2538 1.2538 0.0777 0.6264

10 0.0334 0.2641 0.9071 0.9071 0.0353 0.2691

100 5 0.0344 0.2622 0.9659 0.9659 0.0351 0.2676
10 0.0188 0.1510 0.9429 0.9429 0.0192 0.1561

2
50 5 1.0687 4.9204 1.3866 1.3866 0.1051 0.7887

10 0.5301 3.0934 1.2542 1.2542 0.0418 0.3049

100 5 0.5422 2.7060 1.2460 1.2460 0.0498 0.3446
10 0.2769 1.3737 1.0708 1.0708 0.0217 0.1730

3
50 5 2.0256 11.5785 2.0781 2.0781 0.1952 1.2008

10 1.0855 5.5032 1.5277 1.5277 0.0819 0.4236

100 5 1.0902 6.5289 1.5758 1.5758 0.0884 0.4318
10 0.5847 2.8336 1.2806 1.2806 0.0423 0.2401

4
50 5 3.3489 11.5785 184.7875 97.2147 0.4857 1.1949

10 1.9145 5.5032 1.2944 1082.6353 0.2012 0.4224

100 5 1.5131 6.5289 1.3015 1082.1406 0.1479 0.4369
10 0.9531 2.8336 0.6901 1087.0904 0.1059 0.2401
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Figure 1 In each plot, the black solid line denotes the true link function  1, the gray dashed line denotes its averaged pointwise
estimate, and the black dashed lines denote the pointwise 95% confidence interval. The results are based on 250
repeated simulations.
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Table 4 Estimated index coefficient parameters with their standard errors (in parentheses) computed by a bootstrap procedure
with 250 bootstrap samples.

Outcomes Well-being Physical activity Age
Executive function score 0.7614 (0.2541) -0.5206 (0.2052) 0.3863 (0.3705)

Memory score 0.5129 (0.2148) -0.3410 (0.3290) 0.7878 (0.7317)
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Figure 2 In each plot, the black solid line denotes the true link function  2, the gray dashed line denotes its averaged pointwise
estimate, and the black dashed lines denote the pointwise 95% confidence interval. The results are based on 250
repeated simulations.
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Figure 3 Estimates of the link functions  1 and  2 (solid lines) and their 95% pointwise confidence intervals (dashed lines)
computed by a bootstrap procedure with 250 bootstrap samples.
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Figure 4 Estimated correlation between executive function score and memory score of a specific subject over measurement time
in years.
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