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Abstract Medical treatments often take a period of time to reveal their impact on

subjects, which is the so-called time-lag effect in the literature. In the survival data

analysis literature, most existing methods compare two treatments in the entire study

period. In cases when there is a substantial time-lag effect, these methods would

not be effective in detecting the difference between the two treatments, because the

similarity between the treatments during the time-lag period would diminish their

effectiveness. In this paper, we develop a novel modeling approach for estimating

the time-lag period and for comparing the two treatments properly after the time-lag

effect is accommodated. Theoretical arguments and numerical examples show that it

is effective in practice.

Keywords Cox proportional hazards model · Crossing hazard rates · Lag effect ·
Survival analysis · Treatment comparison

1 Introduction

Survival analysis is a powerful tool for analyzing time to event data. One impor-

tant task in survival analysis is to evaluate treatment effect by comparing two hazard

rate functions (Klein and Moeschberger, 2005). To this end, many testing procedures

(e.g., Log-rank, Gehan-Wilcoxon, and Peto-Peto tests) have been developed in the

literature. Most of them are under the assumption that the Cox proportional hazards

model is appropriate (Bain and Englehardt, 1991). There are also some discussions

about cases when the two hazard rate functions cross each other (Chen et al, 2016;

Cheng et al, 2009; Lin and Wang, 2004; Liu et al, 2007; O’Quigley, 1994; Park and

Qiu, 2014; Qiu and Sheng, 2008). This paper focuses on cases when the two hazard

rate functions are similar in the first period of time and quite different afterwards. This

scenario occurs when treatments have time-lag effects, and is popular in practice.

Figure 1 presents the life-table estimates of the hazard rate functions of the rats

data from Mantel et al (1977). The data contain a drug group of 50 rats and a placebo

group of 100 rats. Rats in the first group were treated with a drug and those in the

second group were given a placebo. The event of interest in this example is the for-

mation of tumor. From Figure 1, it can be seen that the two hazard curves are almost

the same until about 80 days, and the one of the drug group tends to be above that

of the placebo group afterwards. A more detailed description of the rats data and its

statistical analysis can be found in Section 4.

The above example shows the treatment time-lag effect, and such examples are

common in practice. In the survival analysis literature, however, most existing meth-

ods compare the two hazard rate functions (or survival functions) in the entire study

period. If these traditional methods are used in cases with treatment time-lag effect,

then they would not be effective in detecting the difference between the two treat-

ment groups, because the similarity of the two treatment groups during the time-lag

period could attenuate their overall difference. In applications with treatment time-

lag effect, it is important to estimate how long the time-lag effect lasts, and whether

the two treatment groups are significantly different afterwards. In the literature, there

is a limited existing discussion about these issues. For instance, Dinse et al (1993)

proposed an estimate of the time-lag period based on Kaplan-Meier estimates of the



Evaluation of the Treatment Time-Lag Effect for Survival Data 3

Time to tumor incidence

H
az

ar
d 

ra
te

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 = Drug
0 = Placebo

Fig. 1 Estimates of the hazard rate functions for the rats data.

survival functions. Because this estimate was defined as the largest time point τ∗

such that a two-sided Z-test for comparing the two survival functions in [0,τ∗] gave

an insignificant result, it would over-estimate the true time-lag period constantly, as

demonstrated in Section 3. Also, that paper did not discuss how to compare the two

hazard rate functions after the time-lag point was estimated. Zucker and Lakatos

(1990) proposed two weighted log-rank type statistics for comparing two survival

functions that were robust to treatment time-lag effects. However, to use these meth-

ods, we need to specify a potential time-lag point, which is often difficult in practice.

In both papers, covariates effect cannot be accommodated.

This paper tries to address estimation of the time-lag point and proper compar-

ison of the two hazard rate functions simultaneously by proposing a modeling ap-

proach. Our model is a generalization of the conventional Cox proportional hazards

model, and it can accommodate both treatment time-lag effect and covariates effect.

To estimate its parameters, the maximum partial likelihood estimation and a bootstrap

resampling procedure are used. Certain asymptotic properties of the estimators, in-

cluding consistency and asymptotic distributions, are provided. Numerical examples

show that this method works well in practice.

The remaining part of the paper is organized as follows. In Section 2, our pro-

posed model that addresses the treatment time-lag effect is described. Model estima-

tion and some theoretical properties of the estimators are also discussed. Simulation

studies about the proposed method are presented in Section 3. Applications to two

real-data examples are discussed in Section 4. Several remarks conclude the paper in
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Section 5. Some technical details, including theorem proofs and several lemmas, are

given in a supplementary file.

2 Proposed Method

2.1 Proposed model

Assume that there are n subjects. For the ith subject, T o
i denotes the true survival

time, and Ci is the censoring time, where i= 1, . . . ,n. Then, we observe (Ti,δi), where

Ti = min(T o
i ,Ci) and δi = I(T o

i ≤Ci). Let X(t) be the p-dimensional covariate vector

that may depend on the time t, and g be the group indicator (i.e., gi = 1 if the ith

subject is in the treatment group, and 0 otherwise). For the n subjects, the observed

data are then {(Ti,δi,Xi(t),gi), for i = 1, . . . ,n}. Among the subjects, we assume that

their observations are independent. Also, we assume that the true survival time T o
i

and the censoring time Ci are independent, given Xi(t), for i = 1, . . . ,n. Then, our

proposed model is

λ (t|X(t),g) = λ0(t)exp{α ′X(t)+β ′
X(t)(t − τ)I(t > τ)g}, (1)

where λ0(t) is a baseline hazard rate function, α and β are p-dimensional regression

coefficient vectors, and τ denotes the lag time. From model (1), when t ≤ τ , the

hazard ratio is
λ (t|X(t),g = 1)

λ (t|X(t),g = 0)
= 1,

and when t > τ , it becomes

λ (t|X(t),g = 1)

λ (t|X(t),g = 0)
= exp{β ′

X(t)(t − τ)}.

From the above two expressions, we can see that in the case when β = 0, the two

hazard rate functions are identical all the time. In the case when β 6= 0, the two hazard

rate functions are the same when t ≤ τ , different when t > τ , and the magnitude of

difference depends on the value of β . From this description of model (1), we can see

that the time-lag period is described by τ , and the difference between the two hazard

rate functions after τ is described by β .

Note that model (1) guarantees the two hazard rate functions to be continuous

when accommodating the time-lag effect. We can consider several variants. For in-

stance, if the hazard ratio does not need to be a continuous function of t, then the

following simpler model can be considered:

λ (t|X(t),g) = λ0(t)exp{α ′X(t)+β ′
X(t)I(t > τ)g}.

The log hazard ratio changes from 0 to β ′
X(t) before and after τ in such cases. Model

(1) also can be generalized to a more flexible one by including more terms, such as

the following

λ (t|X(t),g) = λ0(t)exp{α ′X(t)+β ′
X(t)(t−τ)I(t > τ)g+γ ′X(t)(t−τ)2I(t > τ)g},
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where γ is a regression coefficient vector.

It is worth mentioning that in practice, the time-lag treatment effect and covariate

effect may not be necessarily related. So, we can also consider a model such as the

following:

λ (t|X(t),g) = λ0(t)exp{α ′X(t)+β (t − τ)I(t > τ)g}.

Estimation of this model is similar to that of (1).

When there are many covariates in a model, we can choose the best sub-model

using a model selection criterion, such as the AIC, AICc, BIC, and BICc (cf., Park

and Qiu, 2014). The formulas of these model selection criteria are

−2log(Lmax)+ψ(n,k,r),

where Lmax is the maximum value of the likelihood function of a sub-model under

consideration, k is the number of parameters in the model, r is the number of un-

censored survival times, and ψ(n,k,r) = 2k,2k+2k(k+1)/(n−k−1),k log(n), and

k log(r), respectively, for the criteria AIC, AICc, BIC, and BICc.

2.2 Model estimation

Estimation of model (1) can be accomplished by maximizing the Cox partial likeli-

hood function (Cox, 1972) of the parameter vector θ = (α ′,β ′,τ)′:

Ln(θ) =
n

∏
i=1

{
exp{α ′Xi(Ti)+β ′

Xi(Ti)(Ti − τ)I(Ti > τ)gi}
∑n

j=1 Yj(Ti)exp{α ′Xi(Ti)+β ′
Xi(Ti)(Ti − τ)I(Ti > τ)g j}

}δi

, (2)

where Yj(t) = I(Tj ≥ t) indicates whether the jth subject is under risk at time t. Then,

the log partial likelihood function ln(θ) = logLn(θ) is given by

ln(θ) =
n

∑
i=1

δi

{
α ′Xi(Ti)+β ′

Xi(Ti)(Ti − τ)I(Ti > τ)gi

}

−δi log

{
n

∑
j=1

Yj(Ti)exp{α ′Xi(Ti)+β ′
Xi(Ti)(Ti − τ)I(Ti > τ)g j}

}
.

(3)

Let ψ = (α ′,β ′)′. Then, for each fixed τ , we can obtain the maximum partial likeli-

hood estimators ψ̂(τ) = (α̂(τ)′, β̂ (τ)′)′ such that

ψ̂(τ) = argmax
ψ

ln(ψ,τ).

From the equation (2), the score function U(ψ) is given by the first derivative of

ln(ψ,τ) with respect to ψ , and the information matrix I(ψ) is given by the negative

of the second derivative of ln(ψ,τ) with respect to ψ . Then, the maximum partial

likelihood estimate of ψ for each fixed τ can be obtained by solving the equation

U(ψ) = 0. Numerically, this can be achieved by using the Newton-Raphson iterative



6

algorithm. More specifically, let ψ(k) be the estimate of ψ in the kth iteration. Then,

the updated estimate in the (k+1)th iteration would be

ψ(k+1) = ψ(k)+ I(ψ(k))−1U(ψ(k)),

where U(ψ(k)) and I(ψ(k)) are respectively the score function and information matrix

evaluated at ψ(k).

The inverse of the information matrix, evaluated at ψ̂(τ), can be used as an esti-

mate of the variance-covariance matrix of ψ̂(τ), from which we can obtain standard

errors of the estimated regression coefficients. Then, we can construct confidence in-

tervals for ψ . More specifically, let z1−α/2 be the (1−α/2)th percentile of a standard

normal distribution. Then, an asymptotic 100(1−α)% confidence interval for ψ is

given by

ψ̂(τ)± z1−α/2I(ψ̂(τ))−1/2.

For τ , we can obtain its estimator by maximizing ln(ψ̂(τ),τ). To this end, we can

plot ln(ψ̂(τ),τ) against τ to identify the maximizer. Or, the grid search algorithm can

be employed here for finding the grid point of τ resulting in the maximum likelihood.

However, the maximum likelihood estimate of τ may not be unique. Therefore, our

final estimator of τ is defined by

τ̂ = argmin{τ∗ : τ∗ = argmax
τ

ln(ψ̂(τ),τ)}.

As a side note, we have assumed that there are no ties among uncensored event times

in the above model estimation procedure for simplicity. Otherwise, the Breslow’s or

Efron’s likelihoods should be used in (2) (cf., Chapter 8, Klein and Moeschberger,

2005).

For obtaining a confidence interval for τ , we consider a bootstrap method de-

scribed below. Remember that the observed data are D = {(Ti,δi,Xi(Ti),gi), i =
1, . . . ,n}. To keep the sample sizes of the treatment and control groups, we resam-

ple the two groups of data separately. Assume that there are n1 subjects in the control

group, and n2 subjects in the treatment group. Then, we repeatedly draw n1 observa-

tions from the control group, and n2 observations from the treatment group. The two

parts are then combined as a single bootstrap sample. From each bootstrap sample,

we can compute a point estimate of τ by using the proposed method described above.

This process is repeated B times to obtain B bootstrap estimates of τ , from which the

distribution of τ̂ can be estimated empirically. The 95% confidence interval for τ is

then constructed using the 2.5th and 97.5th percentiles of the B bootstrap estimates

of τ .

2.3 Theoretical properties

We discuss some statistical properties of the parameter estimates described in the

previous part. First, introduce some notation. Let Y(t) = (Y1(t), . . . ,Yn(t))
′, Zi(t) =
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(Z1i(t)
′,Z2i(t))

′, Z1i(t) = Xi(t), Z2i(t) = Xi(t)(t − τ)I(t > τ)gi, and

S(0)(t;θ) =
1

n

n

∑
i=1

Yi(t)exp{ψ ′Zi(t)}=
1

n

n

∑
i=1

Yi(t)exp{α ′Z1i(t)+β ′
Z2i(t)},

S(1)(t;θ) =
∂S(0)(t;θ)

∂ψ
=

1

n

n

∑
i=1

Yi(t)Zi(t)exp{ψ ′Zi(t)},

S(2)(t;θ) =
∂S(1)(t;θ)

∂ψ
=

1

n

n

∑
i=1

Yi(t)Zi(t)
⊗2 exp{ψ ′Zi(t)},

E(t;θ) =
S(1)(t;θ)

S(0)(t;θ)
,

V(t;θ) =
S(2)(t;θ)

S(0)(t;θ)
−E(t;θ)⊗2,

(4)

x⊗0 = 1, x⊗1 = x, and x⊗2 = xx′. Note that S(0)(t;θ) is a scalar, S(1)(t;θ) and E(t;θ)
are 2p-dimensional vectors, and S(2)(t;θ) and V(t;θ) are 2p× 2p matrices. In the

case when t < τ , S(k)(t;α) = 1
n ∑n

i=1 Yi(t)Z1i(t)
⊗k exp{α ′Z1i(t)}, for k = 0,1,2. To

establish the asymptotic properties of the estimators, the following assumptions are

needed and some of them are adapted from Andersen and Gill (1982).

(A.1) The basline hazard rate function λ0(t) is continuous in a neighborhood of τ ,

inf
t∈[0,t∗]

λ0(t)> 0, and
∫ t∗

0 λ0(t)dt < ∞, where [0, t∗] denotes the study period.

(A.2) For k = 0,1,2,

E

[
sup

t∈[0,t∗],θ

{
‖Z(t)‖k exp

(
ψ ′Z(t)

)}2

]
< ∞,

where ‖x(t)‖ is the supremum norm across all elements of the vector x.

(A.3) For k = 0,1,2,

sup
t∈[0,t∗],θ

∥∥∥S(k)(t;θ)− s(k)(t;θ)
∥∥∥ P−→ 0,

where s(k)(t;θ) = E[S(k)(t;θ)].
(A.4) There exists a constant ε > 0 such that

n−
1
2 sup

i,t

√
Zi(t)′Zi(t)Yi(t)I

(
ψ ′Zi(t)>−ε

√
Zi(t)′Zi(t)

)
P−→ 0.

(A.5) Let e(t;θ) = s(1)(t;θ)/s(0)(t;θ) and v(t;θ) = s(2)(t;θ)/s(0)(t;θ)−e(t;θ)⊗2. As-

sume that s(0)(t;θ), s(1)(t;θ), and s(2)(t;θ) are continuous bounded functions of

θ and t, and uniformly continuous in t ∈ [0, t∗], and the matrix

∫ t

0
v(t̃;θ)s(0)(t̃;θ)λ0(t̃)dt̃

is positive definite.
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Theorem 1 Under the assumptions (A.1) - (A.5), (i) the estimators α̂ , β̂ , and τ̂
are all consistent in probability, (ii) the convergence rate of each component in α̂ and

β̂ to the corresponding component in α and β is O(n−1/2), and (iii) the convergence

rate of τ̂ to τ is O(n−1).

Let v−(t) and v+(t) be two independent jump processes such that v−(t) is a Pois-

son random variable at each t with rate parameter −p−0 (τ;Z2)t on R− and v+(t) is

a Poisson variable at each t with rate parameter p+0 (τ
+;Z2)s on R+, where τ+ =

max(τ ,0),

p−0 (t;Z2) = E
[
λ0(t)Y (t)exp(α ′Z1(t))|Z2(t)

]
,

p+0 (t;Z2) = E
[
λ0(t)Y (t)exp(α ′Z1(t)+β ′

Z2(t))|Z2(t)
]
.

For k ≥ 1, let V−
k and V+

k be independent sequences of i.i.d. random variables with

respective conditional characteristic functions

ϕ−(t;Z2) = E
[
exp(itV−

k )|Z2(τ)
]
,

ϕ+(t;Z2) = E
[
exp(itV+

k )|Z2(τ
+)

]
.

Conditional on Z2(τ), both V−
k and V+

k are assumed to be independent of v− and v+.

Let Q(t) = Q−(t)I(t < 0)−Q+(t)I(t > 0) be the right-continuous jump process with

Q−(t) =
v−(t)

∑
k=0

V−
k + v−(t) log

{
s(0)(τ;α)

s(0)(τ;ψ)

}
=

v−(t)

∑
k=0

V−
k + v−(t)d0(τ),

Q+(t) =
v+(t)

∑
k=0

V+
k + v+(t) log

{
s(0)(τ;α)

s(0)(τ;ψ)

}
=

v+(t)

∑
k=0

V+
k + v+(t)d0(τ),

where d0(t) = log
{

s(0)(t;α)/s(0)(t;ψ)
}

, and s(0)(t;α) is s(0)(t;θ) when β = 0.

Theorem 2 Under the assumptions (A.1) - (A.5),

(i)
√

n(ψ̂ −ψ) has an asymptotically normal distribution N(0,Σ(θ)−1), where

Σ(θ) =

(
Σ11(θ) Σ12(θ)
Σ21(θ) Σ22(θ)

)
,

Σ11(θ) is the upper-left p× p submatrix of
∫ t

0 v(t̃;θ)s(0)(t̃;θ)λ0(t̃)dt̃, Σ12(θ) is

the upper-right p× p submatrix of
∫ t

τ v(t̃;θ)s(0)(t̃;θ)λ0(t̃)dt̃, Σ21(θ) = Σ12(θ)
′,

and Σ22(θ) is the lower-right p× p submatrix of
∫ t

τ v(t̃;θ)s(0)(t̃;θ)λ0(t̃)dt̃.

(ii) n(τ̂ − τ) coverges in probability to MQ = inf{m : m = argmaxt Q(t)}.

(iii) ψ̂ and τ̂ are asymptotically independent.
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2.4 Testing of β

From model (1), comparison of the two hazard rate functions of the treatment and

control groups can be accomplished by testing the hypotheses

H0 : β = 0 versus Ha : β 6= 0. (5)

Based on the asymptotic normality of β̂ in Theorem 2, we can conduct the Wald test

using the test statistic

β̂
′ [

Var(β̂ )
]−1

β̂ , (6)

and the asymptotic null distribution of this statistic is χ2
p . For testing the hypotheses

in (5), an alternative approach is to use the likelihood ratio test (LRT) with the test

statistic

−2(logLR − logLF) , (7)

where LF and LR denote the likelihoods of the full model (i.e., model (1)) and the

reduced model (i.e., model (1) with β = 0), respectively. The asymptotic null distri-

bution of this statistic is also χ2
p .

3 Simulation Study

In this section, we present some simulation results to evaluate the numerical perfor-

mance of the proposed method described in Section 2. First, we consider the follow-

ing simple model without any covariates:

λ (t|X(t),g) = λ0(t)exp{β (t − τ)I(t > τ)g}, (8)

in which β = 1, τ = 1, and the baseline hazard rate is assumed to be λ0(t) = 0.5.

The numbers of subjects in the treatment and control groups are assumed to be the

same (i.e., n1 = n2). They are either 150 or 200. The censoring time is generated from

the uniform distribution on the interval [a,b], where a and b are adjusted to reach a

pre-specified censoring rate. In the simulation, we consider the two censoring rates

of 20% and 40%.

For comparison purposes, besides the proposed method, we also consider 6 commonly-

used existing methods: Log-rank, Gehan-Wilcoxon, Tarone-Ware, Peto-Peto, a mod-

ified Peto-Peto, and Fleming-Harrington (cf., Chapter 7, Klein and Moeschberger,

2005). Their test statistics all take the following form:

k

∑
i=1

w(ti)
(

di1 − yi1
di
yi

)

√
k

∑
i=1

w(ti)2 yi1
yi

(
1− yi1

yi

)(
yi−di

yi−1

)
di

, (9)

where t1 < · · ·< tk are the distinct observed event times of both the control and treat-

ment groups, {w(ti)} are weights, di j is the ith event in the jth group, di = di1+di2, yi j

is the number of subjects in group j who are at risk at time ti, and yi = yi1+yi2, for j =
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1,2. The weight w(ti) is 1,yi,
√

yi, S̃(ti), S̃(ti)
yi

yi+1
, and

{
Ŝ(ti−1)

}r1
{

1− Ŝ(ti−1)
}r2

,

respectively, for the methods Log-rank, Gehan-Wilcoxon, Tarone-Ware, Peto-Peto,

modified Peto-Peto, and Fleming-Harrington, where Ŝ(t)=∏ti≤t

(
1− di

yi

)
is the Kaplan-

Meier estimator of the survival function S(t), S̃(t) = ∏ti≤t

(
1− di

yi+1

)
is its modifi-

cation, and r1,r2 ≥ 0 are two parameters. Furthermore, the estimate of the time-lag

point by Dinse et al (1993) with α = 0.05 and the robust survival function compari-

son method by Zucker and Lakatos (1990) are also considered here (see Section 1 for

a brief description). In the method by Zucker and Lakatos (1990), there are two dif-

ferent versions of the test statistic. We use the one based on the maximum efficiency,

as recommended by the authors of that paper. To use this method, we need to specify

the time-lag point. To this end, three cases when the specified time-lag point is equal

to, smaller than or larger than the true time-lag point are considered.

First, we evaluate the accuracy of the parameter estimates. Based on 1,000 repli-

cated simulations, the averaged point estimates along with the bias and mean square

error values of the estimated parameters are summarized in Table 1. Because the six

methods based on (9) and the one by Zucker and Lakatos (1990) do not provide es-

timates of the time-lag point, they are not included. From the table, we can see that

(i) the point estimates of our proposed method are closer to the true parameter values

when the sample sizes are larger, (ii) both the bias and mean square error values of

its estimated parameters are smaller when the sample sizes increase, (iii) the mean

square error values of β̂ are larger when the censoring rates increase, and (iv) the

estimate of the time-lag point by the method in Dinse et al (1993) is much larger than

the true parameter value. The results (i) and (ii) are consistent with the consistency

results in Theorem 1, and the result (iv) is consistent with our intuition as mentioned

in Section 1.

Table 1 Averaged point estimates and bias and mean square error (MSE) values of the estimated param-

eters, based on 1000 replicated simulations for model (8). In the table, n1 and n2 denote the number of

subjects in each group, and CR denotes the censoring rate.

CR Method True Parameters

n1 = n2 = 150 n1 = n2 = 200

Point
Bias MSE

Point
Bias MSE

Estimates Estimates

20%
Proposed

τ = 1 1.233 0.233 0.119 1.248 0.248 0.118

β = 1 1.031 0.031 0.158 1.006 0.006 0.119

Dinse et al. τ = 1 3.213 2.213 5.162 3.155 2.155 4.988

40%
Proposed

τ = 1 1.095 0.095 0.110 1.101 0.101 0.104

β = 1 1.211 0.211 0.413 1.158 0.158 0.317

Dinse et al. τ = 1 2.659 1.659 2.920 2.595 1.595 2.768

To compare the hazard rate functions of the two groups, we conduct the hypothe-

sis testing of (5) using both the Wald test (6), the likelihood ratio test (7), the 6 exist-

ing methods mentioned above related to (9), and the method by Zucker and Lakatos

(1990). For the 6 existing methods considered, besides the regular comparison of the

hazard rate functions in the entire study period, we also use them to compare the haz-

ard rate functions in the time period after τ̂ . In the method by Zucker and Lakatos, we
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Table 2 The proportions of rejecting the null hypothesis of various different methods for testing the differ-

ence between the two hazard rate functions related to model (8) based on a significance level 0.05. Some

entries have two values, with the first one being proportion of rejections computed in the entire study pe-

riod and the second one computed in the time period after τ̂ . The results are based on 1,000 replicated

simulations. In the table, n1 and n2 denote the number of subjects in each group, and CR denotes the

censoring rate.

CR Testing Method
n1 = n2 = 150 n1 = n2 = 200

Entire After τ̂ Entire After τ̂

20%

Wald test 0.966 0.995

Likelihood ratio test 0.967 0.995

Log-rank 0.051 0.850 0.062 0.950

Gehan-Wilcoxon 0.071 0.120 0.086 0.232

Tarone-Ware 0.026 0.494 0.024 0.680

Peto-Peto 0.050 0.300 0.050 0.513

Modified Peto-Peto 0.050 0.280 0.054 0.495

Fleming-Harrington (r1 = 0,r2 = 1) 0.589 0.965 0.732 0.996

Fleming-Harrington (r1 = 1,r2 = 0) 0.050 0.305 0.050 0.515

Fleming-Harrington (r1 = 1,r2 = 1) 0.038 0.919 0.046 0.971

Zucker and Lakatos (τ∗ = 0.5) 0.105 0.130

Zucker and Lakatos (τ∗ = 1.0) 0.299 0.410

Zucker and Lakatos (τ∗ = 2.0) 0.762 0.878

40%

Wald test 0.915 0.961

Likelihood ratio test 0.920 0.965

Log-rank 0.111 0.751 0.155

Gehan-Wilcoxon 0.022 0.170 0.014

Tarone-Ware 0.021 0.426 0.018

Peto-Peto 0.021 0.372 0.015

Modified Peto-Peto 0.021 0.352 0.015

Fleming-Harrington (r1 = 0,r2 = 1) 0.631 0.921 0.782

Fleming-Harrington (r1 = 1,r2 = 0) 0.022 0.382 0.015

Fleming-Harrington (r1 = 1,r2 = 1) 0.155 0.890 0.216

Zucker and Lakatos (τ∗ = 0.5) 0.217 0.315

Zucker and Lakatos (τ∗ = 1.0) 0.435 0.603

Zucker and Lakatos (τ∗ = 2.0) 0.745 0.872

need to specify the time-lag point. In this study, we specify it to be τ∗ = 0.5, 1.0, or

2.0. With a significance level 0.05, the proportions of rejecting the null hypothesis by

these methods based on 1,000 replicated simulations are presented in Table 2. From

the table, we can see that both the Wald test and the likelihood ratio test give very sig-

nificant results, while none of the 6 alternative methods based on (9) could detect the

difference between two hazard rate functions in the entire study period and in the time

period after τ̂ , except the Fleming-Harrington test when r2 = 1 and the time period of

comparison is after τ̂ . It is well known that the Fleming-Harrington test gives more

weights to departures occurring late in time when r1 = 0 and r2 > 0 and middle in

time when r1 = r2, and this explains why it performs well in this case. Regarding the

method by Zucker and Lakatos, it is quite significant only when the specified time-lag

point is much larger than the true time-lag point (i.e., when τ∗ = 2.0). Even in this

case, it has much less power compared to the proposed Wald test and the likelihood

ratio test.

The empirical coverage probabilities and empirical mean length for the 95% and

99% confidence intervals for the parameters related to model (8) based on 100 repli-
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cated simulations are presented in Table 3. The empirical coverage probabilities are

reported as the proportions of the confidence intervals that cover the true parame-

ters, and the empirical mean lengths of the confidence intervals are reported as the

averaged lengths of the confidence intervals. From Table 3, it can be seen that (i) the

empirical coverage probabilities appear to be a little smaller than the confidence lev-

els, (ii) the empirical mean length decreases as the sample size increases, and (iii) for

a given sample size, an increase in confidence level yields greater empirical coverage

probabilities and wider empirical mean lengths.

Table 3 The empirical coverage probabilities and empirical mean lengths of the 95% and 99% confidence

intervals for the parameters in model (8). The results are based on 100 replicated simulations. In the table,

n1 and n2 denote the number of subjects in each group, and CR denotes the censoring rate.

CR Parameters
Confidence Empirical coverage probabilities Empirical mean lengths

levels (%) n1 = n2 = 150 n1 = n2 = 200 n1 = n2 = 150 n1 = n2 = 200

20%

τ
95 0.87 0.87 1.377 1.224

99 0.98 0.97 1.692 1.543

β
95 0.91 0.88 0.992 0.860

99 0.95 0.92 1.304 1.131

40%

τ
95 0.96 0.93 1.640 1.501

99 0.99 0.99 1.853 1.771

β
95 0.93 0.88 1.393 1.167

99 0.99 0.97 1.830 1.534

Next, we consider the following more general model containing a time-independent

covariate and a time-dependent covariate:

λ (t|X(t),g) = λ0(t)exp{α1x1 +α2x1t +(β0 +β1x1)(t − τ)I(t > τ)g}, (10)

where the baseline hazard rate is assumed to be λ0(t) = 0.4, and the model parameter

values are set to be α1 =−1, α2 = 0.5, β0 = 0.5, β1 =−0.7, and τ = 2. The covariate

x1 is assumed to follow the Bernoulli distribution with the probability of success 0.5.

The sample sizes are set to be n1 = n2 = 150 or n1 = n2 = 300. The censoring time is

generated from the uniform distribution on [1,8], and the resulting censoring rate is

about 20%. Table 4 presents the results about the point estimates of the parameters,

based on 1,000 replicated simulations. Similar conclusions can be made from this

table to those from Table 1. The results of the hypothesis testing based on H0 : β0 =
β1 = 0 of various different methods are shown in Table 5. Again, only the Wald test

and the likelihood ratio test can detect the difference between the two hazard rate

functions in this example. Table 6 presents the empirical coverage probabilities and

empirical mean lengths of the 95% and 99% confidence intervals for the parameters

in model (10), based on 100 replicated simulations. Similar conclusions can be made

from this table to those from Table 3.

4 Applications

In this section, we illustrate our proposed method using two real-data examples. The

first one is about tumorigenesis of a drug described in Section 1 (cf., Figure 1). Rats
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Table 4 Averaged point estimates and bias and mean square error (MSE) values of the estimated param-

eters, based on 1,000 replicated simulations for model (10). In the table, n1 and n2 denote the number of

subjects in each group.

Method

n1 = n2 = 150 n1 = n2 = 300

True Point
Bias MSE

Point
Bias MSE

Parameters Estimates Estimates

Proposed

τ = 2 2.097 0.097 0.459 2.046 0.046 0.324

α1 =−1 -1.003 -0.003 0.062 -1.000 0.000 0.030

α2 = 0.5 0.693 0.193 0.263 0.587 0.087 0.084

β0 = 0.5 0.508 0.008 0.020 0.503 0.003 0.009

β1 =−0.7 -0.943 -0.243 0.366 -0.817 -0.117 0.122

Dinse et al. τ = 2 6.268 4.268 18.554 6.626 4.626 21.736

Table 5 The proportions of rejections of various different methods for testing the difference between the

two hazard rate functions related to model (10) based on a significance level 0.05. Some entries have two

values, with the first one being proportion of rejections computed in the entire study period and the second

one computed in the time period after τ̂ . The results are based on 1,000 replicated simulations. In the table,

n1 and n2 denote the number of subjects in each group.

Testing Method
n1 = n2 = 150 n1 = n2 = 200

Entire After τ̂ Entire After τ̂

Wald test 0.951 1.000

Likelihood ratio test 0.726 0.955

Log-rank 0.028 0.078 0.034 0.134

Gehan-Wilcoxon 0.022 0.031 0.029 0.046

Tarone-Ware 0.022 0.042 0.023 0.067

Peto-Peto 0.022 0.034 0.025 0.056

Modified Peto-Peto 0.022 0.033 0.025 0.057

Fleming-Harrington (r1 = 0,r2 = 1) 0.057 0.133 0.098 0.241

Fleming-Harrington (r1 = 1,r2 = 0) 0.022 0.034 0.026 0.056

Fleming-Harrington (r1 = 1,r2 = 1) 0.025 0.099 0.028 0.121

Zucker and Lakatos (τ∗ = 0.5) 0.032 0.043

Zucker and Lakatos (τ∗ = 1.0) 0.047 0.074

Zucker and Lakatos (τ∗ = 2.0) 0.139 0.229

Table 6 Empirical coverage probabilities and empirical mean lengths of the 95% and 99% confidence

intervals for the parameters in model (10). The results are based on 100 replicated simulations. In the

table, n1 and n2 denote the number of subjects in each group.

Parameters
Confidence Empirical coverage probabilities Empirical mean length

levels (%) n1 = n2 = 150 n1 = n2 = 200 n1 = n2 = 150 n1 = n2 = 200

τ
95 0.98 0.95 1.885 1.715

99 1.00 0.98 1.980 1.882

α1
95 0.94 0.92 0.971 0.684

99 1.00 0.99 1.276 0.899

α2
95 0.79 0.77 1.091 0.657

99 0.87 0.91 1.433 0.864

β0
95 0.94 0.95 0.514 0.356

99 0.97 0.99 0.676 0.468

β1
95 0.80 0.78 1.352 0.831

99 0.91 0.91 1.777 1.093

were taken from 50 distinct female litters. From each litter, one rat was randomly se-

lected and applied the drug, and another two rats were randomly selected and applied
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the placebo. The event of interest was the formation of tumor, and the study lasts for

100 days. So, there were a total of 50 rats in the drug group (i.e., g = 1), and a total

of 100 rats in the placebo group (g = 0). The censoring rate for the drug group was

about 48%, and the censoring rate for the placebo group was about 66%. This dataset

was previously analyzed by several authors, including Mantel et al (1977), and it is

available in the R package survival. Because there are no covariates in this data, the

following model is considered:

λ (t|g) = λ0(t)exp{β (t − τ)I(t > τ)g}. (11)

By the model estimation procedure described in Subsection 2.2, the point estimate

of τ is 81, its 95% confidence interval is (72.0,83.3), the point estimate of β is

0.259, and its 95% confidence interval is (0.059,0.458). Because the 95% confidence

interval for β is above 0, we can conclude that the hazard rate of the drug group

is significantly higher than the hazard rate of the placebo group after the estimated

time-lag point of 81 days. By the way, the confidence interval for τ is obtained by the

bootstrap procedure with the bootstrap sample size B = 1,000. The point estimate of

τ by the method in Dinse et al (1993) is 92, which seems too large by checking with

Figure 1. The hypothesis testing results by various different methods are presented

in Table 7. For the 6 existing methods considered, besides the regular comparison

of the hazard rate functions in the entire study period, we also use them to compare

the hazard rate functions in the time period after τ̂ . In the method by Zucker and

Lakatos (1990), we specify the time-lag point to be 80, 81 (the point estimate by

the proposed method), or 85. From the table, it can be seen that (i) both the Wald

test and likelihood ratio test provide significant results, (ii) none of the Log-rank,

Gehan-Wilcoxon, Tarone-Ware, Peto-Peto, and modified Peto-Peto could detect the

difference between the two hazard rate functions in the entire study period and in

the time period after τ̂ , (iii) the Fleming-Harrington test can detect the difference

between the two hazard rate functions only in the time period after τ̂ when r2 = 1 or

in the entire study period when r1 = 0 and r2 = 1, and (iv) the method by Zucker and

Lakatos is significant only when the specified time-lag point is quite large.

The second example is about the sequential primary biliary cirrhosis (PBC) data

collected in Mayo Clinic between 1974 and 1984. This dataset contains sequential

laboratory measurements on the 312 patients of the study. A detailed description

about the study and the dataset can be found in Fleming and Harrington (1991) and

in the R package survival. In this data, besides the survival data, there are a number

of covariates to consider, which are listed below.

– trt: 1 for the treatment D-penicillmain and 0 for placebo,

– sex: 1 for female and 0 for male,

– age: in years,

– ascites: presence of ascites,

– hepato: presence of hepatomegaly or enlarged liver,

– spiders: blood vessel malformations on the skin,

– ast: aspartate aminotransferase (U/ml),

– edema: 0 for no edema, 0.5 for moderate, and 1 for severe edema,

– bili : serum bilirunbin (mg/dI),
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Table 7 Computed p-values of various different methods for testing the difference between the two hazard

rate functions related to models (11) and (12) for analysing the rats data and the primary biliary cirrhosis

data. Some entries have two values, with the first one being p-value computed in the entire study period

and the second one computed in the time period after τ̂ .

Testing Method Rats Data PBC Data

Wald test 0.011 0.021

Likelihood ratio test 0.003 0.017

Log-rank 0.231 0.114 0.210 0.089

Gehan-Wilcoxon 0.686 0.750 0.579 0.082

Tarone-Ware 0.512 0.379 0.370 0.078

Peto-Peto 0.454 0.293 0.486 0.073

Modified Peto-Peto 0.478 0.327 0.492 0.072

Fleming-Harrington (r1 = 0,r2 = 1) 0.038 0.001 0.046 0.290

Fleming-Harrington (r1 = 1,r2 = 0) 0.421 0.262 0.486 0.074

Fleming-Harrington (r1 = 1,r2 = 1) 0.112 0.001 0.054 0.163

Zucker and Lakatos (τ∗ = 80 [Rats Data], 3.0 [PBC Data]) 0.114 0.102

Zucker and Lakatos (τ∗ = 81 [Rats Data], 3.31 [PBC Data]) 0.050 0.057

Zucker and Lakatos (τ∗ = 85 [Rats Data], 4.0 [PBC Data]) 0.012 0.056

– albumin: serum albumin (mg/dl),

– alk.phos: alkaline phosphotase (U/liter),

– platelet: platelet count,

– protime: standardized blood clotting time.

In this study, we are mainly concerned about the comparison between male and

female patients regarding their survival times, since previous analyses confirmed that

the treatment D-penicillmain did not have significant effect (cf., Fleming and Har-

rington, 1991; Therneau and Grambsch, 2000). Also, the previous analyses indicated

that bili, albumin, alk.phos, platelet and protime should be considered in log scale.

In the data, the female group has 101 patients with about 34% censoring rate, while

the male group has 21 patients with about 19% censoring rate. The two groups are

highly unbalanced because it is known that primary biliary cirrhosis is more likely for

women. The estimated hazard rate functions of male and female patients are shown

in Figure 2. From the plot, it can be seen that the two functions are not quite different

before 3.3 years and very different afterwards.

Since there are some covariates involved in the data, we first try to exclude some

less important variables from our model fitting. By using the model selection proce-

dure discussed in Park and Qiu (2014), the selected final model is

λ (t|X(t),g) = λ0(t)exp [α1age+α2I(edema = 0.5)+α3I(edema = 1)+α4 log(bili)

+α5 log(albumin)+α6 log(protime)+β0(t − τ)I(t > τ)g] .

(12)

The estimated parameter values and the corresponding 95% confidence intervals

(CIs) for model (12) are presented in Table 8. From the table, it can be seen that

all parameters except α2 are significantly different from 0 at the significance level

of 0.05. The most interesting parameters in this analysis are τ and β0. The estimates

τ̂ = 3.31 and β̂0 =−1.613 suggest that the risk of death for female patients and male

patients is similar until τ̂ = 3.31 years, and the female patients have significantly less
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Fig. 2 Estimated hazard rate functions for the male and female patients in the primary biliary cirrhosis

data.

Table 8 Point estimates and 95% confidence intervals for the parameters in model (12) in the primary

biliary cirrhosis data example.

Parameters Point estimates 95% confidence intervals

τ 3.31 (1.03 , 3.32)

α1 0.077 (0.039, 0.114)

α2 -0.104 (-1.199, 0.991)

α3 1.979 (0.984, 2.973)

α4 0.629 (0.178, 1.079)

α5 3.983 (0.848, 7.118)

β0 -1.613 (-2.977, -0.249)

risk afterwards. These results match those from Figure 2 well. The point estimate of

τ by the method in Dinse et al (1993) is 5.596, which is again too large.

For testing the difference between the two hazard rate functions, the p-values of

the Wald test, the likelihood ratio test, and the 7 alternative tests are presented in

the last two columns of Table 7. From the table, it can be seen that the Wald test

and likelihood ratio test based on model (12) are both significant in this example, all

but one alternative methods are not, and the alternative Fleming-Harrington test with

r1 = 0 and r2 = 1 is marginally significant.
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5 Concluding Remarks

In this paper, we have presented a semiparametric modeling approach for comparing

two hazard rate functions with a possible treatment time-lag effect. Model estimation

and theoretical properties of the estimated model are also discussed. From the numer-

ical examples and theoretical results, it seems that our proposed method is effective

in handling cases with treatment time-lag effect. However, there are still many issues

that need to be addressed in our future research. For instance, more general versions

of model (1) can be considered, as discussed at the end of Subsection 2.1, and model

selection and model diagnosis can be considered as well.

Acknowledgments

The authors thank the editor and two referees for their valuable comments which

greatly improved the quality of this paper.

Supplementary material

Some technical details, including proofs of theoretical results from Subsection 2.2

and several lemmas, are given in a supplementary material.

References

Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large

sample study. The annals of statistics 10:1100–1120

Bain L, Englehardt M (1991) Statistical analysis of reliability and life-testing models:

theory and methods, vol 115. CRC Press

Chen Z, Huang H, Qiu P (2016) Comparison of multiple hazard rate functions. Bio-

metrics 72:39–45

Cheng MY, Qiu P, Tan X, Tu D (2009) Confidence intervals for the first crossing

point of two hazard functions. Lifetime data analysis 15(4):441–454

Cox DR (1972) Regression models and life-tables. Journal of the Royal Statistical

Society Series B (Methodological) 34(2):187–220

Dinse GE, Piegorsch WW, Boos DD (1993) Confidence statements about the time

range over which survival curves differ. Applied statistics 42:21–30

Fleming TR, Harrington DP (1991) Counting processes and survival analysis. Wiley,

New York

Klein J, Moeschberger M (2005) Survival Analysis: Techniques for Censored and

Truncated Data (Second Edition). Springer-Verlag, New York

Lin X, Wang H (2004) A new testing approach for comparing the overall homogene-

ity of survival curves. Biometrical Journal 46(5):489–496

Liu K, Qiu P, Sheng J (2007) Comparing two crossing hazard rates by cox propor-

tional hazards modelling. Statistics in medicine 26(2):375–391



18

Mantel N, Bohidar NR, Ciminera JL (1977) Mantel-haenszel analyses of litter-

matched time-to-response data, with modifications for recovery of interlitter in-

formation. Cancer Research 37(11):3863–3868

O’Quigley J (1994) On a two-sided test for crossing hazards. The Statistician 43:563–

569

Park K, Qiu P (2014) Model selection and diagnostics for joint modeling of survival

and longitudinal data with crossing hazard rate functions. Statistics in Medicine

33:4532–4546

Qiu P, Sheng J (2008) A two-stage procedure for comparing hazard rate func-

tions. Journal of the Royal Statistical Society: Series B (Statistical Methodology)

70(1):191–208

Therneau TM, Grambsch PM (2000) Modeling Survival Data: Extending the Cox

Model. Springer, New York

Zucker DM, Lakatos E (1990) Weighted log rank type statistics for comparing sur-

vival curves when there is a time lag in the effectiveness of treatment. Biometrika

77(4):853–864


