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Abstract

Count data are common in practice, ranging from security protection, disease surveillance, to quality

monitoring of a production process. To describe the distribution of a count data, we usually use a Poisson

probability model or a similar parametric model (e.g., a Negative Binomial model). In practice, however,

such a parametric model may not be able to describe the distribution of a count data well in some cases,

because the count data are often affected by some confounding factors and such a confounding impact

is difficult to accommodate by the parametric model. In this paper, we study the count data monitoring

problem, and the consequence to use a parametric control chart in cases when the underlying parametric

distribution model is invalid. Based on that study, we suggest using nonparametric charts to monitor

count data when it is uncertain that the count data can be described by a parametric distribution model.

Keywords: Count data; Data categorization; Distribution free; Parametric probability models; Pois-

son distribution; Statistical process control.

1 Introduction

In many sequential processes, major outcome variables are often in the form of counts of certain events that

are related to the quality or performance of the related processes. For instance, in manufacturing industries,

the number of specific defects found in a product sampled from a production line could be a quality variable

to monitor. In road or internet traffics, the number of accidents is often a major index of concern. In public

health, we are often concerned about the number of daily occurrences of a specific disease (e.g., lung cancer)

in a region or country. Therefore, proper monitoring of count data is an important research problem with

broad applications, which is the focus of this paper.

In the statistical process control (SPC) literature, there have been some control charts for monitoring

count data. In some applications, it is obvious that the distribution of the count data is binomial, because

the count denotes the number of successes from a binomial experiment. Many control charts, including the

classic p and mp charts, have been developed for monitoring binomial count data. See, for instance, Gan1,
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Wu et al2, Megahed et al3, and some others. In many other applications, the count data record the number of

events occurring in a given period of time and a given region. Most existing control charts for handling such

count data are based on the Poisson distribution assumption. For instance, the classical c, u and D charts

are based on batch data, and they are Shewhart charts that make decisions based on the observed data at the

current time point only (cf Section 3.3, Qiu4). It has been well demonstrated that Shewhart charts are good

in detecting large shifts and ineffective in detecting small shifts. So, in the literature, some authors proposed

the cumulative sum (CUSUM) charts5,6 and the exponentially weighted moving average (EWMA) charts7,8

for monitoring homogeneous Poisson processes. Besides a Poisson distribution, some authors suggested

using a negative binomial or another parametric distribution for describing count data. Control charts based

on such assumptions include those discussed in Sheaffer and Leavenworth9, Saghir and Lin10, and many

others.

In practice, however, it is often difficult to describe count data using a parametric distribution. One

major reason is that the count data are often affected by many different factors. Some of them may not

be our major concern so that they are not part of the collected data, some might be difficult to measure,

some others might even be hard to be noticed of their existence. Thus, the impact of such factors on the

count data is difficult to describe properly by a parametric model. Figure 1 shows the density histogram of

the monthly counts of polio cases in US from January 1970 to December 1972, along with the estimated

density curve (solid) and the density curve of a Poisson distribution (dashed) with the same mean as that of

the data. From the plot, it can be seen that the distribution of the observed data is quite different from the

Poisson distribution in that the observed data seem to have a heavier right tail. The Pearson’s Chi-square

goodness-of-fit test and the Fisher’s index of dispersion test11 give p-values of 0.014 and 0.000, respectively,

which confirms that the distribution of the observed data is indeed significantly different from the Poisson

distribution.

In cases when the quality variables are continuous variables, it has been well demonstrated in the litera-

ture that the parametric control charts are not reliable to use when the underlying parametric model is invalid

(e.g. Chakraborti et al12; Chapters 8 and 9, Qiu4; Qiu13). In such cases, nonparametric or distribution-free

charts are recommended. For count data, it will be shown in this paper that this is also true. In the next

section, we will adapt several existing nonparametric control charts for monitoring count data. Then, we

will evaluate their in-control (IC) and out-of-control (OC) performance in Section 3, together with several

representative parametric and nonparametric control charts. Application of the related control charts to the

US polio data is discussed in Section 4. Several remarks conclude the article in Section 5.
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Figure 1. Density histogram with estimated density curve (solid) of the monthly counts of polio cases in

US from January 1970 to December 1972, and the density curve of a Poisson distribution (dashed) with the

same mean as that of the polio data.

2 Nonparametric Control Charts for Monitoring Count Data

In the literature, there are many nonparametric or distribution-free charts available. Most of them are de-

signed for monitoring continuous numerical quality variables. They can be adapted properly for monitoring

count data. In this section, we briefly discuss how to adapt the ones in Qiu and Li14 for monitoring count

data. Adaptation of other nonparametric charts can be discussed similarly.

Let X(n) be an observation obtained at the nth time point during Phase II online monitoring, and

I1 = [0,q1), I2 = [q1,q2), . . . , Ip = (qp−1,∞) be a partition of [0,∞), where 0 < q1 < q2 < .. . < qp−1 < ∞

are p−1 boundary points of the partitioning intervals. Then, we first discretize X(n) as follows:

Yl(n) = I(X(n) ∈ Il), for l = 1,2, . . . , p, (1)

where I(a) = 1 if a is “true” and 0 otherwise. From Equation (1), we can see that Yl(n) indicates whether

X(n) belongs to the lth interval Il . So, Y(n) = (Y1(n),Y2(n), . . . ,Yp(n))′ has one and only one com-

ponent being 1, and the index of the component being 1 has a discrete distribution with probabilities

fl = P(X(n) ∈ Il), for l = 1,2, . . . , p. For convenience of presentation, the distribution f = ( f1, f2, . . . , fp)′
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is also called the distribution of Y(n). Let f(0) = ( f
(0)
1 , f

(0)
2 , . . . , f

(0)
p )′ be the IC distribution of Y(n) and

f(1) = ( f
(1)
1 , f

(1)
2 , . . . , f

(1)
p )′ be its OC distribution. Then, under some regularity conditions, it can be checked

that f(1) is different from f(0) if there is a mean shift in X(n).

In Qiu and Li14, it was suggested that the parameters {q1,q2, . . . ,qp−1} were chosen such that f(0) ≈

(1/p,1/p, . . . ,1/p)′. For count data, this is often difficult to achieve because of the discreteness of the

data. In such cases, we suggest choosing the parameters such that f(0) is as close to a uniform distribution as

possible. The control chart suggested in Qiu and Li14 is the CUSUM version of the Pearson’s chi-squared

test. More specifically, let Sobs
0 = S

exp
0 = 0 be two p×1 column vectors, and





Sobs
n = 0, if Cn ≤ kP,

S
exp
n = 0, if Cn ≤ kP,

Sobs
n = (Sobs

n−1 +Y(n))(Cn − kP)/Cn, if Cn > kP,

S
exp
n = (Sexp

n−1 + f(0))(Cn − kP)/Cn, if Cn > kP,

where

Cn =

((
Sobs

n−1 −S
exp
n−1

)
+
(
Y(n)− f(0)

))′

×

(
diag

(
S

exp
n−1 + f(0)

))−1

×

((
Sobs

n−1 −S
exp
n−1

)
+
(
Y(n)− f(0)

))
,

kP ≥ 0 is the so-called allowance parameter, diag(a) denotes a diagonal matrix with its diagonal elements

being the corresponding elements of the vector a, and the superscripts “obs” and “exp” denote observed and

expected counts, respectively. Define

un,P =
(
Sobs

n −Sexp
n

)′(
diag(Sexp

n )
)−1(

Sobs
n −Sexp

n

)
.

Then, a mean shift in X(n) is signaled if

un,P > hP, (2)

where hP > 0 is a control limit chosen to reach a pre-specified ARL0 value. When kP = 0, it is not difficult

to check that Sobs
n is a frequency vector with its lth element denoting the cumulative observed count of

observations in the lth interval Il as of the time point n, for l = 1,2, . . . , p, and S
exp
n is the vector of the

corresponding cumulative expected counts. Therefore, un,P is the Pearson’s chi-squared test statistic in such

cases to measure the difference between the cumulative observed and expected counts as of the time point

n. Because the charting statistic un,P can only take some discrete values on the positive number line, we

often cannot find a proper hP value so that a pre-specified nominal ARL0 value is reached within a desired

precision. To overcome this limitation, we can apply the modification procedure suggested in Qiu and Li14

by adding a small random number generated from N(0,s2) to each component of Y(n) to alleviate the
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discreteness of un,P. As long as s is chosen small, the OC behavior of the chart would not change much.

But, most nominal ARL0 values can be reached within a desired precision after the modification. In all the

simulation studies in this paper, we choose s = 0.01.

In the above CUSUM chart, usually the allowance constant kP is specified beforehand. Then, the

control limit hP is chosen such that a pre-specified ARL0 value is reached. To compute hP from an IC data,

we suggest using the following four-step, iterative, bisection searching algorithm based on the bootstrap

resampling idea.

Step 1: In the ith iteration, hP is searched in the interval [L(i),U (i)]. When i = 1, define L(1) = 0 and

U (1) =U , where U is an upper bound satisfying the condition that the ARL0 value of the P-CUSUM

chart when hP =U is large than the pre-specified ARL0.

Step 2: A sequence of observations is selected randomly with replacement from the IC dataset and this

sequence of data is sued as Phase II observations. Then, the P-CUSUM chart with hP = h(i) =

(L(i)+U (i))/2 is applied to this sequence and the run length is recorded.

Step 3: Step 2 is repeated for N times, and the actual ARL0 value is approximated by the average of the N

run lengths, denoted as ARL0
(i).

Step 4: If |ARL0
(i)−ARL0| < ε , where ε is a small number and denotes the required searching accuracy,

then the whole algorithm stops and the searched value of hP is h(i). Otherwise, define

L(i+1) = h(i) and U (i+1) =U (i), if ARL0
(i)

< ARL0,

L(i+1) = L(i) and U (i+1) = h(i), if ARL0
(i)

> ARL0,

and h(i+1) = (L(i+1)+U (i+1))/2,

and the algorithm executes the next iteration until the maximum number of iterations, say Q, is

reached.

The above searching algorithm usually converges quickly. Although it is rare, if it does not stop before the

Qth iteration, then define hP = h(Q).

Besides the CUSUM chart (2) that is based on the Pearson’s chi-squared test, we can construct a similar

CUSUM chart based on the likelihood ratio test. More specifically, let S̃obs
n and S̃

exp
n be quantities defined in

the same way as Sobs
n and S

exp
n used in chart (2), except that kP is replaced by another constant kL and Cn is

5



replaced by

C̃n = 2
(
S̃obs

n−1 +Y(n)
)′

log

(
S̃obs

n−1 +Y(n)

S̃
exp
n−1 + f(0)

)
,

where a/b denotes a vector obtained by component-wise division of the vector a by the vector b, and

log(a/b) denotes a component-wise operation as well. Then, the new charting statistic is defined as

un,L = 2
(
S̃obs

n

)′
log

(
S̃obs

n

S̃
exp
n

)
.

It gives a signal when

un,L > hL, (3)

where the control limit hL > 0 can be chosen similarly to hP.

3 Performance Assessment

We present some simulation results in this section to compare the performance of the nonparametric CUSUM

charts (2) (denoted as P-CUSUM) and (3) (denoted as L-CUSUM) with some parametric and nonparamet-

ric charts for monitoring count data. In the simulation study, we investigate the performance of different

control charts under various different discrete distributions. For describing count data, Poisson distribution

is a standard model. One important property of a Poisson distribution with a rate parameter λ , denoted as

Poisson(λ ), is that its mean and variance are the same to be λ . In practice, however, count data can be

over-dispersed (i.e., the variance is larger than the mean) or under-dispersed (i.e., variance is smaller than

the mean). In this section, we consider the following discrete distributions that are all different from the

regular Poisson distribution:

(I) Binomial distribution: cases with under-dispersion

Let X denote the number of successes in r Bernoulli trials with probability of success being π . Then,

X ∼ Bin(r,π), with mean rπ and variance rπ(1−π). The index of dispersion, defined as the ratio of

variance to mean, is then 1−π . Because π is usually in the interval (0,1), 0 < 1−π < 1, implying

that the Binomial distribution is under-dispersed.

(II) Negative binomial distribution: cases with over-dispersion

Let X be the random variable representing the number of failures in a sequence of i.i.d. Bernoulli trials

until the rth success. Then, X has a negative binomial distribution, denoted as X ∼ NB(r,π). The
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mean and variance of X are r(1−π)/π and r(1−π)/π2, respectively. So, the index of dispersion is

1/π , which is larger than 1 if π < 1.

(III) Cases with mixed-dispersion

(i) Discrete uniform distribution

Let X be the random variable that takes integer values in {0,1,2, . . . ,r} with equal probabilities.

Then, it has a discrete uniform distribution, denoted as X ∼ DU(r). It can be checked that the

mean and variance of X are r/2 and r(r + 2)/12, respectively, and the index of dispersion is

(r+ 2)/6. Therefore, this index can be larger or smaller than 1, depending on the value of r.

(ii) Generalized Poisson distribution

The probability mass function of the generalized Poisson distribution GP(η ,θ ) is given by

f (x;η ,θ ) =





0, when x > m and θ < 0,

η(η+θx)x−1exp(−(η+θx))
x!

, otherwise,

where η > 0 and max(−1,−η/m) ≤ θ < 1 are two parameters, and m ≥ 4.15 When θ < 0,

m is the largest positive integer so that η +mθ > 0. If θ = 0, then the distribution GP(η ,θ )

reduces to the standard Poisson distribution with mean λ = η . It can be checked that the mean

and variance of X are η/(1−θ ) and η/(1−θ )3, respectively. Thus, the index of dispersion is

1/(1−θ )2, which can be larger or smaller than 1.

We first investigate the IC performance of the nonparametric charts P-CUSUM and L-CUSUM. For

comparison purposes, besides these two charts, we also consider the traditional Poisson CUSUM chart5,

that is constructed and designed based on the assumption that the related process has a regular Poisson

distribution. This chart is denoted as T-CUSUM. Also, the ideal CUSUM chart that is constructed and

designed using the true process distribution is considered as a gold standard. This chart is denoted as I-

CUSUM. Furthermore, we consider the nonparametric CUSUM chart based on the Wilcoxon rank-sum

test that was discussed in Li et al16. This chart is denoted as W-CUSUM. The allowance constants in all

CUSUM charts are chosen to be 0.5. The assumed ARL0 value is chosen to be 200 or 500. In charts P-

CUSUM and L-CUSUM, the number of categories p is chosen to be 5. Their control limits are searched

by the bootstrap procedure with Q = 100 iterations. In each iteration, the ARL0 value is computed from

10,000 replicated simulation runs, in each of which the bootstrap re-sampling procedure is applied to an

IC dataset of size M = 500. The control limit of T-CUSUM is determined based on the Poisson distribu-

tion assumption, and the control limit of I-CUSUM is computed based on the true IC process distribution.
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Then, we consider the following cases when the true process distribution is the standard version with mean

0 and standard deviation 1 of one of the following five distributions: Bin(20,0.75), DU(10), NB(20,0.75),

GP(5,0.25) and GP(5,−0.25). These five cases represent different scenarios when the true process distri-

bution is under-dispersed or over-dispersed. The actual ARL0 values of all five charts and their standard

errors are summarized in Table 1.

Table 1. Actual ARL0 values and their standard errors (in parentheses) of the five charts when the nominal

ARL0 values are fixed at 200 and 500.

ARL0 Chart Bin(20,0.75) DU(10) NB(20,0.75) GP(5,0.25) GP(5,−0.25)

200

T-CUSUM 322.7 (3.21) 385.2 (3.82) 188.2 (1.86) 162.9 (1.60) 273.9 (2.59)
I-CUSUM 199.9 (1.95) 199.9 (1.94) 199.9 (1.94) 199.9 (1.95) 200.0 (1.94)

W-CUSUM 199.9 (1.84) 200.0 (1.86) 199.9 (1.85) 200.1 (1.87) 200.0 (1.82)
L-CUSUM 200.0 (1.91) 200.0 (1.94) 200.1 (1.93) 199.9 (1.93) 200.1 (1.93)
P-CUSUM 200.0 (2.06) 200.0 (2.06) 199.9 (2.06) 199.5 (2.05) 199.9 (2.05)

500

T-CUSUM 939.9 (9.38) 1241.7 (12.20) 393.1 (3.89) 336.9 (3.21) 746.9 (7.30)
I-CUSUM 500.0 (4.95) 500.1 (4.87) 499.8 (4.92) 500.0 (4.81) 500.0 (4.87)

W-CUSUM 499.7 (4.76) 500.1 (4.75) 500.1 (4.81) 500.0 (4.71) 500.0 (4.70)
L-CUSUM 499.9 (4.92) 499.9 (4.95) 499.9 (4.91) 500.0 (4.88) 500.0 (4.91)
P-CUSUM 500.0 (5.00) 500.0 (5.03) 500.0 (5.02) 500.0 (5.17) 499.9 (5.08)

From Table 1, it can be seen that the actual ARL0 values of the I-CUSUM chart are indeed close to

the nominal ARL0 values, as expected. The actual ARL0 values of P-CUSUM, L-CUSUM and W-CUSUM

charts perform as well as the I-CUSUM chart. These results confirm that the IC performance of all P-

CUSUM, L-CUSUM and W-CUSUM charts does not depend on the true IC process distribution. Therefore,

they are indeed robust to the true IC process distribution. Now, for the chart T-CUSUM that is based on

the Poisson distribution assumption, we can see that its actual ARL0 values are quite different from the

nominal values. More specifically, its actual ARL0 values are much larger than the nominal ARL0 values

when the true process distribution is the standard version of Bin(20,0.75), DU(10) and GP(5,−0.25), and

much smaller than the nominal ARL0 values when the true process distribution is the standard version of

NB(20,0.75) and GP(5,0.25). In the former case when the actual ARL0 values are larger than the nominal

values, some true process distributional shifts could be detected much later than what we would expect,

which is not good because many defective products will be produced in such cases.17 In the latter case

when the actual ARL0 values are smaller than the nominal values, the related process would be stopped

too often by the control chart when it is actually IC.14,17 From these results, we can see that when process

observations do not follow a pre-specified parametric distribution, the traditional CUSUM chart based on

the pre-specified distribution is not reliable. To further illustrate this conclusion, Figure 2 shows the actual
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ARL0 values of the T-CUSUM chart based on the assumptions that the IC process distribution is Poisson

and ARL0 = 500, in cases when the actual IC process distribution is GP(η ,θ ), where η is fixed at 1, 5

or 10, and θ changes in [−0.4,0.4]. From the figure, it can be seen that the actual ARL0 values could be

substantially different from the nominal ARL0 value when θ moves away from 0. We would like to point

out that when θ = 0, GP(η ,0) becomes a regular Poisson distribution. Therefore, T-CUSUM performs well

in such cases.
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Figure 2. Actual ARL0 values of the the T-CUSUM chart in cases when the true IC process distribution is

GP(η ,θ ), with η fixed at 1, 5 or 10 and θ changing in [−0.4,0.4].

To further demonstrate the distribution-free property of the nonparametric charts, the control limits of

the P-CUSUM chart obtained based on 10,000 replicated simulations in cases when the allowance constant

kP is chosen to be 0.01, 0.05 or 0.1, the nominal ARL0 is chosen to be 200 or 500, and when the true

process distribution is one of the five parametric distributions considered in Table 1 are presented in Table

2. Results for the L-CUSUM chart are similar. So, they are omitted here. In the P-CUSUM chart, the

number of categories p is chosen to be 5, as before, and the IC distribution f(0) of the categorized data is

multinomial with probabilities (0.2,0.2,0.2,0.2,0.2) for the five categories. Results in the first row labled

as “Distribution-Free” are obtained when the categorized data Y(n) are generated from the IC distribution

f(0) directly, and the ones in the remaining rows are obtained when Y(n) are generated from the original
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process observations that follow the related distributions specified in the row labels. From the table, it can

be seen that the control limit values of the P-CUSUM chart are indeed very close to each other in different

rows when the true process distribution takes different parametric forms. Also, the actual ARL0 values are

very close to the nominal ARL0 values as well in different scenarios.

Table 2. Control limits of the P-CUSUM chart when the nominal ARL0 is fixed at 200 or 500, the allowance

constant kP is chosen to be 0.01, 0.05 or 0.1, and the true process distribution takes different parametric

forms. Numbers in parentheses are the corresponding actual ARL0 values.

k = 0.01 k = 0.05 k = 0.1

ARL0 = 200 ARL0 = 500 ARL0 = 200 ARL0 = 500 ARL0 = 200 ARL0 = 500

Distribution free 6.722 (200.1) 7.977 (500.0) 7.923 (200.0) 9.360 (500.1) 8.472 (200.0) 10.248 (500.0)
Bin(20,0.75) 7.085 (200.1) 8.197 (500.3) 8.076 (199.9) 9.573 (500.1) 8.525 (199.7) 10.392 (499.9)

DU(10) 7.017 (200.0) 8.169 (500.0) 8.013 (200.0) 9.549 (500.1) 8.546 (200.0) 10.408 (500.0)
NB(20,0.75) 6.756 (200.0) 7.953 (499.9) 7.962 (200.0) 9.379 (499.9) 8.477 (200.0) 10.283 (500.2)
GP(5,0.25) 7.236 (200.0) 8.461 (500.0) 8.189 (200.0) 9.854 (500.0) 8.643 (200.0) 10.554 (500.0)
GP(5,-0.25) 7.188 (199.9) 8.416 (500.1) 8.079 (199.9) 9.667 (500.0) 8.577 (200.1) 10.440 (500.1)

Next, we compare the OC performance of the related control charts. From Table 1 and Figure 2, it

can be seen that the T-CUSUM chart has unacceptable IC performance in various cases when the true

process distribution is not Poisson. In such cases, its shift detection power may be irrelevant because a

good power could be due to an overly small ARL0 value. This is similar to the situation in hypothesis

testing, where we should never consider a testing procedure whose actual significance level is larger than

the nominal significance level. For this reason, the T-CUSUM chart is not considered in the comparison of

the OC performance. Because the I-CUSUM chart needs to know the true IC distribution, which is often

unrealistic in practice, it is not considered here either. For comparison purposes, we modify the T-CUSUM

chart by using the bootstrap method described in Section 2 to determine its control limit so that the nominal

ARL0 value is reached. This modified T-CUSUM chart (denoted as T-CUSUM(adj)) is then included in the

comparison.

In the OC performance comparison study, the true process distribution is assumed to be the standardized

version with mean 0 and variance 1 of one of the following five distributions: Bin(20,0.75), DU(10),

NB(20,0.75), GP(5,0.25) and GP(5,−0.25). The process mean shift ranges from −1.0 to 1.0. For the P-

CUSUM chart, we consider three versions with p = 2,5, or 10. For the L-CUSUM chart, p is fixed at 5. For

both of them, the IC distribution of the categorized data f(0) is estimated from an IC dataset with size M =

500. For the W-CUSUM chart, an IC dataset of size 500 is used as a reference sample and all observations
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are batched with the batch size 5. The same IC dataset is used for the T-CUSUM(adj) chart to determine

the control limit by the bootstrap method. Due to the fact that performance of different control charts with

a same allowance constant may not be comparable, we choose to compare the optimal performance of all

charts when detecting a specific shift, by selecting their allowance constants to minimize the ARL1 values

while maintaining their ARL0 values all at 200. Based on 10,000 replications, the calculated ARL1 values

of the related control charts are shown in Figure 3, where the y-axis is in natural logarithm scale to better

demonstrate the difference among different control charts. From the plots of Figure 3, we can see that (i)

the P-CUSUM charts almost always outperform the L-CUSUM, W-CUSUM and T-CUSUM(adj) charts, (ii)

the W-CUSUM chart outperforms the L-CUSUM chart in most cases considered while the L-CUSUM chart

has better performance for detecting downward shifts when the true distribution is Bin(20,0.75) and for

detecting all shifts when the true distribution is GP(5,−0.25), (iii) the performance of the T-CUSUM(adj)

chart is generally comparable with the winner of the L-CUSUM and W-CUSUM charts, and (iv) for the P-

CUSUM chart, it seems that p can be simply chosen 2 for detecting relatively large shifts (e.g., the absolute

shift size is larger than 0.5) and 5 for detecting relatively small shifts.

To use the P-CUSUM chart, an IC dataset of size M is required to estimate the IC quantiles {q1,q2, . . . ,qp−1}.

Therefore, its performance depends on M. To study the impact of M on the performance of the P-CUSUM

chart, next we compute its optimal ARL1 values when M is chosen 200, 500, 1000 or 2000 in the setup of

Figure 3, and the results are presented in Figure 4. From the plots, we can see that (i) it is good enough to

choose M = 500 in most cases except the case with Bin(20,0.75) where M should be chosen 1000 or larger

for detecting small positive shifts, and (ii) the optimal ARL1 values are stable when M ≥ 1000.

In the above OC performance comparison, we select the optimal allowance parameter kP for the P-

CUSUM chart and use the optimal ARL1 as the performance metric for fair comparison. However, when

using the P-CUSUM chart in practice, a specific value of the allowance parameter kP is usually needed.

Next, we study the impact of kP on the OC performance of the P-CUSUM chart and provide some practical

guidelines on choosing this parameter. In this example, the value of kP can change among 0.001, 0.01, 0.05

and 0.1, the nominal ARL0 is fixed at 200, p = 5 and M = 500. The true process distribution is the same

as those in the previous example. The ARL1 values of the P-CUSUM chart are computed based on 10,000

replicated simulations and they are presented in Figure 5. As shown by the plots in the figure, we can see

that i) the ARL1 values are larger when kP = 0.1 or 0.05, compared to their values when kP = 0.001 or 0.01,

ii) the ARL1 values are close to each other in most cases when kP = 0.001 or 0.01, and iii) it seems that the

chart performs better for detecting small shifts when kP = 0.001, and it performs better for detecting large
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Figure 3. The optimal ARL1 values of the control charts when ARL0 = 200, M = 500, and the actual IC

process distribution is the standardized version of Bin(20,0.75) (plot (a)), DU(10) (plot (b)), NB(20,0.75)

(plot (c)), GP(5,0.25) (plot (d)), and GP(5,−0.25) (plot (e)).
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Figure 4. The optimal ARL1 values of the P-CUSUM chart when M = 200,500,1000,2000, p = 5, and

the actual IC process distribution is the standardized version of Bin(20,0.75) (plot (a)), DU(10) (plot (b)),

NB(20,0.75) (plot (c)), GP(5,0.25) (plot (d)), and GP(5,−0.25) (plot (e)).
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shifts when kP = 0.01. Based on this example, we suggest choosing kP in the range [0.001,0.01].

4 An Application

In this section, we apply the nonparametric control charts discussed in the previous sections to a real-data

example about the monthly counts of polio cases in the USA between January 1970 to November 1983.

This dataset can be found at https://datamarket.com/data/set/22u4/monthly-us-polio-cases, and it is shown

in Figure 6. It can be seen from the plot that the monthly counts of polio cases from January 1970 to

December 1972 are higher than the monthly counts in later months, and it seems that there is a distributional

shift around the beginning of 1973. As a matter of fact, the mean monthly count during January 1970 and

December 1972 is 2.36, and it decreases to 1.06 for the time period afterwards, which are denoted by the

two horizontal dot-dashed lines in the plot. The explanation for the decrease is that a new polio vaccine

started to be available around January 1973.

For the polio data shown in Figure 6, we use the observations during January 1970 and December

1972 as an IC dataset, and the remaining for testing. As discussed in Section 1, the distribution of the IC

dataset is significantly different from Poisson. So, we consider the three nonparametric charts P-CUSUM,

L-CUSUM and W-CUSUM only in this example. When implementing the related control charts, we choose

ARL0 = 200 in all three charts, p = 2 in the P-CUSUM and L-CUSUM charts, the allowance constants for

the P-CUSUM and L-CUSUM charts to be 0.01, and the allowance constant for the W-CUSUM chart to be

the same as that in Li et al16. The main reason for choosing p = 2 is that the IC sample size is quite small in

this case. When p = 2, we only need to estimate one parameter (i.e., q1). The three control charts are shown

in Figure 7, where the dashed horizontal lines denote the control limits of the corresponding control charts.

From the plots, the P-CUSUM, L-CUSUM, and W-CUSUM charts give signals at the 7th, 47th and 14th

Phase II observation times, respectively. So, the P-CUSUM chart is the most effective one in this example,

and all three charts confirm that the monthly counts of polio in USA indeed had a mean shift.

5 Concluding Remarks

SPC for count data is important because count data is a basic data format in practice. In the literature, most

existing control charts for monitoring count data are based on the Poisson or other parametric probability
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Figure 5. The calculated ARL1 values of the P-CUSUM chart when kP = 0.001,0.01,0.05,0.1, p = 5, M =

500 and the actual IC process distribution is the standardized version of Bin(20,0.75) (plot (a)), DU(10)

(plot (b)), NB(20,0.75) (plot (c)), GP(5,0.25) (plot (d)), and GP(5,−0.25) (plot (e)).
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Figure 6. Monthly counts of polio cases in the USA between January 1970 to November 1983. The

horizontal dot-dashed lines denote the sample means for the observations before and after January 1973.

models. In various applications, however, the true distribution of count data can hardly be described well

by such parametric models, partly because the count data are affected by many confounding risk factors

and such an impact is difficult to describe by a parametric model. In this paper, we have demonstrated that

the existing parametric control charts are often inappropriate to use in cases when the assumed parametric

models are invalid, and nonparametric control charts should be considered in such cases. This paper focuses

on Phase II process monitoring in univariate cases. We believe that the related conclusions in the paper can

be extended to Phase I process monitoring and to multivariate cases as well, which needs to be confirmed in

our future research.
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Figure 7. The P-CUSUM, L-CUSUM, and W-CUSUM charts for monitoring the monthly counts of polio

in USA from January 1973 to November 1983. The horizontal dashed line in each plot denotes the control

limit and the related chart.
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