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Abstract

Process monitoring of multiple count data has received considerable attention recently in the statis-

tical process control literature. Most existing methods on this topic are based on parametric modeling of

the observed process data. However, the assumed parametric models are often invalid in practice, leading

to unreliable performance of the related control charts. In this paper, we first show the consequence of

using a parametric control chart in cases when the underlying parametric distribution is invalid. Then,

we thoroughly investigate the performance of some parametric and nonparametric control charts in mon-

itoring multiple count data. Our numerical results show that nonparametric methods can provide a more

reliable and effective process monitoring in such cases. A real-data example about the crime log of the

University of Florida Police Department is used for illustrating the implementation of the related control

charts.

Keywords: Distribution-free; Log-linear modeling; Multiple count data; Nonparametric procedures;

Poisson distribution; Statistical process control.
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1 Introduction

Due to the spreading usage of sensors and the rapid development in information storage technology, it is

common to collect and analyze several correlated quality characteristics of a process simultaneously. On-

line monitoring of these quality characteristics separately may not be effective in detecting process changes.

Therefore, many multivariate control charts have been proposed in the literature to solve this problem more

effectively (cf. Qiu, 2014, Chapters 7 and 9). Many of these charts are designed for monitoring multiple

continuous quality characteristics. However, multiple count data are also common in practice. Examples

include the number of delaminations at different positions of a printed circuit board in manufacturing in-

dustry (Wang et al., 2017), incidences of different types of diseases in epidemiology (Chen et al., 2015),

and numbers of purchases of different products in marketing (Brijs et al., 2004). Therefore, monitoring of

multiple count data is important. But, existing research on this research problem is limited. This paper aims

to fill the gap by discussing different strategies to solve the problem.

Traditionally, multiple count data could be modeled by either multivariate binomial/multinomial dis-

tributions or multivariate Poisson distributions (Johnson et al., 1997). Patel (1973) first proposed a T 2-type

chart for monitoring both multiple binomial and multiple Poisson data by approximating the related mul-

tivariate binomial or Poisson distribution by a multivariate normal distribution. Some subsequent research

in this direction includes Lu et al. (1998), Chiu and Kuo (2010) and Li et al. (2014). Some other exist-

ing research handles multiple Poisson count data based on multivariate Poisson models (Holgate, 1964;

Karlis, 2003; Karlis and Meligkotsidou, 2005). Parametric control charts proposed in this direction include

Chiu and Kuo (2008), Lee Ho and Branco Costa (2009), Laungrungrong et al. (2011) and He et al. (2014).

Jones et al. (1999) and Skinner et al. (2003) proposed two control charts in special cases when different

components of the multiple Poisson data are assumed independent. According to Schmidt and Rodriguez

(2011), the control charts based on the multivariate Poisson models have two major limitations. One is that

they do not allow negative correlation between any pair of two variables, and thus lack generality for solv-
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ing real-world problems. To address this issue, Chen et al. (2015) developed a multivariate exponentially

weighted moving average (MEWMA) control chart to monitor multiple count data by using the Poisson

log-normal distribution. The second limitation is that the multivariate Poisson models cannot describe over-

dispersed count data well. To overcome this limitation, Saghir and Lin (2014) proposed a Shewhart-type

multivariate control chart based on the Conway-Maxwell-Poisson (COM-Poisson) distribution, which can

accommodate over-dispersion in the observed data. Based on the same model as that in Chen et al. (2015),

Das et al. (2016) proposed a control chart under the framework of the likelihood ratio test for monitoring

over-dispersed multiple count data. Several overviews on monitoring multiple count data can be found in

papers such as Topalidou and Psarakis (2009), Saghir and Lin (2015), and Cozzucoli and Marozzi (2017).

All existing methods mentioned above on monitoring multiple count data are parametric in the sense that

they rely on a specific parametric distribution. In the literature on monitoring multiple continuous data, it has

been well demonstrated that such parametric control charts are not reliable to use in cases when the assumed

parametric distributions are invalid (cf. Qiu, 2014, Chapters 8 and 9). In practice, the assumed parametric

distributions are rarely valid, especially in multivariate cases, because there are so many different factors that

may affect the quality variables and the relationship among them, and such factors are usually not included

in the observed data. To address this important issue, there are several multivariate nonparametric control

charts developed in the literature, including those discussed in Qiu and Hawkins (2001), Qiu and Hawkins

(2003), Qiu (2008), Zou and Tsung (2011), Boone and Chakraborti (2012), Zou et al. (2012), Chen et al.

(2016) and Qiu (2018). But, all these methods are suggested for monitoring multiple continuous data, and

no nonparametric methods can be found for monitoring multiple count data.

In this paper, we first introduce several representative parametric control charts for monitoring multiple

count data in Section 2. Then, we propose a nonparametric control chart for the same purpose in Section 3.

This chart is constructed under the framework of data categorization and log-linear modeling that was first

discussed in Qiu (2008). Then, the related control charts are compared in Section 4 by a large simulation

study regarding their in-control (IC) and out-of-control (OC) performance. A real-data example is used for
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illustrating the implementation of the related methods in Section 5. Finally, several remarks conclude the

article in Section 6.

2 Parametric Methods for Monitoring Multiple Count Data

In the literature, there have been some methods proposed for monitoring multiple count data, as discussed

in Section 1. In this section, we briefly introduce two recent ones that are considered flexible and versatile

among the existing methods in this area.

Let X j, for j = 1,2, . . . , p, be the number of defects or nonconformities of the quality characteristic j,

and X = (X1,X2, . . . ,Xp)′. The first recent method is the MEWMA control chart proposed by Chen et al.

(2015). They used the multivariate Poisson log-normal distribution to model the multiple count data. More

specifically, they assumed that X j followed a univariate Poisson distribution with rate parameter θ j, for

j = 1,2, . . . , p. To allow correlation among different components of X, they further assumed that θ =

(θ1,θ2, . . . ,θp)′ was a random vector and followed a multivariate log-normal distribution with mean vector

µ and covariance matrix Σ. In that framework, the IC value of µ, denoted as µ0, and the IC value of Σ,

denoted as Σ0, are assumed known or they can be estimated accurately from an IC dataset. Then, when the

related process is IC, the observed data X(n), for n ≥ 1, would have mean vector m0 and covariance matrix

V0, both of which depend on µ0 and Σ0 implicitly. Then, the MEWMA charting statistic is defined as

En = R [X(n)−m0]+ (I−R)En−1, for n ≥ 1,

where E0 = 0, I is the identity matrix, and R is a smoothing matrix with equal diagonal elements and

equal off-diagonal elements as discussed in Hawkins et al. (2007). The chart gives a signal of process

distributional shift when

T 2
n = E′

nW−1
n En > hT , (1)
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where Wn is the covariance matrix of En, and hT > 0 is a control limit. Once the smoothing matrix R is

chosen properly, hT is chosen to achieve a given value of the IC average run length, denoted as ARL0.

The second parametric chart to introduce is the one based on the COM-Poisson distributional assump-

tion that was discussed in Saghir and Lin (2014). The COM-Poisson distribution generalizes the regu-

lar Poisson distribution by introducing a location parameter and a dispersion parameter to allow under-

dispersion or over-dispersion in the observed data. In that method, it is assumed that each component of

X(n) has a COM-Poisson distribution and D(n) denotes the summation of all components at the time point

n. Namely,

D(n) =
p

∑
j=1

X j(n).

The mean and variance of D(n) can be calculated based on the COM-Poisson distributional assumption.

Then, Saghir and Lin (2014) suggested a Shewhart-type control chart with the control limit determined by

the mean and standard deviation of D(n). As well demonstrated in the literature, CUSUM charts are usually

more effective in detecting persistent shifts than Shewhart charts (cf. Qiu, 2014, Chapter 4). For that reason

and for a fair comparison among different charts in Sections 4 and 5 below, we also define a CUSUM chart

based on D(n) here. Let u+0,D = u−0,D = 0, and

u+n,D = max(0,u+n−1,D +(D(n)−D0)− kD),

u−n,D = min(0,u−n−1,D +(D(n)−D0)+ kD), for n ≥ 1,

where kD > 0 is an allowance constant, and D0 is the IC mean of D(n) that can be estimated from an IC

data. This CUSUM chart, denoted as DCUSUM hereafter, signals a shift in X(n) when

u+n,D > hD or u−n,D <−hD, (2)

where hD > 0 is a control limit chosen to achieve a given ARL0 value.
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3 Nonparametric Monitoring of Multiple Count Data

The performance of the parametric methods described in the previous section depends heavily on the validity

of the assumed parametric distributions. In the next section, we will show that their results are unreliable

in cases when the assumed distributions are invalid. In practice, parametric distributions are often invalid to

describe the observed quality characteristics of a specific process because the quality characteristics are often

affected by many different factors and the mechanism of this impact is usually too complicated to describe

by a parametric model. Therefore, development of nonparametric control charts is important for monitoring

multiple count data. In this section, we propose a nonparametric control chart based on log-linear modeling.

As pointed out by Qiu (2008), the major difficulty in describing the distribution of multiple quality

characteristics is due to the complicated relationship among them. If the related variables are categorical,

then the log-linear modeling would be a powerful tool for describing such relationship. Therefore, it is

natural to categorize the original quality characteristics X(n) = (X1(n),X2(n), . . . ,Xp(n))′, and then apply

the log-linear modeling approach to the categorized data. To this end, let m j be the IC median of X j(n),

Y(n) = (Y1(n),Y2(n), . . . ,Yp(n))′, and

Yj(n) = I(X j(n) > m j) for j = 1,2, . . . , p, (3)

where I(a) is an indicator function that equals 1 if a is “true” and 0 otherwise. Then, Y(n) is a binary

version of X(n), and the IC distribution of each of its components should be Bernoulli(0.5). For count data,

however, it is often difficult to find the exact median value m j due to the discreteness of the original variable

X j(n). To address this issue, there are several possible solutions. One is to add a small random number

to X j(n) before categorization, to make the distribution of X j(n) less discrete, as discussed in Qiu and Li

(2011). Alternatively, in Equation (3), the IC median m j can be replaced by the more general IC rth quantile

of X j(n), with r being a real number in (0,1) that is achievable and as close to 0.5 as possible. We consider

using the median in Equation (3) because the resulting joint distribution of Y(n) could be more efficiently
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estimated by the log-linear modeling approach (Agresti, 2013). Theoretically, it can be checked that as long

as the IC distribution F(x) of X(n) has a positive probability mass in any neighborhood of the IC median

vector (m1,m2, . . . ,mp)′, the distribution of Y(n) would be changed by any mean shift in the original data

X(n). The reason is that X(n) has a mean shift if and only if it has a median shift, and a median shift in

X(n) is equivalent to a distributional shift of Y(n), according to Equation (3). Thus, if we are concerned

about mean shifts in X(n), we can just monitor the categorized data Y(n).

Next, we briefly describe the log-linear modeling of the categorized data Y(n). For simplicity, the

dimension is fixed at p = 3, and the modeling can be discussed similarly for cases with p > 3. Let O j1 j2 j3

be the observed cell count of the ( j1, j2, j3)th cell of the three-way contingency table of an IC data, with

the three binary variables Y1(n), Y2(n) and Y3(n) defined in Equation (3) as classifiers, for j1, j2, j3 = 0,1.

Then, a saturated log-linear model is defined as

log(O j1 j2 j3) = λ +λY1

j1
+λY2

j2
+λY3

j3
+λY1Y2

j1 j2
+λY1Y3

j1 j3
+λY2Y3

j2 j3
+λY1Y2Y3

j1 j2 j3
, for j1, j2, j3 = 0,1, (4)

where λ is a constant term, λY1

j1
, λY2

j2
and λY3

j3
are the main effects of Y1, Y2 and Y3, respectively, λY1Y2

j1 j2
, λY1Y3

j1 j3

and λY2Y3

j2 j3
are the two-way interaction terms, and λY1Y2Y3

j1 j2 j3
is the three-way interaction term (cf., Agresti, 2013).

By removing certain terms from the model (4), the resulting models can describe all kinds of possible

association among Y1, Y2 and Y3. For convenience, let us use a notation that lists the highest-order term(s) of

each variable to denote a specific log-linear model. Then, the saturated log-linear model (4) can be denoted

as (Y1Y2Y3). If the three-way interaction term is excluded from the saturated model, then the conditional

association between any two of Y1, Y2 and Y3 are identical at the two levels of the remaining variable.

That is, each pair of variables has homogeneous association. This model is denoted as (Y1Y2,Y1Y3,Y2Y3).

Similarly, the model (Y1Y2,Y1Y3) denotes the one with the two-way interaction term λY2Y3

j2 j3
and the three-

way interaction term λY1Y2Y3

j1 j2 j3
excluded from the saturated model. In that model, Y2 and Y3 are assumed

conditionally independent given Y1. These notations of log-linear models have been used in Agresti (2013).
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For a specific categorical dataset, a proper log-linear model should be selected and estimated. To this

end, the likelihood ratio test statistic G2 and the hierarchy principle are routinely used for model selection.

The hierarchy principle requires that all lower-order terms should be included in a model if a higher-order

interaction term is in the model. In all simulation studies in this paper, we use the backward elimination

procedure for model selection. Namely, we start from the saturated model. Then, in each step of model

selection, only one term is considered to be deleted by performing a likelihood ratio test with the significance

level of 0.05. For instance, when comparing the saturated model (Y1Y2Y3) (denoted as M1) with the reduced

model (Y1Y2,Y1Y3,Y2Y3) (denoted as M0), the likelihood ratio test statistic is G2(M0|M1) =−2 log(lM0
/lM1

),

where lM0
and lM1

denote the likelihood functions of the reduced model M0 and the saturated model M1,

respectively. The null distribution of G2(M0|M1) is the χ2(1) distribution, based on which the p-value of

the test can be calculated for making decisions. This model selection process continues until no terms need

to be deleted. Once the final model is determined, its estimation can be achieved by using the iterative

weighted least square procedure. It should be pointed out that model selection and estimation in log-linear

modeling are easy to implement, because almost all existing statistical software packages have specific

functions for that purpose.

Based on the estimated log-linear model described above, the IC joint distribution of Y(n), denoted as

{ f
(0)
j1,..., jp

= P(Y1 = j1, . . . ,Yp = jp), j1, . . . , jp = 0,1}, can be estimated accordingly. For example, when

p = 3, f
(0)
j1, j2, j3

can be estimated by E j1 j2 j3 /n0, where E j1 j2 j3 is the estimated count of the ( j1, j2, j3)th cell

that can be obtained from the estimated log-linear model and n0 is the sample size of the IC dataset. Then,

we can construct a Phase II control chart as follows. Let

g j1,..., jp
(n) = I(Y1(n) = j1, . . . ,Yp(n) = jp), for j1, . . . , jp = 0,1,

g(n) be a vector of all g j1,..., jp
(n) values for j1, . . . , jp = 0,1, and f(0) be a vector of all f

(0)
j1,..., jp

values in

the corresponding order. By combining the Pearson’s χ2 test statistic with the CUSUM online monitoring
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scheme, we can define a CUSUM control chart as follows. First, define



























































Sobs
n = 0, if Cn ≤ kP,

S
exp
n = 0, if Cn ≤ kP,

Sobs
n = (Sobs

n−1 + g(n))(Cn − kP)/Cn, if Cn > kP,

S
exp
n = (Sexp

n−1 + f(0))(Cn − kP)/Cn, if Cn > kP,

(5)

where kP > 0 is an allowance constant, Sobs
0 = S

exp
0 = 0,

Cn =

(

(

Sobs
n−1 −S

exp
n−1

)

+
(

g(n)− f(0)
)

)′(

diag
(

S
exp
n−1 + f(0)

)

)−1(
(

Sobs
n−1 −S

exp
n−1

)

+
(

g(n)− f(0)
)

)

,

diag(a) denotes a diagonal matrix with its diagonal elements equal to the corresponding ones of the vector a,

and the superscripts “obs” and “exp” denote the observed and expected counts, respectively. In Expression

(5), Cn is a quantity that measures the overall difference, up to the current time point n, between the observed

counts and expected counts of the related p-way contingency table. When Cn ≤ kP (i.e., the data do not show

any significant evidence of a distributional shift in Y(n)), we reset Sobs
n and S

exp
n to be zero. Otherwise, Sobs

n

is used to record the cumulative observed counts, and S
exp
n is used to record the cumulative expected counts,

in the scale of (Cn − kP)/Cn. Then, the CUSUM charting statistic is defined by

un,P =
(

Sobs
n −Sexp

n

)′(
diag(Sexp

n )
)−1(

Sobs
n −Sexp

n

)

, (6)

and the chart signals a shift when

un,P > hP, (7)

where hP > 0 is a control limit chosen to achieve a given ARL0 level. The chart (7) is denoted as PCUSUM

chart hereafter, since it is derived from the Pearson’s χ2 test. We can check that un,P in (6) is the conventional

Pearson’s χ2 test statistic that measures the difference between the cumulative observed and expected counts
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as of the time point n, when kP = 0. Also, it can be checked that un,P = max(0,Cn − kP) when kP 6= 0.

Therefore, un,P is defined in the way that the CUSUM scheme can repeatedly restart when there is little

evidence of shifts. By using this CUSUM scheme and the log-linear modeling, we can detect any mean shift

in the multivariate count data, without assuming the IC process distribution to follow a parametric form.

4 Numerical Performance Assessment

We evaluate the numerical performance of the related methods that were discussed in the previous sections

here. In different numerical examples, we assume that p = 3, and the true IC distribution of (X1,X2,X3)

belongs to one of the following four cases:

Case I X1 ∼ Bin(10,0.25), X2 ∼ Bin(10,0.50), X3 ∼ Bin(10,0.75), and X1, X2 and X3 are independent;

Case II X1 ∼ Poisson(3), X2 ∼ Poisson(5), X3 ∼ Poisson(8), and X1, X2 and X3 are independent;

Case III X1 ∼ ZIP(4,0.20), X2 ∼ ZIP(6,0.20), X3 ∼ ZIP(10,0.20), and X1, X2 and X3 are independent;

Case IV X1 ∼ ZIP(4,0.20), X2 ∼ ZIP(6,0.20), X3 = X1 + δ , δ ∼ ZIP(6,0.20), and X1, X2 and δ are

independent.

In Cases III and IV, ZIP(η ,π) denotes the zero-inflated Poisson distribution with parameters η and π . More

specifically, the probability mass function of X ∼ ZIP(η ,π) is defined as

P(X = 0) = π +(1−π)exp(−η), P(X = x) = (1−π)ηx exp(−η)/x!, for x > 0.

In the above four cases, Case II denotes the case when the conventional Poisson distribution with indepen-

dent components assumption is valid, Cases I and III represent two cases when the Poisson distribution

assumption is violated, and Case IV represents a case when some components are correlated. Also, the
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binomial, Poisson and zero-inflated Poisson distributions are three representative discrete distributions with

under-dispersion, equal-dispersion and over-dispersion, respectively.

We first compare the IC performance of the two parametric charts MEWMA and DCUSUM (cf., Equa-

tions (1) and (2)) that were described in Section 2 with some nonparametric charts. Besides the PCUSUM

chart discussed in Section 3, we also consider another two representative nonparametric control charts. The

first one is the CUSUM version of the multivariate sign chart proposed by Boone and Chakraborti (2012),

which is denoted as SNCUSUM. Note that Boone and Chakraborti (2012) originally suggested a Shewhart-

type control chart based on the sign statistic and the control limit of the chart was determined based on the

asymptotic distribution of the charting statistic. The robustness of the IC performance of this Shewhart chart

cannot be guaranteed, particularly in cases with small subgroup sizes. To address this issue and make a

fair comparison with the PCUSUM chart, we change the Shewhart chart into a CUSUM chart and use the

bootstrap method (Chatterjee and Qiu, 2009) to find its control limit. The second alternative nonparametric

CUSUM chart is the one based on the antiranks (Qiu and Hawkins, 2003), denoted as ARCUSUM. Since

we usually do not know the shift direction in practice, we choose to use the first and last antiranks in this

chart for fair comparisons. The smoothing matrix used in the MEWMA chart is chosen to be the same

as that in Chen et al. (2015), the allowance constants in the four CUSUM charts are chosen to be 0.5, the

subgroup size of the SNCUSUM chart is fixed at 10, and certain IC parameters used in all five charts are

estimated from an IC dataset of size 500. The actual ARL0 values of the charts are calculated from 10,000

replicated simulations and presented in Table 1. In the table, we would like to point out that the MEWMA

chart cannot be used in Case I, because the chart is based on the multivariate Poisson log-normal distribu-

tional assumption, which implies that the variance of any component of X(n) cannot be smaller than its

mean (Aitchison and Ho, 1989). But, Case I denotes a case of under-dispersion, as mentioned above. So,

that multivariate Poisson log-normal distributional assumption cannot be valid in that case.

From Table 1, we can see that the actual ARL0 values of the nonparametric charts PCUSUM, AR-

CUSUM and SNCUSUM are all very close to the nominal ARL0 values in all cases considered. When
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Table 1. The actual ARL0 values and their standard errors (in parentheses) of the five control charts when

the nominal ARL0 values are fixed at 200 or 500.

Nominal ARL0 Chart Case I Case II Case III Case IV

200

MEWMA - 198.1 (2.05) 164.7 (1.83) 218.6 (2.01)

DCUSUM 249.9 (2.87) 211.7 (2.54) 250.9 (2.91) 279.6 (3.23)

SNCUSUM 200.0 (2.28) 200.0 (2.25) 200.0 (2.32) 200.0 (2.34)

ARCUSUM 200.1 (3.25) 199.9 (3.31) 200.1 (2.93) 199.9 (2.99)

PCUSUM 199.9 (2.87) 199.9 (2.93) 199.9 (2.81) 200.0 (2.72)

500

MEWMA - 473.1 (3.67) 429.0 (3.25) 559.7 (3.31)

DCUSUM 675.9 (7.30) 514 (5.60) 630.3 (6.53) 761.1 (7.73)

SNCUSUM 500.0 (5.05) 500.0 (5.51) 500.0 (5.11) 499.9 (5.06)

ARCUSUM 499.9 (6.43) 500.0 (6.50) 499.9 (5.92) 500.0 (6.03)

PCUSUM 499.3 (5.80) 500.0 (5.69) 499.9 (5.75) 500.0 (5.65)

further comparing the three nonparametric control charts in terms of the standard error, the SNCUSUM

chart has the best performance and the PCUSUM chart performs better than the ARCUSUM chart. As a

comparison, the actual ARL0 values of the parametric charts MEWMA and DCUSUM deviate significantly

from the nominal ARL0 values in most cases considered. If the actual ARL0 value of a chart is substantially

larger than the nominal value, then the chart would be too conservative in detecting process distributional

shifts in the sense that a real shift would not be detected as quickly as expected. Thus, we could have the

situation when the process produces many defective products without notice. In the case when the actual

ARL0 value of a chart is substantially smaller than the nominal value, then the chart would give many false

signals. Thus, the production process would be unnecessarily stopped too often and too soon. Much human

resource and production efficiency would be wasted as a consequence. Therefore, the parametric charts

should be used with care in practice, and their distributional assumptions should be adequately checked in

advance.

Next, we compare the OC performance of the related control charts. From Table 1, we can see that

the MEWMA and DCUSUM charts have unreliable IC performance in various cases considered. In such

cases, their shift detection power might be irrelevant because a good shift detection power could be due

to an overly small actual ARL0 value. To make a relatively fair comparison about their OC performance,
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we use the bootstrap procedure to compute the control limits of the MEWMA and DCUSUM charts so

that their actual ARL0 values reach the nominal ARL0 value, and the related control charts are denoted as

MEWMA(b) and DCUSUM(b), respectively. Thus, the MEWMA(b) and DCUSUM(b) charts can also be

regarded as nonparametric control charts because computation of their control limits does not depend on the

assumed parametric distributions. The bootstrap sample size used in these two charts is chosen to be 500

that is the same as that of the IC dataset. For illustration purposes, the original versions of the MEWMA and

DCUSUM charts are also considered here. In this example, the true process distribution is assumed to be the

standardized version with mean 0 and standard deviation 1 of one of the Cases I-IV. In each case, two shift

scenarios are considered: one is that a shift occurs only in the first component with the shift size changing

from -1.0 to 1.0, and the other is that a shift occurs in all three components with the same size changing

from -0.4 to 0.4. “delta” is used to denote the magnitude of the considered shift in the following figures.

Because performance of different CUSUM charts with a same allowance constant may not be comparable

(cf., Qiu, 2008), we choose to compare their optimal performance when detecting a specific shift. Namely,

for detecting a given shift, we search the allowance constant of a CUSUM chart such that the ARL1 value

reaches the minimum when its ARL0 value is fixed at the nominal level. For the MEWMA chart, we still use

the same smoothing parameters as those in Chen et al. (2015), because it was shown in that paper that these

smoothing parameters were robust and could give optimal or close to optimal performance across different

settings. Also, that chart is not considered in Case I for the reason given above about Table 1.

Based on 10,000 replications, the calculated ARL1 values of the PCUSUM, DCUSUM, MEWMA,

DCUSUM(b) and MEWMA(b) charts are shown in Figures 1-2, respectively, in the two shift scenarios.

These two figures are used for demonstrating the unreliability of the parametric charts DCUSUM and

MEWMA and for comparing the PCUSUM chart with the modified parametric charts DCUSUM(b) and

MEWMA(b). As shown in Figures 1-2, when the true process distribution is Poisson (i.e., plot (b) in both

Figures), DCUSUM and MEWMA perform similarly to DCUSUM(b) and MEWMA(b), respectively. This

is expected because the Poisson distribution assumption is valid in such cases. In the other cases when
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the true process distribution is binomial or zero-inflated Poisson, DCUSUM and MEWMA are unreliable.

Regarding DCUSUM(b) and MEWMA(b), they have a similar performance to PCUSUM. The PCUSUM

chart seems to be more sensitive to small shifts while the DCUSUM(b) and MEWMA(b) charts perform

better for detecting larger shifts.
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Figure 1. Calculated ARL1 values of the control charts when the nominal ARL0 is fixed at 200, and the

actual IC process distribution is the standardized version of the one in Case I (plot (a)), Case II (plot (b)),

Case III (plot (c)), and Case IV (plot (d)). Shift of size “delta” occurs only in the first component of X(n).

Figures 3-4 show the calculated ARL1 values of the three nonparametric control charts PCUSUM,
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Figure 2. Calculated ARL1 values of the control charts when the nominal ARL0 is fixed at 200, and the

actual IC process distribution is the standardized version of the one in Case I (plot (a)), Case II (plot (b)),

Case III (plot (c)), and Case IV (plot (d)). Shift of size “delta” occurs in all components of X(n).

ARCUSUM and SNCUSUM in the two shift scenarios, respectively, based on 10,000 replicated simulations.

From the figures, we can see that PCUCUM outperforms ARCUSUM and SNCUSUM in most cases, and

ARCUSUM outperforms SNCUSUM in most cases as well.

Next, we study the standard deviation of the OC run length, denoted as SDRL1, of various control

charts. In cases when the shift occurs in the first component of X(n) (i.e., the first shift scenario) with the
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Figure 3. Calculated ARL1 values of the control charts when the nominal ARL0 is fixed at 200, and the

actual IC process distribution is the standardized version of the one in Case I (plot (a)), Case II (plot (b)),

Case III (plot (c)), and Case IV (plot (d)). Shift of size “delta” occurs only in the first component of X(n).

size “delta” changes from 0.2 to 1.0 and other setupa are the same as those in Figures 1-2, the calculated

SDRL1 values of the charts PCUSUM, ARCUSUM, SNCUSUM, DCUSUM(b) and MEWMA(b) are shown

in Figure 5. From the plots in the figure, it can be seen that PCUSUM has relatively small SDRL1 values,

compared to the other four charts, in most cases considered. For downward shifts in the first shift scenario

and for shifts in the second shift scenario, results are similar and thus omitted here.
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Figure 4. Calculated ARL1 values of the control charts when the nominal ARL0 is fixed at 200, and the

actual IC process distribution is the standardized version of the one in Case I (plot (a)), Case II (plot (b)),

Case III (plot (c)), and Case IV (plot (d)). Shift of size “delta” occurs in all components of X(n).

As a summary of the above simulation results, we can have the following conclusions. (i) The para-

metric charts DCUSUM and MEWMA are unreliable to use in cases when their distribution assumptions

are violated. (ii) Among the three nonparametric charts ARCUSUM, SNCUSUM and PCUSUM, in terms

of ARL1, PCUSUM outperforms SNCUSUM in all cases considered, and it outperforms ARCUSUM when

detecting most upward shifts in all four cases and when detecting downward shifts in Cases I and II. In terms
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Figure 5. The SDRL1 values of the five nonparametric control charts when the nominal ARL0 is fixed at

200, and the actual IC process distribution is the standardized version of the one in Case I (plot (a)), Case II

(plot (b)), Case III (plot (c)), and Case IV (plot (d)). Shift of size “delta” occurs only in the first component

of X(n).

of SDRL1, similar conclusions can be made. Therefore, the PCUSUM chart is preferred in general among

the three nonparametric control charts considered here for monitoring multivariate count data.

As mentioned earlier, certain IC parameters (e.g., the medians m j) of the PCUSUM chart need to be

estimated from an IC dataset. Thus, its performance depends on the size n0 of the IC dataset. To study the
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impact of n0 on the performance of the PCUSUM chart, let us consider Case I and compute the optimal

ARL1 values of the PCUSUM chart when n0 changes from 100, 500, 1000 to 5000 and all other parameters

are chosen to be the same as those in the example of Figure 1. The results are presented in Figure 6, where

the y-axis is in natural logarithm scale to better distinguish the difference. From the plots, we can see that the

results are better when n0 is chosen larger, as expected, and the results do not change much when n0 ≥ 1000.
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Figure 6. Calculated optimal ARL1 values of the PCUSUM chart when n0 = 100,500,1000 and 5000,

and of the self-start version of the PCUSUM chart in Case I. Shift of size “delta” occurs only in the first

component of X(n) in plot (a), and occurs in all components of X(n) in plot (b).

In certain applications, it might be difficult to have 1000 or even 500 IC observations before online

monitoring. In such cases, a natural approach to overcome that difficulty is to use a self-starting control

chart (Hawkins, 1987; Capizzi and Masarotto, 2010). The basic idea behind that chart is that the new ob-

servation collected at the current time point can be combined with the IC dataset once we confirm that

the related process is IC at the current time point. So, the size of the IC dataset can potentially increase

during online process monitoring and the IC parameters can potentially be estimated more and more ac-

curately. To use a self-starting chart, a small number of IC observations is still needed in advance, to
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calculate initial estimates of the IC parameters. Several existing studies, including those in Hawkins (1987),

Hawkins and Maboudou-Tchao (2007) and Sullivan and Jones (2002), showed that the results would be

quite stable if we could collect 20-50 IC observations in advance, depending on the dimensionality of the

process observations. It was shown that a dozen initial IC observations were usually good enough in univari-

ate cases and we needed 30-50 initial IC observations when the dimensionality of the process observations

was up to 15. We constructed the self-starting version of the PCUSUM chart, and performed a big simu-

lation study about its numerical performance. Our results are overall consistent with those in the existing

studies mentioned above. In the setup of the previous example, its optimal ARL1 values are shown in Figure

6 by the solid lines, in cases when 30 initial IC observations are used. We can see that its performance is

about the same as that of the original PCUSUM chart with 5,000 IC observations in the scenario of plot (a),

and even much better than the latter in the scenario of plot (b).

5 A Real-Data Application

In this section, we apply the related control charts to a real-data example about the crime logs in 2016 at

the University of Florida. Three types of common crimes are considered in this example, including Driving

Under the Influence (X1), Narcotics Violation (X2) and Larceny/Theft (X3). Daily counts of these crimes

can be found at the website of the University of Florida Police Department (http://www.police.ufl.edu/wp-

content/asp/crimelog/default2.asp). We then use the first half of the data (more specifically, the first 185

observations) as the IC data, and the remaining as the test data for online monitoring. Both the IC data and

the test data are shown in the 3-D plot in Figure 7. We can see that the test data have a larger mean than the

IC data. The IC data are also shown in the first row of Figure 8. The corresponding histograms of the three

variables are shown in the second row, along with their density curves (solid lines) and the density curves

of the Poisson distributions with the same means (dashed lines). From Figure 8(d)-(f), we can see that the

marginal distributions of X1, X2 and X3 are quite different from the corresponding Poisson distributions for
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the IC data. We then use the Pearson’s Chi-square goodness-of-fit test and the Fisher’s index of dispersion

test (Fisher et al., 1922) to formally test whether each variable in the IC data follows a Poisson distribution.

Both tests conclude that X2 and X3 are significantly different from Poisson (Pearson’s test: p-value=0.000

for X2 and p-value=0.001 for X3; Fisher’s test: p-value=0.000 for X2 and p-value=0.002 for X3). As for X1,

the Pearson’s test gives the p-value of 0.077, while the Fisher’s test gives the p-value of 0.000. Therefore,

we can conclude that the joint distribution of X(n) = (X1(n),X2(n),X3(n))′ cannot be multivariate Poisson,

because a joint Poisson distribution implies that all marginal distributions are Poisson.
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Figure 7. A 3-D scatter plot of the daily counts of the three types of crimes in year 2016 at the University

of Florida.

Because it is confirmed above that the IC data do not follow a multivariate Poisson distribution, only the

five nonparametric charts PCUSUM, ARCUSUM, SNCUSUM, DCUSUM(b) and MEWMA(b) are consid-

ered in this example. When implementing the related control charts, the nominal ARL0 is fixed at 200 for

all five charts, the allowance constant is chosen to be 0.1 for the PCUSUM, ARCUSUM, SNCUSUM and

DCUSUM(b) charts, the subgroup size in the SNCUSUM chart is fixed at 10, and the smoothing parameters

21



0 50 100 150

0
1

2
3

4

Day

X
1

(a)

0 50 100 150

0
1

2
3

4
5

6

Day

X
2

(b)

0 50 100 150

0
1

2
3

4
5

Day

X
3

(c)

D
e
n
s
it
y

0 1 2 3 4

0
.0

0
.5

1
.0

1
.5

(d)

D
e
n
s
it
y

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

(e)

D
e
n
s
it
y

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

(f)

Figure 8. Daily counts ((a)-(c)) and histograms ((d)-(f)) of the three types of crimes in the first 185 days

in year 2016 at the University of Florida. The dashed lines in plots (d)-(f) denote the density curves of the

data, and the solid lines denote the density curves of the Poisson distributions with the same means.

of the MEWMA(b) chart are chosen to be the same as those used in Chen et al. (2015). The five control

charts are presented in Figure 9, where the dashed horizontal lines denote their control limits. From the

plots, we can see that the PCUSUM, ARCUSUM, SNCUSUM, DCUSUM(b) and MEWMA(b) charts give

signals at the 2nd, 2nd, 180th, 82nd and 70th testing observations, respectively. Therefore, the PCUSUM

and ARCUSUM charts detect the distributional shifts earlier than the remaining 3 charts in this example.
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Figure 9. The PCUSUM, ARCUSUM, SNCUSUM, DCUSUM(b) and MEWMA(b) charts for monitoring

the daily counts of the three types of crimes at the University of Florida during the second half of the year

in 2016. The dashed horizontal lines are the control limits of the related control charts.
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6 Concluding Remarks

SPC for multiple count data remains a challenging problem. Most existing methods for monitoring multiple

count data are based on certain parametric models, among which the most commonly used one is the mul-

tivariate Poisson distribution. In practice, however, the assumed parametric models are rarely valid, due to

the complicated impact of various factors (e.g., the environment, weather, and so forth) on the count data.

We have shown in the paper that the parametric control charts are unreliable to use in such cases because

their actual ARL0 values could be substantially different from a nominal level. In this paper, we carefully

compare the performance of some representative parametric and nonparametric control charts in monitoring

multiple count data. We suggest that the related parametric model should be checked carefully before a para-

metric chart is used. In cases when we are unsure whether the assumed parametric model is valid, or when

we do not know which parametric chart is appropriate, we suggest using a nonparametric chart instead. To

this end, the PCUSUM chart and its self-starting version can give reasonably good results in general, based

on our intensive numerical study in various different cases.

There are a number of issues that have not been discussed thoroughly in the current paper. For instance,

we focus on mean shifts only in this paper. Although we believe that the PCUSUM chart can also detect

shifts in the scale parameters, we do not know how effective it is for that purpose. Also, the allowance

constant kP needs to be determined in advance and it might be selected adaptively, as discussed in Section

4.5 of Qiu (2014). These issues and some others will be addressed in our future research.
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