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A B S T R A C T   

The number of event occurrences, called counts are prevalent in many fields such as manufacturing industry and 
public health. Control charts have been widely employed to monitor such count data for quality improvement of 
products or medical service by assuming the data follows the Poisson distribution. However, the shift information 
of Poisson mean has not been well considered in current design of the exponentially weighted moving average 
(EWMA) control chart. This article studies the optimal design of the Poisson EWMA chart with known and 
unknown shift sizes integrated respectively in order to bridge the research gap. We simplify these two optimi-
zation problems to searching for a unique smoothing parameter in minimizing the out-of-control (OC) average 
run length (ARL) and OC expected ARL (EARL) over random shifts respectively. Due to the intractability of 
obtaining a closed-form solution, the Fibonacci search algorithm is proposed to find out the optimal smoothing 
parameter in a short time. The satisfactory performance of proposed optimal design method is demonstrated by 
numerous simulation results and two real datasets from manufacturing industry and public health.   

1. Introduction 

In recent years, the number of event occurrences has attracted plenty 
of attention in various fields. For example, recording the monthly 
number of patients suffering from polio disease can help forecast and 
prevent potential epidemic situations in public health (Wang & Qiu, 
2018) whereas nonconforming products are counted to reflect the 
variation of a manufacturing process (Li, Wang, & Zhu, 2019). Statistical 
process control (SPC) has been widely employed to analyze such count 
data for either public health surveillance or quality improvement. In SPC 
applications, it is usual to assume that these count data follow a Poisson 
distribution, allowing for the establishments of reasonable benchmarks 
such as control limits to determine whether an anomaly occurs given a 
specific magnitude of Type I error. Due to its widespread applications, 
monitoring Poisson counts has become an important research field, to 
which, this article is trying to make a contribution. 

In the literature, an early representative method should be c-chart, 
the detailed introduction of which can be found in Montgomery (2013) 
and Qiu (2014). Since only current observations are used, c-chart is of 
Shewhart type and is more suitable for detecting large shifts. In order to 
detect moderate and small shifts effectively, Lucas (1985) and Gan 
(1990) proposed a cumulative sum (CUSUM) chart and an EWMA chart 

respectively, both of which can combine current and past sample in-
formation. Borror, Champ, and Rigdon (1998) calculated the ARL of the 
Poisson EWMA chart by Markov chain approximation. Zhang, Govin-
daraju, Lai, and Bebbington (2003) improved the detection capability of 
Poisson EWMA chart by calculating the EWMA charting statistic values 
with two smoothing parameters. Fast initial response (FIR) features 
were further incorporated by Chiu and Sheu (2008) into a general 
EWMA chart initiated by Sheu and Chiu (2007). Shu, Jiang, and Wu 
(2012) transformed Poisson counts into normally distributed observa-
tions and monitored the process by an upper-sided CUSUM control 
chart. In recent years, some sampling methods have been integrated into 
the traditional Poisson EWMA chart to improve its performance such as 
the ranked set sampling (Abujiya, Abbasi, & Riaz, 2016) and progressive 
sampling (Abbasi, 2017). Particularly, Alevizakos and Koukouvinos 
(2020) compared the performance of the aforementioned representative 
control charts. 

Other features of Poisson counts have also been considered in 
existing research. Testik (2007) evaluated the performance of Poisson 
CUSUM chart with an estimated in-control (IC) parameter. The problem 
to monitor Poisson counts with varying sample size was tackled by Ryan 
and Woodall (2010), Jiang, Shu, and Tsui (2011), Zhou, Zou, Wang, and 
Jiang (2012) and Shen, Zou, Jiang, and Tsung (2013) respectively. All 
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the above-mentioned charting techniques assume that the mean and 
variance of Poisson counts are equal. However, the variance of counts 
may be either larger than their mean (over-dispersion) or smaller than 
the mean (under-dispersion). Saghir and Lin (2015) provided a detailed 
review of the methods on count data with under-dispersion or over- 
dispersion. The latest work goes to a novel CUSUM scheme proposed 
by Yu, Wu, Wang, and Tsung (2018), which integrated weighted like-
lihood ratio to improve the method’s robustness to over-dispersed 
counts. Wang, Li, and Xue (2018) proposed a general approach to 
monitor both types of counts based on the Conway–Maxwell–Poisson 
model. 

Moreover, researchers introduced zero-inflated Poisson models for 
counts with excessive zeros and developed all kinds of monitoring 
schemes, which have been reviewed well by Li et al. (2019), Mahmood 
and Xie (2019). To alleviate the limits of assuming independence among 
the sequential observations, researchers exploited time series models 
such as Poisson integer-values aggressive models to characterize the 
serial dependence or autocorrelation of Poisson counts. Then novel 
EWMA and CUSUM charting techniques can be established to monitor 
the parameters or residuals of the model. Such work includes Weiß 
(2011), Weiß and Testik (2012, 2015), Sales, Pinho, Vivacqua, and Ho 
(2020). To be different, Li et al. (2019) regarded an autocorrelated 
Poisson variable as multiple dependent Poisson variables and proposed a 
multivariate control chart for online monitoring. Bourguignon, Rodri-
gues, and Santos-Neto (2019) further considered the dispersion in 
monitoring autocorrelated counting processes. Apart from these para-
metric approaches, Wang and Qiu (2018) and Qiu, He, and Wang (2019) 
developed nonparametric methods to monitor univariate and multi-
variate count data with unknown probability distributions. 

Despite the efficiency of existing monitoring schemes for Poisson 
data, priori shift information is seldom considered in the EWMA chart to 
improve the power of change detection. Such shift information may be 
obtained according to the domain knowledges or engineers’ past expe-
riences. The information about how many process parameters may 
become abnormal has been utilized by Wang and Jiang (2009) in high- 
dimensional processes, by Li, Tsung, and Zou (2012) in multivariate 
categorical processes and Li, Liu, and Xian (2017) in causal networks for 
the improvement of monitoring performance. Another type of priori 
information is acquired by estimating the shift size in advance. With 
regard to a normally distributed variable, Capizzi and Masarotto (2003) 
proposed an adaptive EWMA chart, which can adjust the smoothing 
parameter automatically according to the score functions that consider 
estimated shift information. Moreover, Shu, Huang, and Jiang (2014) 
proposed a novel charting design method with estimated shift sizes, 
which obtains the optimal smoothing parameter and control limit by 
minimizing OC ARL subject to given IC ARL. By analogy, Huang, Shu, 
and Jiang (2016) redesigned the CUSUM chart by assuming the shift size 
is unknown but its underlying distribution can be determined. The two 
works were further extended by Huang, Shu, and Jiang (2018) to find 
optimal parameters for multivariate normal EWMA charts. In moni-
toring Poisson data, CUSUM and adaptive CUSUM charts can integrate 
priori shift information although they are one-sided (He, Shu, & Tsui, 
2014). However, the traditional Poisson EWMA chart proposed by 
Borror et al. (1998) can only select appropriate smoothing parameter 
according to the rule found by Lucas and Saccucci (1990) that smaller 
smoothing parameter leads to quicker detection of smaller shift while 
the larger one is more suitable for detecting larger shifts. In general, this 
rule fails to mathematically characterize the relationship between 
smoothing parameter and predetermined priori shift information, which 
may cause subjective parameter selection. 

This article discusses the optimal design of Poisson EWMA chart in 
two cases to bridge the research gap mentioned above. When the 
magnitude of shift can be estimated in advance, we prove that there exist 
an optimal smoothing parameter and two-sided control limits such that 
OC ARL is minimized. When only the probability distribution of shift is 
known, we suggested minimizing the expected ARL (EARL) to search for 

the chart’s optimal parameters, which definitely exist under a few mild 
conditions. Note that the ARL is calculated based on Markov chain 
approximation in line with Borror et al. (1998), which avoids a large 
computational burden of the simulation method. We can further 
approximately calculate EARL by averaging the ARLs associated with all 
possible mean shifts. Since it is intractable to obtain the closed form of 
optimal parameters, we make another contribution to introducing a 
heuristic algorithm, i.e., Fibonacci search algorithm (Hassin & Sarid, 
2018), which provides a good solution in comparison with the con-
ventional binary search algorithm. Two real datasets respectively from a 
manufacturing process and public medical health are employed to 
illustrate the implementation and effectiveness of the proposed 
methods. 

The remainder of this article is organized as follows. Section 2 in-
troduces the traditional Poisson EWMA chart, which is efficiently opti-
mized in Section 3 with proposed Markov approximation method and 
the Fibonacci search algorithm. The performance of the optimal moni-
toring scheme is evaluated by simulation in Section 4 and two real ex-
amples are implemented in Section 5 to show the effectiveness of the 
proposed scheme. Finally, Section 6 provides some concluding remarks. 

2. Poisson EWMA control chart 

In this article, we follow the tradition in SPC field that a Poisson 
process is said to be in IC state when only common cause variation is 
present. In contrast, the process becomes out of control once extra 
variation occurs due to some assignable causes (Qiu, 2014). Suppose Xt 
denotes the observation of a Poisson variable at time point t and all IC 
observations are independently and identically distributed (i.i.d.). For 
any t > τ, Poisson mean μ may change from IC μ0 to some unknown μ1, 
which indicates that the process transmits into the OC state. All IC and 
OC observations can be presumably collected according to the following 
change-point model 

Xt̃

{
Poisson(μ0), for t = 1, 2,⋯, τ
Poisson(μ1), for t = τ + 1,⋯ 

Since τ is unknown in advance, we should conduct the following 
hypothesis test at each time point: 

H0 : μ = μ0 H1 : μ = μ1  

where “H0” and “H1” corresponds to the null hypothesis and alternative 
hypothesis respectively. According to Borror et al. (1998), observation 
Xt can be regarded as the monitoring statistic. To integrate current and 
historical samples in surveillance, the plotting statistic of Poisson EWMA 
chart is computed by the following formula: 

Zt = (1 − λ)Zt− 1 + λXt  

where 0 < λ ≤ 1 is smoothing parameter. When the process is in IC state, 
it is easy to know that 

E(Zt) = μ0 and Var(Zt) =
λ

2 − λ
[
1 − (1 − λ)2t]μ0 ≈

λμ0

2 − λ
with t→+∞ 

Then the upper and lower control limits denoted by hU and hL 

respectively can be obtained based on the asymptotic variance of Zt as 
below: 

hU = μ0 +AU

̅̅̅̅̅̅̅̅̅̅̅
λμ0

2 − λ

√

hL = μ0 − AL

̅̅̅̅̅̅̅̅̅̅̅
λμ0

2 − λ

√

where AU and AL are two constants determined based on given Type I 
error. According to Borror et al. (1998), AU = AL = A is often used to 
establish symmetric control charts although asymmetric control charts 
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may be preferred sometimes. In this work, we intend to design a sym-
metric Poisson EWMA chart with control limits set to: 

hU = μ0 +A
̅̅̅̅̅̅̅̅̅̅̅
λμ0

2 − λ

√

hL = μ0 − A
̅̅̅̅̅̅̅̅̅̅̅
λμ0

2 − λ

√

Note that if resultant hL < 0, we should set hL to 0. Once Zt > hU or 
Zt < hL, we should reject the null hypothesis and conclude that the 
process has gone out of control. 

When a process is in control, we usually define the number of sam-
ples taken before the release of a false OC signal as run length. Thus, the 
run length for an EWMA chart approximately follows a geometric dis-
tribution with the success probability equal to Type I error α so that the 
IC ARL can be computed as 1/α according to Lucas and Saccucci (1990). 
Note that all samples are collected at equally spaced time points 
throughout this work. Correspondingly, the OC run length can be 
defined as the number of samples collected from the time of shift 
occurrence to the time of correct OC signal. Simulation results from 
Lucas and Saccucci (1990) show that the OC run length of an EWMA 
chart will follow some distribution other than the geometric distribution 
but ARL remains to be effective to reflect the chart’s performance. When 
the Poisson process is in steady state i.e., t→+∞ with mean shift δ, it is 
easy to know that the statistic Zt will follow a stable distribution, the 
shape of which is similar to Poisson distribution according to our 
simulation results (see Fig. 1 as an example). Therefore, the probability 
of failing to trigger the OC signal denoted by β = Pr{hL ≤ Zt ≤ hU} is 
fixed given mean shift δ and all other parameters. Moreover, the larger β 
is, the larger OC ARL denoted by ARL(λ,A, δ) will be. We express their 
positively correlated relationship as below: 

ARL(λ,A, δ)∝β = Pr

⎧
⎪⎨

⎪⎩

⃒
⃒
⃒
⃒
⃒
⃒
⃒

z − μ0̅̅̅̅̅̅
λμ0
2− λ

√

⃒
⃒
⃒
⃒
⃒
⃒
⃒

≤ A

⎫
⎪⎬

⎪⎭
(1)  

where the observation of random variable z is Zt(t = 1,2,⋯). According 
to the Central Limit Theorem, when δ = 0 and sample size approaches to 

infinity, random variable x = (z − μ0)/

̅̅̅̅̅̅̅
λμ0
2− λ

√

will asymptotically follow 
the standard normal distribution with probability density function ϕ(x)
and cumulative distribution function Φ(x). If δ ∕= 0, the Poisson mean 

would become μ1 = μ0 +δ and y = (z − μ1)/

̅̅̅̅̅̅̅
λμ1
2− λ

√

would asymptotically 
follow the standard normal distribution with sample size approaching to 
infinity. 

3. Optimal design with Markov chain approximation 

It can be seen that the performance metric ARL(λ,A, δ) of Poisson 
EWMA chart is determined by three parameters λ, A and δ. According to 
Qiu (2014), for two-sided EWMA chart, smoothing parameter λ is usu-
ally determined beforehand while parameter A is then specified to reach 
a predefined IC ARL, i.e., ARL0. In other words, any value combinations 
of λ and A are feasible as long as they satisfy ARL(λ,A,0) = ARL0. Lucas 
and Saccucci (1990) proposed one general rule to guide the selection of λ 
that larger λ can help the chart detect larger shifts while the smaller one 
promotes quicker detection of smaller shifts. Instead of determining 
whether the most probable shift is small or large in a subjective way, this 
work assumes that we can estimate Poisson mean shift δ in advance 
based on engineering knowledges or practitioners’ past experiences in 
line with many existing articles mentioned in our Introduction. 

Once δ is specified, numerous values of ARL(λ,A, δ) can be obtained 
according to numerous feasible value combinations of λ and A satisfying 
ARL(λ,A,0) = ARL0. The idea is natural that we may choose the 
combination of λ and A that induces the minimum OC ARL. The resultant 
control chart should detect the shift most quickly than the charts with 
other parameter combinations when estimated shift δ really occurs. To 
this end, the design of Poisson EWMA chart becomes searching a com-
bination of parameters A, λ to minimize the OC ARL, which induces the 
following optimization problem: 

min
λ,A

ARL(λ,A, δ)

subject to ARL(λ,A, 0) = ARL0  

where ARL0 = 1/α represents IC ARL. Actually, Shu et al. (2014) and 
Huang et al. (2018) have solved this problem for univariate and multi-
variate normal variables respectively. They used the integral function 
proposed by Crowder, S. V. (1987) to calculate the ARLs and obtained 
the derivatives of integral function with respect to λ and A respectively. 
A gradient approach was established to search for the optimal combi-
nation of λ and A that minimize the OC ARL. Since a Poisson variable is 
discrete, neither the integral function nor the gradient approach is 
applicable in this article. To make an extension, we calculate the ARLs 
via Markov chain approximation and then introduce a new method for 
optimal design of EWMA control chart. 

Since it may be computationally intensive to search for λ and A 
simultaneously, this work makes another difference that the two- 
parameter optimization problem is transformed into one parameter 
search. Notice that the constraint ARL(λ,A,0) = ARL0 exhibits an im-
plicit relationship between λ and A, which enables us to calculate one 
parameter given the other. Another issue arises that how we can assure 
there is solution to the transformed optimization problem. In terms of 
this, it is necessary to investigate the properties of function ARL(λ,A, δ)
with respect to its parameters λ and A. All these are based on the as-
sumptions that all observations are independent and identically 
distributed (i.i.d.) and samples are collected at equally spaced time pe-
riods. In this article, we would like to express A as a function of λ ac-
cording to the constraint ARL(λ,A,0) = ARL0 so that the relationship 
between these two parameters will be discussed first. It is straightfor-
ward to see from the image of normal probability distribution that 

Pr

⎧
⎪⎨

⎪⎩

⃒
⃒
⃒
⃒
⃒
⃒
⃒

z− μ0̅̅̅̅̅
λμ0
2− λ

√

⃒
⃒
⃒
⃒
⃒
⃒
⃒

≤ A

⎫
⎪⎬

⎪⎭
exhibits a positive correlation relationship with A, i.e., 

∂ARL(λ,A,0)
∂A > 0. Then one property can be clarified as the following 

proposition: 

Proposition 1:. Given δ = 0, we have the results: a. dA
dλ > 0; 

b.∂ARL(λ,A,0)
∂λ < 0. 

Proof.. By analogy with formula (1), there exists ARL(λ,A,0)∝ 

Fig. 1. Comparison between frequency distribution of Zt and expected fre-
quencies of Xt with t ∈ [1001, 10000], μ1 = 12 and λ = 0.2. 
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Pr

⎧
⎪⎨

⎪⎩

⃒
⃒
⃒
⃒
⃒
⃒
⃒

z− μ0̅̅̅̅̅
λμ0
2− λ

√

⃒
⃒
⃒
⃒
⃒
⃒
⃒

≤ A

⎫
⎪⎬

⎪⎭
. When λ increases, the standard deviation of z denoted by 

Std(z) = σ0 =

̅̅̅̅̅̅̅
λμ0
2− λ

√

will also increase, which means that observations of z 
become more scattered. It is easy to see from the image of normal probability 

distribution that Pr

⎧
⎪⎨

⎪⎩

⃒
⃒
⃒
⃒
⃒
⃒
⃒

z− μ0̅̅̅̅̅
λμ0
2− λ

√

⃒
⃒
⃒
⃒
⃒
⃒
⃒

≤ A

⎫
⎪⎬

⎪⎭
shall decrease. To maintain 

ARL(λ,A,0) = ARL0, we have to let A increase. Therefore, when the 
constraint ARL(λ,A,0) = ARL0 is imposed, parameter A shall increase with 
increasing λ, i.e., dA

dλ > 0. The first-order derivative of ARL(λ,A,0) = ARL0 

with regard to λ can be described as 

∂ARL(λ,A, 0)
∂λ

+
∂ARL(λ,A, 0)

∂A
×

dA
dλ

= 0.

According to ∂ARL(λ,A,0)
∂A > 0 and dA

dλ > 0, we can obtain ∂ARL(λ,A,0)
∂λ < 0, 

which is the second half statement of Proposition 1. 
This proposition tells us that given any value of smoothing parameter 

λ ∈ (0,1), there exist a unique A such that prespecified IC ARL is satis-
fied. It sets a base for searching the optimal λ instead of searching λ and 
A simultaneously to minimize OC ARL. These properties of Poisson 
EWMA chart have been validated by Borror et al. (1998) by various 
simulation results. However, Borror et al. (1998) failed to discuss the 
relationships among λ, A and ARL(λ,A, δ) when the process is in OC 
state. Actually, it is complicated to analyze these relationships with 
mathematical formulas. In monitoring a normal variable with a constant 
shift, Crowder (1987) provided numerous simulation results to show 
that OC ARL is convex with λ ∈ (0, 1) and fixed control limit. Shu et al. 
(2014) found that a unique combination of λ and A exists to minimize OC 
ARL subject to a prespecified IC ARL when a constant shift occurs with 
the univariate normal variable. Similar results can also be found in 
designing multivariate EWMA chart (Huang et al., 2018). Besides, Qiu 
(2014) suggested a general guideline that λ can be chosen such that the 
OC ARL for detecting the target shift is minimized. Despite the 
assumption of monitoring normal variables, these results may also be 
true for general EWMA charts including Poisson EWMA chart. In Section 
5, we will prove this with numerous simulation results. 

Next, the Markov chain approach will be applied to approximate the 
ARL of the proposed Poisson EWMA control chart and optimal λ,A can 
be further obtained. It is well known that Markov chain focuses on 
characterizing the transition of a process from one state to another ac-
cording to a transition probability matrix. As mentioned above, the 
process is in IC state when hL ≤ Zt ≤ hU and will be regarded as going 
out of control otherwise. To make it further, we divide the IC interval [hL,

hU] into m subintervals, the width of each should be L
m. When Zt ∈ (

(i− 1)L
m ,

iL
m], the process can be said in the ith transient state. Note that Zt > hU or 
Zt < hL represents the absorbing state or OC state since the recurrent 
hypothesis test will stop in this state. In this way, the process will 
transmit in m+1 states with m transient states and one absorbing state, 
which can be naturally characterized by a Markov chain. 

Denote pij as the probability of moving from ith state to jth state and 
let the midpoint di =

(i− 0.5)L
m represent the ith subinterval, cj =

jL
m as the jth 

cutting point, we can have 

pij = Pr
(
cj− 1 < Zt ≤ cj|Zt− 1 = di

)

= Pr
(
cj− 1 < (1 − λ)Zt− 1 + λXt≤ cj|Zt− 1 = di

)

= Pr
(
cj− 1 < (1 − λ)di + λXt ≤ cj

)

= Pr
(

cj− 1 − (1 − λ)di

λ
< Xt ≤

cj − (1 − λ)di

λ

)

Since Xt follows Poisson distribution with mean μ0 in the IC state, it is 
straightforward to compute pij. Once all pij(i, j = 1, 2,⋯,m) are figured 
out, pij can form a m × m matrix denoted by R with pij as its entry in ith 
row and jth column. Furthermore, by adding (m + 1)th row and column 
to consider the transition to absorbing state, we can formulate the 
complete transition probability matrix 

P =

[
R (I − R)1
0T 1

]

,

where I is the m × m identity matrix and 1 represents a m × 1 column 
vector with all elements equal to one. According to Lucas and Saccucci 
(1990), the average run length (ARL) can be calculated by 

ARL = pT(I − R)
− 11,

where p represents the initial state of the process. Here we only consider 
the zero-state case, where the process transits from the first state, i.e., 
Z0 = μ0. In this way, we can let m be an odd number and p =

[0,⋯,1,⋯,0]T with only the m+1
2 th element as 1. 

To this end, when λ, A, δ are known, ARL can be computed easily 
according to the Markov chain approximation. Note that δ = 0 induces 
the IC ARL while δ ∕= 0 corresponds to the OC ARL. Since IC ARL, i.e., 
ARL0 is determined in advance and shall not change throughout the 
monitoring process, we can express A as the function of λ denoted by 
A(λ) according to the constraint ARL(λ,A,0) = ARL0. The consequent 
optimization problem becomes 

min
λ

ARL(λ,A(λ), δ)

The optimization problem has been transformed into searching for a 
λ between [λmin, λmax] leading to the smallest OC ARL. It is intuitive to 
conduct the grid search algorithm to complete this task. However, the 
grid search algorithm requires much computational cost since it con-
siders each kind of situation. Hassin and Sarid (2018) reviewed existing 
dichotomous search methods in operations research, which are available 
to us. In this work, we exploit two fast and efficient algorithms, the 
Fibonacci search algorithm and the bisection search algorithm. The 
latter algorithm is introduced in Appendix while the former involves the 
following steps:  

a. Generate Fibonacci numbers according to F(γ) = F(γ − 1)+F(γ − 2)
with γ as a positive integer and F(1) = 0, F(2) = 1. In line with most 
research, we consider 20 Fibonacci numbers so that γmax = 20;  

b. Set λ1 = λmax − (λmax − λmin)× F(γmax − 1)/F(γmax), 
λ2 = λmin +(λmax − λmin) × F(γmax − 1)/F(γmax) and calculate ARL(λ1,

A(λ1), δ) denoted by ARL1 and ARL(λ2,A(λ2), δ) denoted by ARL2;  
c. For the ith step, conduct the following procedure: 

if ARL1 < ARL2, let λmax = λ2, λ2 = λ1, λ1 = λmax − (λmax − λmin)×

F(γmax − i − 1)/F(γmax − i), ARL2 = ARL1 and then calculate new ARL1; 
if ARL1 > ARL2, let λmin = λ1, λ1 = λ2, λ2 = λmin + (λmax − λmin)×

F(γmax − i − 1)/F(γmax − i), ARL1 = ARL2 and then calculate new ARL2;  

d. Repeat Step c until i = γmax − 2 or |ARL1 − ARL2| < T with T as a 
given threshold and optimal λ = (λmax + λmin)/2. 

4. Extensions of Poisson EWMA chart with unknown shift sizes 

The preceding contents assume that the shift size of a Poisson process 
is known in advance, which may not be the usual case in practice. 
Sometimes we can only obtain a range of possible shift sizes that follow 
certain probability distribution based on engineering knowledges or 
practitioners’ past experiences (Huang et al., 2016). As an extension to 
the aforementioned study, this section discusses how to design a Poisson 
EWMA control chart when the shift size follows a certain probability 
distribution. Since there is one-to-one correspondence between δ and 

J. Wang et al.                                                                                                                                                                                                                                    



Computers & Industrial Engineering 154 (2021) 107100

5

ARL(λ,A(λ), δ), it is suitable to minimize expected average run length 
(EARL) instead of OC ARL in optimal design. Note that Huang et al. 
(2016) introduced a weight function to indicate the importance of the 
shift magnitude in computing EARL for the CUSUM chart. However, the 
weight function is omitted here for the ease of exposition. Assume the 
most possible range of δ is [a, b] and the optimization problem can be 
expressed as 

min
λ

EARL(λ,A(λ), δ) =
∫ b

a
f (δ)ARL(λ,A(λ), δ)dδ  

s.t ARL(λ,A, 0) = ARL0  

where f(δ) represents the probability density function of δ and other 
parameters are defined as above. Since it is intractable to obtain the 
explicit function of EARL(λ,A(λ),δ), a gradient approach is proposed by 
Huang et al. (2016) to search for optimal parameters. Apparently, the 
closed-form derivative of EARL with respect to all parameters can hardly 
be obtained in this article due to the exploitation of the Markov chain 
approximation to calculate ARLs. To exhibit the design of Poisson 
EWMA chart easily, we assume the shift δ follows a uniform distribution 
U(a, b) with a and b as parameters. In this way, our task is to figure out 
the optimal smoothing parameter λ and the corresponding constant A 
given δ U(a, b). According to integral properties, we can divide the 
uniform interval [a, b] into q subintervals and make an approximation: 

EARL(λ,A(λ) ) ≈
1
q
∑q

i=1
ARL(λ,A(λ), δi)

with δi = a + i
q (b − a). Note that similar approximations of integral 

calculation can be made when other probability distributions are 
involved. 

Numerous researches have shown that OC ARL shall decline with 
increasing magnitude of process shift δ. In particular, when δ ranges 
from a to b with a < 0 and b > 0, ARL(λ,A(λ), δ) will first increase and 
then decrease. In this case, it will be difficult to determine how the se-
lection of λ will influence the average of ARL(λ,A(λ), δi )(i = 1,⋯,q), i.e., 
EARL(λ,A(λ) ) although Proposition 1 indicates that ARL(λ,A(λ), δ) is a 
convex function of λ given δ. However, when δ ranges from a to b with 
ab > 0, we will see ARL(λ,A(λ), δ) either decrease (a,b < 0) or increase 
(a,b > 0). Due to the convex relationship of ARL(λ,A(λ), δi) with λ given 
δi, EARL(λ,A(λ) ) is also convex with respect to λ. To assure the existence 
of a unique λ to minimize EARL with δ U(a,b), we have to let ab > 0. The 
proposed Fibonacci search algorithm is also applicable in searching the 
optimal smoothing parameter λ. It can be seen that the proposed design 
of Poisson EWMA chart requires the forecast of process shift direction 
and magnitude. In SPC field, this is quite common before the imple-
mentation of one-sided control charts such as CUSUM chart and can be 
completed based on engineering knowledges and practitioners’ past 
experiences. 

5. Performance study 

This section evaluates performance of the proposed optimal design of 
Poisson EWMA chart based on simulation study. Specifically, this sec-
tion is divided into six parts. The first part shows how to determine the 
number of subintervals for Markov chain approximation and evaluates 
the performance of ARL approximation whereas the second part vali-
dates the existence of a unique solution to the optimization problem 
mentioned in this work. In the third subsection, the Fibonacci search 
algorithm is compared with the bisection search algorithm and some 
optimal combinations of parameters are provided in. The sensitivity 
analysis of IC and OC ARL is conducted in the next part with varying A, 
which is followed by the performance study with unknown shift sizes in 
the fifth subsection. Finally, we compare the optimally designed Poisson 
EWMA chart with its non-optimally designed version. 

5.1. Performance of Markov chain approximation 

As mentioned in Section 3, ARL calculation with Markov chain 
approximation is highly affected by m, the number of subintervals be-
tween the upper and lower control limits. To figure out the appropriate 
m, we assume the Poisson mean shift δ amounts to 0 and set target IC 
ARL to 370. With varying m, different actual ARLs can be calculated 
based on Markov approximation and formulate Fig. 2. To display the 

Fig. 2. The effect of m on actual ARL.  

Table 1 
IC ARL comparison between Markov approximation method and simulation 
method.  

μ0  ARL0= 100 200 370 500 800 

1 ICA 99.28 201.6 373.7 493.3 799.9 
ICS 103.7 205.2 371.8 522.4 792.8 

2 ICA 101.6 210.3 368.1 501.3 798.3 
ICS 102.5 207.4 381.2 511.2 813.6 

3 ICA 98.83 198.2 367.6 498.4 793.4 
ICS 97.74 198.5 375.7 501.5 818.1 

4 ICA 99.49 199.4 363.5 493.4 800.0 
ICS 98.77 199.4 372.7 511.1 806.6 

6 ICA 101.7 201.2 378.4 500.3 792.8 
ICS 103.9 207.8 380.2 503.9 834.8 

8 ICA 99.17 198.5 371.2 498.7 791.7 
ICS 99.60 204.5 371.2 485.8 782.6 

10 ICA 99.01 198.6 371.6 507.7 790.1 
ICS 100.9 203.3 366.0 500.5 793.0  

Table 2 
OC ARL comparison between Markov approximation method and simulation 
method with IC ARL = 370  

μ0  δ = 0.5 1.0 2.0 4.0 6.0 8.0 

1 OCA 28.31 – – – – – 
OCS 28.69 – – – – – 

2 OCA 47.90 16.12 – – – – 
OCS 48.01 16.37 – – – – 

3 OCA 66.39 22.69 7.672 – – – 
OCS 65.40 22.82 7.775 – – – 

4 OCA 82.72 29.06 9.417 – – – 
OCS 83.65 29.15 9.592 – – – 

6 OCA 114.2 42.62 13.19 4.767 – – 
OCS 112.3 42.13 13.13 4.777 – – 

8 OCA 136.8 54.64 16.83 5.738 3.452 – 
OCS 137.9 54.87 16.84 5.755 3.476 – 

10 OCA 156.7 66.32 20.59 6.706 3.923 2.840 
OCS 153.8 65.03 20.27 6.730 3.912 2.830  
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effect of smoothing parameter, ARLs with λ = 0.1 and λ = 0.2 are 
plotted. It can be seen that actual ARL approaches to its target value 370 
when m gets larger despite the value of λ. Good ARL approximation 
requires that m should exceed 100. In this sense, all simulation results in 
our work are obtained with m = 101. Additional simulation results are 
available upon request from the authors. 

It is also necessary to evaluate how much close the ARLs given by 
Markov chain approximation are to the actual ones given m. We conduct 
a simulation study to calculate actual ARLs with the optimal parameters 
obtained via our proposed method. Table 1 shows various IC ARLs from 
approximation (denoted by ICA) and those from simulation (denoted by 
ICS) when the IC Poisson mean is set to different values. It can be seen 
that the two types of IC ARLs are close to each other in most cases and all 
of them are within ±10% of their nominal values. Similar results can be 
seen from Table 2, which displays the OC ARL comparison between 
Markov chain approximation method and simulation method with IC 
ARL = 370. It seems that the magnitude of IC mean will not affect the 
performances of Markov chain approximation method and the optimally 
designed Poisson EWMA chart. 

Fig. 3. Relationship between A and λ.  

Fig. 4. The effect of λ on OC ARL.  
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5.2. Validating the existence of optimal λ 

Actually, part of the simulation results (Figs. 2–9) provided by Borror 
et al. (1998) supported ∂ARL(λ,A,0)

∂λ < 0 and ∂ARL(λ,A,δ)
∂A > 0 mentioned in our 

Proposition 1. Here we investigate the relationship between λ and A 
subject to a fixed IC ARL. In the simulation, the IC ARL is set to 370 and 
500 respectively while μ0 = 5 and μ0 = 10 are chosen separately as IC 
Poisson mean. With varying λ, different A can be attained based on 
bisection search algorithm under the four scenarios. According to Fig. 3, 
given μ and IC ARL, constant A is monotonically increasing with respect 
to smoothing parameter λ, which validates the statement dA

dλ > 0 in 
Proposition 1. 

In the sequel, simulation results will be provided to validate the 
uniqueness of a smoothing parameter that minimizes OC ARL. Here IC 
ARL is set to 370 and μ0 = 5 and μ0 = 10 are considered respectively. 
When μ0 = 5, the mean shift is set to δ = 1, δ = 2, which are 20% and 
40% of the mean separately. It should be notified that the results with 
δ < 0 are similar and hence they are not listed here due to page limits. 
According to Fig. 4a-4b, OC ARL is smaller than IC ARL 370 and exhibits 
a convex relationship with smoothing parameter λ. Furthermore, the 
optimal λ that minimizes OC ARL lies in (0, 0.1) when δ = 1 and in (0.1,
0.2) when δ = 2. In the scenario μ0 = 10, δ is chosen as 2 and 4 to 
maintain the 10% and 20% of the mean respectively. Similar conclu-
sions can be made except for the case where the OC ARL is minimized 

with λ ∈ (0.2,0.3) when δ = 4. It seems that optimal λ will increase 
when the Poisson mean gets larger and the proportion of shift is main-
tained. From these and many other simulation results, we can validate 
the existence of optimal smoothing parameter. 

Fig. 5. Searching process with ARL0 = 370 and δ = 2. (a) Bisection search; (b) 
Fibonacci search. 

Fig. 6. The effect of λ on EARL.  

Fig. 7. Optimal monitoring of PCB packaging processes.  
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5.3. Searching for the optimal λ 

As mentioned before, it is intractable to obtain the closed-form de-
rivative of ARL(λ,A(λ), δ) with regard to λ. Hence, it is impossible to 
search for the optimal λ based on gradient approach proposed by Huang 
et al. (2018). We recommend Fibonacci search algorithm be employed 
to complete this task and it will be compared with famous bisection 
search algorithm to demonstrate its good performances. Detailed 
introduction of Fibonacci search algorithm is provided in Section 3 and 
that of bisection search algorithm used here is provided in Appendix to 
save the space of context. In numerical study, Poisson mean is set to μ0 =

5, 10 with shifts 1, 2, 3 and 1, 2, 3, 4, 5 respectively. Both of mentioned 
algorithms are implemented in Fortran languages to obtain optimal 
smoothing parameter denoted by λopt and corresponding minimized OC 
ARL denoted by ARLmin with IC ARL = 370. We also list the optimal λopt 

and ARLmin obtained from grid search algorithm for comparison. Among 
the three search algorithms, grid search algorithm may provide the 
parameters that are closest to the real optimal parameters since it 
searches nearly all feasible values of parameters. Therefore, we use the 
results from grid search algorithm as benchmarks to compare the per-
formance of the other algorithms. Notice that Table 3 only lists results 
with δ > 0 as similar results can be obtained with δ < 0. 

It can be seen from Table 3 that Fibonacci search algorithm and the 
bisection search algorithm can be said to perform equally well due to 
their close OC ARLs to those provided by grid search algorithm 
regardless of the magnitude of δ. It should be notified that Fibonacci 
search algorithm provides closer results to grid search than bisection 
search and their ARLmin are also smaller than those from bisection search 
in most cases. To further investigate performances of the two search 
algorithms, we display their searching details in Fig. 5 with IC ARL =
370 and δ = 2. It should be notified that the two algorithms will behave 
similarly under other settings. Each subfigure is plotted with left vertical 
axis representing smoothing parameter λ and the right one representing 
OC ARL. In Fig. 5(b), λmin is not provided for Fibonacci search algorithm. 
Fig. 5 shows that it nearly takes five steps before both algorithms reach 
to the optimal smoothing parameters and corresponding OC ARLs. The 

convergence speed of Fibonacci search algorithm seems to be no 
different from that of bisection search algorithm. 

Without generality, we obtain the optimal smoothing parameter, λopt 
with corresponding Aopt , ARLmin in different cases and display them in 
Table 4. The results show that when δ is fixed and IC ARL gets larger, 
both of Aopt and ARLmin increase whereas λopt declines except for that 
with δ = 1. This result coincides with Proposition 1. It should be clari-
fied that approximation errors in display make λopt stay the same as 
0.031 when ARL0 > 200. Besides, once IC ARL is fixed, increasing δ 
generates decreasing ARLmin while λopt increases in this situation, which 
satisfies the usual idea that the Poisson EWMA control chart with a large 
smoothing parameter is suitable for detecting large process shifts and 
that with smaller smoothing parameter will be more sensitive to smaller 
shifts. 

5.4. Sensitivity analysis 

After the optimal design of Poisson EWMA chart, we need further 
investigate how the parameters will affect performance of the control 
chart, i.e., sensitivity analysis. Here we first obtain the optimal param-
eters A and λ with Fibonacci search algorithm under the settings δ* = 1,
3, μ0 = 10 and IC ARL = 500. Here we use δ* to represent the pre-
determined shift and δ to indicate the practical shift. Next, shifts are 
added to constant A (denoted by ΔA(%)) and smoothing parameter 
(denoted by Δλ(%)). Third, we compute the varying percentage of cor-
responding IC ARL (with δ = 0) and OC ARL (δ = 1,2,3,4). It can be seen 
from Table 5 that both of IC ARL and OC ARL are positively correlated 
with A while they exhibit a negative correlation with smoothing 
parameter, which are in line with statements in Proposition 1. It is 
interesting that IC ARL is more sensitive to the shifts in A and smoothing 
parameter than OC ARL. For example, when control limit is encountered 
with − 5% change and δ = 2, IC and OC ARL undergo the changes of 
30.4% and 6.2% respectively while the changes of IC and OC ARL are 
− 10.6% and − 4.4% respectively with smoothing parameter varying 
15% and δ = 2. Furthermore, both IC and OC ARL exhibit higher 
sensitivity to A than to smoothing parameter, which can be validated by 
the variation of IC and OC ARL at the 3% change of A and the smoothing 
parameter. This sensitivity analysis indicates that constant A should be 
carefully handled since it can strongly affect target IC ARL and designed 
minimal OC ARL. 

5.5. Validating optimal design with unknown shift sizes 

In this section, we further investigate the performance of proposed 
design method under the assumption that the specific magnitude of shift 
is unknown in advance. Note that simulation results are similar to those 

Fig. 8. Optimal monitoring of monthly deaths caused by hepatitis C.  

Table 3 
Performance comparison between grid search, Fibonacci search and bisection 
search algorithm with IC ARL = 370.    

Grid search Fibonacci search Bisection search  

δ  λopt  ARLmin λopt  ARLmin λopt  ARLmin 

μ0 = 5  1 0.055 30.22 0.054 30.18 0.046 30.29 
2 0.140 11.11 0.150 11.09 0.120 11.14 
3 0.240 6.142 0.233 6.154 0.245 6.150 

μ0 =

10  
1 0.026 48.86 0.025 48.85 0.024 48.93 
2 0.085 18.61 0.085 18.56 0.060 18.83 
3 0.140 10.23 0.147 10.23 0.124 10.28 
4 0.240 6.679 0.212 6.671 0.250 6.694 
5 0.280 4.811 0.293 4.820 0.250 4.836  

Table 4 
Optimal λ and A of proposed Poisson EWMA chart with μ0 = 10.  

δ  ARL0= 100 200 370 500 800 1000 

1 λopt  0.050 0.031 0.031 0.031 0.031 0.031 
Aopt  1.875 2.021 2.314 2.451 2.659 2.746 
ARLmin 29.26 38.94 48.87 54.12 62.89 67.32 

2 λopt  0.134 0.093 0.088 0.079 0.068 0.063 
Aopt  2.246 2.422 2.668 2.751 2.895 2.969 
ARLmin 12.65 15.67 18.56 20.06 22.44 23.59 

3 λopt  0.181 0.181 0.148 0.141 0.122 0.120 
Aopt  2.324 2.616 2.808 2.905 3.032 3.111 
ARLmin 7.343 8.820 10.22 10.92 12.04 12.59 

4 λopt  0.297 0.254 0.212 0.193 0.184 0.187 
Aopt  2.441 2.686 2.876 2.969 3.125 3.205 
ARLmin 4.932 5.821 6.670 7.094 7.733 8.052 

5 λopt  0.555 0.335 0.294 0.293 0.263 0.253 
Aopt  2.549 2.734 2.944 3.049 3.193 3.258 
ARLmin 3.686 4.254 4.811 5.086 5.510 5.734  
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under situations with known shift sizes. Due to the space constraint, we 
only provide the results that verify the existence of optimal smoothing 
parameter such that EARL is minimized. In simulation study, the IC 
mean of Poisson distribution is set to μ = 10 and the shift respectively 
follows U(2,4) and U( − 4, − 2) to formulate two OC cases. Note that we 
assume the estimated shift should be either positive or negative, which 
means the predefined uniform distribution U(a, b) should satisfy the 
condition ab ≥ 0. As mentioned in Section 4, optimal smoothing 
parameter may not exist when ab < 0. Fig. 6 shows that there is convex 
relationship between EARL and smoothing parameter λ in both cases. 
The optimal λ can be found through proposed Fibonacci search algo-
rithm or grid search algorithm. Similar results can be obtained when 
shift size is assumed to follow other uniform distributions. It is feasible 
to minimize EARL for optimal design of Poisson EWMA chart. More 

simulation results are available upon request. 

5.6. Monitoring performance comparison with existing control charts 

This section conducts the comparison between the proposed opti-
mally designed Poisson EWMA (DPE) chart and the traditional Poisson 
EWMA (TPE) chart. Due to page limits, only partial simulation results 
are listed in Table 6. Note that IC ARL is set to 370 and all OC ARLs are 
computed based on 5000 replications. As stated before, the optimal 
design of Poisson EWMA chart is to find a unique smoothing parameter 
in accordance with a predetermined magnitude or range of mean shift. 
With proposed Fibonacci search algorithm, we obtain three optimal 
smoothing parameters in three separate cases, i.e., δ* = 2, δ* = 4 and 
δ* ∈ [2,4] for the DPE chart. Accordingly, λ = 0.1, 0.2,0.3 are selected 
respectively for TPE chart. Table 6 shows that the monitoring perfor-
mance of control charts are largely affected by the magnitude of 
smoothing parameter. Specifically, smaller smoothing parameter can 
help the charts detect smaller shifts more quickly whereas a larger 
smoothing parameter promotes quicker detection of larger shifts, which 
are basically in line with the conclusion from Lucas and Saccucci (1990). 
This conclusion usually guides us to choose appropriate λ for the TPE 
chart, which is quite rough and subjective. In contrast, the proposed DPE 
chart is advantageous due to its optimal design of λ according to the 
predetermined magnitude or range of mean shift. 

6. Two illustrative examples 

6.1. Monitoring packaging process of the printed circuit board (PCB) 

In this section, the proposed DPE chart is illustrated in a packaging 
process of printed circuit board (PCB). According to Wang, Li, and Zhou 
(2017), in the plating stage of packaging process, some factors such as 
high temperature and humidity may separate the material layers of PCB 
to cause delamination, the number of which at different positions follow 
Poisson distributions independently in approximation. Hence, it is 
feasible to equip one Poisson EWMA control chart for the delamination 
monitoring at each position. Here we choose to monitor the number of 
delamination in MR lead position for illustrating the optimal design of 
Poisson EWMA chart. Wang et al. (2017) pointed out that the IC and OC 
mean can be separately estimated as μ0 = 3.6 and μ1 = 5.5. In this case, 
the process shift can be determined as δ = 1.9 for the optimal design of 

Table 5 
Sensitivity analysis of proposed Poisson EWMA chart with IC ARL = 500 and δ*,δ representing the respective designed, actual shifts in mean μ0 = 10.    

ΔARL(%)

δ* = 1,A = 2.451,λ = 0.031  δ* = 3,A = 2.905,λ = 0.141   

%  δ = 0  δ = 1  δ = 2  δ = 3  δ = 4  δ = 0  δ = 1  δ = 2  δ = 3  δ = 4  

ΔA  1.0 3.4 1.0 0.9 0.8 0.7 10.1 5.0 2.9 2.1 1.6 
2.0 10.7 3.4 2.4 2.1 1.9 17.4 8.6 5.0 3.5 2.8 
3.0 16.1 4.9 3.5 3.1 2.9 27.7 13.5 7.8 5.5 4.4 
4.0 24.8 7.4 5.1 4.4 4.1 41.3 19.6 11.1 7.7 6.1 
5.0 30.9 9.1 6.2 5.4 5.1 52.9 24.3 13.7 9.5 7.6 
− 1.0 − 6.3 − 2.2 − 1.4 − 1.2 − 1.1 − 8.0 − 4.0 − 2.4 − 1.7 − 1.4 
− 2.0 − 10.3 − 3.6 − 2.6 − 2.2 − 2.1 − 13.6 − 7.1 − 4.3 − 3.0 − 2.4 
− 3.0 − 16.9 − 6.0 − 4.2 − 3.7 − 3.5 − 20.9 − 11.2 − 6.9 − 5.0 − 4.1 
− 4.0 − 19.9 − 7.1 − 5.1 − 4.4 − 4.2 − 26.5 − 14.4 − 8.9 − 6.5 − 5.4 
− 5.0 − 24.1 − 8.8 − 6.3 − 5.6 − 5.3 –32.1 − 17.8 − 11.1 − 8.2 − 6.8 

Δλ  3.0 − 2.1 − 0.7 − 0.9 − 1.1 − 1.2 0.1 1.1 0.7 0.1 − 0.2 
6.0 − 5.0 − 1.6 − 2.0 − 2.3 − 2.4 − 3.8 − 0.1 0.0 − 0.7 − 1.2 
9.0 − 6.6 − 2.1 − 2.7 − 3.1 − 3.3 − 5.4 − 0.1 − 0.1 − 1.1 − 1.8 
12.0 − 9.1 − 2.9 − 3.8 − 4.2 − 4.5 − 7.3 − 0.3 − 0.2 − 1.5 − 2.5 
15.0 − 10.6 − 3.3 − 4.4 − 5.0 − 5.2 − 8.0 0.2 0.1 − 1.6 − 2.9 
− 3.0 2.0 0.5 0.8 0.9 1.0 1.5 − 0.1 0.0 0.3 0.6 
− 6.0 4.0 1.2 1.8 2.1 2.3 4.9 0.6 0.4 1.0 1.5 
− 9.0 8.6 2.5 3.2 3.5 3.7 8.1 1.1 0.9 1.8 2.5 
− 12.0 11.7 3.4 4.4 4.8 5.0 9.4 0.7 0.7 2.1 3.0 
− 15.0 16.6 4.9 6.2 6.7 7.0 10.7 0.1 0.6 2.5 3.8  

Table 6 
OC ARL comparison with δ*,δ representing the respective designed and actual 
shifts in Poisson mean   

DPE chart TPE chart 

δ  δ* =

2 λopt =

0.088  

δ* =

4 λopt =

0.212  

δ* ∈ [2,4] λopt =

0.139  
λ =

0.1  
λ =

0.2  
λ =

0.3  

1 54.3 
(0.64) 

66.4 
(0.91) 

58.8 (0.20) 54.8 
(0.66) 

64.8 
(0.87) 

75.6 
(1.06) 

2 18.6 
(0.17) 

20.5 
(0.23) 

19.1 (0.07) 18.9 
(0.17) 

20.3 
(0.22) 

23.8 
(0.28) 

3 10.6 
(0.08) 

10.4 
(0.10) 

10.2 (0.04) 10.4 
(0.08) 

10.4 
(0.10) 

11.2 
(0.12) 

4 7.37 
(0.05) 

6.72 
(0.06) 

6.90 (0.04) 7.21 
(0.05) 

6.65 
(0.05) 

6.82 
(0.06) 

5 5.70 
(0.03) 

4.93 
(0.04) 

5.20 (0.02) 5.51 
(0.03) 

4.98 
(0.03) 

4.82 
(0.04) 

− 1 64.5 
(0.77) 

132 
(1.78) 

86.0 (0.75) 67.6 
(0.84) 

122 
(1.64) 

218 
(2.96) 

− 2 19.5 
(0.15) 

28.9 
(0.31) 

21.5 (0.19) 19.9 
(0.16) 

27.3 
(0.29) 

42.3 
(0.53) 

− 3 10.6 
(0.06) 

11.7 
(0.10) 

10.5 (0.08) 10.5 
(0.06) 

11.5 
(0.09) 

14.7 
(0.15) 

− 4 7.19 
(0.03) 

6.85 
(0.04) 

6.85 (0.05) 7.04 
(0.03) 

6.81 
(0.04) 

7.55 
(0.06) 

− 5 5.50 
(0.02) 

4.80 
(0.02) 

5.03 (0.03) 5.31 
(0.02) 

4.79 
(0.02) 

4.86 
(0.03) 

Note: Standard errors are in parentheses. 
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Poisson EWMA chart. Then Fibonacci search algorithm provides optimal 
smoothing parameter λ = 0.167 together with constant A = 2.837, 
which leads to an upper control limit (UCL) 5.225 and a lower control 
limit (LCL) 1.975. According to Wang et al. (2017), the shift δ = 1.9 
occur at the 16th sample while Fig. 7 shows that the OC signal is released 
at the 18th signal. The optimally designed Poisson EWMA chart is able to 
detect the process shift efficiently. 

6.2. Monitoring the deaths caused by hepatitis C in Australia 

SPC techniques have been widely utilized for public health surveil-
lance. In this section, the optimally designed Poisson chart will be 
applied to monitor the deaths caused by Hepatitis C in South Australia. 
Hepatitis C is an infectious disease that may harm the livers of people to 
death. According to World Health Organization (2002), the infection of 
this disease is mainly through exposure to small quantities of blood. It is 
important to surveil its transmissions so that instant actions can be taken 
before an epidemic situation occurs. We use the monthly deaths caused 
by Hepatitis C in South Australia between the year of 2010 and 2014 
provided by Pascual and Akhundjanov (2020). As a tradition in SPC, the 
first 24 observations are regarded as IC samples, which follow Poisson 
distribution with mean μ0 = 3.167 at the 5% significance level accord-
ing to a Kolmogorov-Smirnov goodness-of-fit test. 

The following data in 36 successive months are collected to formu-
late Phase II samples. Different from the first case, the mean shift of 
deaths is unknown in advance here. We may design the Poisson EWMA 
chart according to the shift size that should be avoided in practice. In 
this case, the shift is assumed to follow uniform distribution U(0.9,1.9), 
which indicates that we consider the shift exceeding 30% of the IC 
Poisson mean to be severe and it is unlikely to see Poisson mean increase 
by 60%. With the proposed procedure of minimizing EARL, the optimal 
smoothing parameter λ = 0.098 together with constant A = 2.695, 
which leads to UCL = 4.259 and LCL = 2.081. In line with Pascual and 
Akhundjanov (2020), we plot Fig. 8 with all the data in 60 months so 
that Phase II monitoring starts with the 25th sample. It shows that the 
designed Poisson EWMA chart released an OC signal in the 29th month. 
In other words, the deaths had increased significantly since May 2012, to 
which public health authorities should pay attention. Our findings are 
basically in accordance with the results from Pascual and Akhundjanov 
(2020). 

7. Conclusions 

This article focuses on the optimal design of Poisson EWMA control 

chart with shift information integrated to improve the change detection 
power. When the mean shift of Poisson distribution can be prespecified, 
the minimization of OC ARL is chosen as a criterion for searching for the 
optimal parameters of the control chart. The unique solution to the 
minimization problem is proved to exist by numerous simulation results 
and can be obtained based on proposed Fibonacci search algorithm. 
When the shift is unknown and randomly distributed, it will be no longer 
suitable to use ARL as a criterion and thus we choose to minimize the 
expectation of ARL for optimal design of the chart. Both of ARL and 
EARL are calculated based on the Markov chain approximation. The 
simulation results and two real monitoring examples illustrate the 
effectiveness of proposed optimal design methods. Despite this, there are 
several issues worthy of future efforts. Fibonacci search algorithm is 
compared with only bisection and grid search algorithm in obtaining the 
optimal parameters. Some other algorithms may be used to solve the 
optimization problem and make comparisons among them. This paper 
limits the discussion to optimal monitoring of a single Poisson variable, 
which may be extended to the multivariate case. In addition, the optimal 
design of a Poisson CUSUM chart is worthy of further investigation 
under the assumption that the shift is randomly distributed. Finally, one 
future research topic is to develop an adaptive EWMA chart for moni-
toring count data, in which the shift size is estimated from the currently 
available data and then the weighting parameter of the EWMA chart is 
adjusted by using the proposed method for choosing the optimal 
parameter. However, the computation of this problem would be inten-
sive, since the optimal parameter needs to be updated at every obser-
vation time point. It is interesting for future research to develop the 
recursive computing formula for updating the optimal parameters to 
ease the computation. 
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Appendix 

Here we introduce the bisection search algorithm to solve the following optimization problem: 

min
λ

ARL(λ,A(λ), δ),

where λ ∈ [λmin, λmax] and δ is prespecified according to domain knowledges or engineers’ experiences. The algorithm procedures can be illustrated as 
below:  

a. Set λmin = 0, λmax = 1, ARL1=300, ARL2=400 andARL3 = 370;  
b. Repeat the following steps for iteration i = 1,2,⋯ until |ARL3 − ARL2| < 10− 5:  

(1) Let ARL3 = ARL2 and λ = λmax+λmin
2 ;

(2) Obtain the OC ARL, i.e., ARL2 corresponding to the combination of δ and λ based on proposed Markov chain approximation;  
(3) Let λmax = λ, ARL1 = ARL2 if ARL2 < ARL1 and set λmin = λ otherwise. 

Note that the practitioners can choose different stopping criterion and initial values of ARL1, ARL2 and ARL3 to conduct the bisection algorithm. 
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