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Abstract

Count data are common in practice. Statistical process control for count data thus has

attracted much attention in recent years. Most existing methods on this topic focus

on the detection of mean shifts of count data based on parametric modeling. However,

their assumed parametric models (e.g., the Poisson probability model) are often invalid

in practice due mainly to the potential impact of some latent confounding risk factors,

which would lead to unreliable performance of the related control charts. In addition,

it is highly desirable and important to monitor the dispersion of count data when the

Poisson probability model is invalid. To this end, new nonparametric cumulative sum

control charts and their corresponding self-starting versions are suggested in this paper

for monitoring the dispersion of count data based on data categorization and categorical

data analysis. Numerical results show that the proposed method can provide more

effective and robust monitoring of count data in comparison with some representative

existing methods. A real-data example is used to demonstrate its implementation and

application.

Keywords: Count data; Data categorization; Dispersion; Self-starting control chart;

Statistical process control.

1 Introduction

Count data are common in practice (Wang & Qiu, 2018). For instance, in medical studies,

we are often concerned about the number of registered patients in a unit time interval at a
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specific hospital. In road traffics, we usually need to monitor the number of vehicles passing

through a high-speed toll station in a given time interval. In the manufacturing industry, the

number of defective products found in a batch of sampled products is a key quality index to

monitor. Therefore, proper monitoring of count data is an important research problem with

broad applications, which is the focus of this paper.

To monitor a sequential process online, statistical process control (SPC) charts provide a

major analytic tool (Qiu, 2014). In the SPC literature, many control charts for monitoring

count data have been proposed, which include the classical c and u charts that are Shewhart

type control charts based on the Poisson distributional assumption. Since Shewhart charts are

good in detecting large shifts only and ineffective in detecting small shifts, some researchers

proposed various cumulative sum (CUSUM) charts (Lucas, 1985; White & Keats, 1996) and

exponentially weighted moving average (EWMA) charts (Gan, 1990; Borror et al., 1998).

However, these control charts are all based on the Poisson distributional assumption, and

are improper for monitoring underdispersed or overdispersed count data that are common

in practice. To accommodate under- or over-dispersion of the count data, some control

charts based on alternative parametric distributions have been proposed. For instance, Sellers

(2012) developed a flexible Shewhart chart by assuming the observed count data to follow

the Conway-Maxwell-Poisson (COM-Poisson) distribution (Shmueli et al., 2005), which is

more flexible than the Poisson distribution. Saghir & Lin (2014a,b), among others, further

extended that control chart to EWMA and CUSUM charts, respectively. Other existing

control charts for monitoring under- or over-dispersed count data used the Katz distribution

family (Fang, 2003), the generalized Poisson model (He et al., 2006), the BerG distribution

(Bourguignon et al., 2021), the Touchard distribution (Ho et al., 2021), and one parameter

Poisson mixture models (Jesus et al., 2022), to list a few. Readers are referred to Saghir &

Lin (2015) for an overview of control charts for monitoring under- or over-dispersed count

data.

Most control charts discussed above are designed for detecting mean shifts in the observed

count data. Although some of them consider the data dispersion, they assume that the

dispersion parameter does not change over time, which may not be true in practice. As

a matter of fact, the dispersion of the observed count data changes over time in practice,

reflecting the time-varying impact of certain latent confounding risk factors on the count

data, and it is highly desirable to monitor the dispersion of the observed count data since the

performance of the process under monitoring depends heavily on the dispersion level (Zaman,
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Figure 1: Actual ARL0 values of the T-CUSUM chart in cases when the nominal ARL0 value
is 200, and the true IC distribution is a negative binomial distribution with the parameter
r changing from 0 to 0.9 [plot (A)] or a generalized Poisson distribution with the parameter
β changing from -0.9 to 0 [plot (B)]. See Section 3 for a detailed discussion of these two
distributions.

2021). More specifically, an increase in dispersion often implies deterioration of the process,

and a decrease indicates improvement in the process. In addition, it could be meaningless

to detect a mean shift without ensuring that the dispersion is in-control (IC). It should be

noted that several control charts mentioned above, such as those proposed by Lucas (1985),

He et al. (2006), and Saghir & Lin (2014a), can address dispersion shifts. But, they rely on

pre-specified parametric models, and are unreliable when their parametric models are invalid.

As a demonstration, let us consider the traditional CUSUM chart, denoted by T-CUSUM,

discussed in Lucas (1985), which is constructed and designed based on the assumption that

the observed count data follow the regular Poisson distribution.

Figure 1 shows its actual IC average run length value, denoted as ARL0, based on the

assumption that the IC process distribution is Poisson(10), in cases when the true IC process

distribution is a negative binomial distribution with the parameter r changing from 0 to

0.9 (i.e., a case of overdispersion) [plot (A)], or a generalized Poisson distribution with the

parameter β changing from -0.9 to 0 (i.e., a case of underdispersion) [plot (B)]. The other

parameter µ of the two true process distributions discussed is fixed at 10. The allowance

constant of the T-CUSUM chart is chosen near the current IC mean level, and the nominal

ARL0 value is fixed at 200. From Figure 1, it can be seen that the actual ARL0 values of the

T-CUSUM chart are quite different from the nominal ARL0 value in most cases considered.

More specifically, the actual ARL0 values are smaller than the nominal ARL0 value when

the true process distribution is the negative binomial, and larger than the nominal ARL0
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values when the true process distribution is the generalized Poisson distribution. In the

former case, the related process would be stopped too often by the control chart when it

is actually IC (Chatterjee & Qiu, 2009; Wang & Qiu, 2018). In the latter case, some true

process distributional shifts would be detected much later than what we would expect, which

is not good either because many defective products will be produced in such cases. This

example shows that it is quite risky to develop a control chart for monitoring the dispersion

of count data based on a parametric distribution assumption. In comparison, nonparametric

or distribution-free control charts would be more desirable. See Qiu (2018) for an overview

on nonparametric SPC.

Some nonparametric or distribution-free control charts have been proposed to monitor

changes in data dispersion, including those based on the squared rank test (Das & Bhat-

tacharya, 2008; Villanueva-Guerra et al., 2017), the sign statistic (Khilare & Shirke, 2012;

Shirke & Barale, 2018; Godase et al., 2022), the Ansari-Bradley statistic (Zhou et al., 2016),

and the statistic with a binomial distribution (Yang & Arnold, 2016; Haq, 2017). There are

also nonparametric control charts that can jointly monitor process mean and dispersion, such

as the ones based on the Lepage statistic (Ross et al., 2011; Mukherjee & Chakraborti, 2012;

Chowdhury et al., 2015; Chong et al., 2018; Tercero-Gómez et al., 2020) and the Cucconi

statistic (Chowdhury et al., 2014; Mukherjee & Marozzi, 2017; Liang et al., 2022), among

others. A recent literature review on joint monitoring schemes can be found in Jalilibal et al.

(2022).

Note that most nonparametric control charts mentioned above for monitoring data dis-

persion are based on the ordering or ranking information of process observations. To some

extent, data ordering/ranking would result in a loss of information contained in the original

observed data, and it is difficult to control the degree of information loss. In some appli-

cations, it is also difficult to use control charts constructed based on data ranking because

of the discreteness of their charting statistics. As an alternative, Qiu & Li (2011) suggested

a nonparametric control chart based on data categorization. Although data categorization

would also result in information loss, the amount of lost information, however, can be con-

trolled by the number of categories used. The larger the number of categories used, the

less information would be lost. In addition, Li (2021) suggested a modification of the one

by Qiu & Li (2011), in which an adaptive CUSUM chart was constructed by categorizing

the data in a central-outward fashion for detecting arbitrary distributional changes, which

was different from the approach in Qiu & Li (2011) to categorize the observed data from
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the smallest to the largest values. Inspired by the data categorization approach in Qiu &

Li (2011), Ye & Liu (2022) proposed a generic online nonparametric monitoring method for

high-dimensional heterogeneous processes with partial observations, which only incorporated

the small-to-large ordering information for detecting location shifts and thus impeded quick

detection and limited broader applications for detecting dispersion and other shifts. To ad-

dress this limitation, Ye et al. (2023) developed a method to use the center-outward ordering

information (Li, 2021) for detecting dispersion shifts.

It should be pointed out that the nonparametric control charts discussed above for mon-

itoring data dispersion are all designed for cases when the quality variables are continuous

numerical variables. So far, we could not find any existing charts that are designed for moni-

toring the dispersion of count data. Wang & Qiu (2018) modified the method originally pro-

posed by Qiu & Li (2011) for monitoring the mean of count data by categorizing the observed

count data in a small-to-large fashion. A similar chart was discussed in Tang & Li (2023).

In nonparametric statistics, it is well demonstrated that rank-based tests constructed based

on the small-to-large ranking information, e.g., the Mann-Whitney test (Mann & Whitney,

1947), would be powerful for detecting location differences, and those based on the center-

outward ranking information, e.g., the Ansari-Bradley test (Ansari & Bradley, 1960), would

be powerful for detecting dispersion differences. Similarly, the data categorizion scheme used

in Wang & Qiu (2018) and Tang & Li (2023) would not be effective for detecting dispersion

shifts in count data, which is confirmed by our simulation study in Section 3.3. To make the

control chart more effective for detecting dispersion shifts, it should be helpful to consider

the center-outward categorization scheme.

Inspired by the methods in Wang & Qiu (2018) and Li (2021), we propose a novel non-

parametric CUSUM chart for detecting dispersion shifts in the observed count data. The

proposed method first categorizes the observed data from the center outward and then inte-

grates Pearson’s Chi-squared test statistic or the likelihood ratio test statistic into a CUSUM

charting scheme. Compared to the methods discussed in Wang & Qiu (2018) and Tang & Li

(2023), we categorize the count data in a center-outward fashion in this paper, which should

be more powerful for detecting dispersion shifts. In addition, because the new method is for

monitoring count data and the methods in Tang & Li (2023) and Ye et al. (2023) are for

monitoring continuous data, the categorization procedure used in this paper is also different

from the ones used in the latter two papers (see Section 2.1 for more details). To imple-

ment the new method, a sufficiently large IC dataset is required to accurately estimate the
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quantiles of the IC process distribution used to categorize the observed data, which may not

be available in practice. To overcome this limitation, a self-starting version of the proposed

CUSUM chart is also developed, in which quantile estimates are updated sequentially at each

observation time after the process under monitoring is declared to be IC by the control chart.

The remainder of the paper is organized as follows. Our proposed nonparametric control

chart is described in Section 2. Simulation studies to evaluate its numerical performance

are presented in Section 3. A real-data application is discussed in Section 4 to demonstrate

the proposed method in a real-world setting. Finally, some concluding remarks are given in

Section 5.

2 Methodology

Our proposed method for detecting dispersion shifts of count data is described in Section

2.1. Its self-starting version is discussed in Section 2.2. Determination of the control limits

of the two control charts is discussed in Section 2.3.

2.1 Proposed CUSUM charts for detecting dispersion shifts

Assume that there is an IC dataset available before online process monitoring, which consists

of M independent and identically distributed (i.i.d.) IC process observations X−M+1, . . . , X0

that take count values. The process observations under online monitoring are denoted as

{Xn, n ≥ 1}. To monitor the process online, we first partition the range of observation

values, [0,∞), into the following d(d > 1) intervals:

A1 = (qd−1, qd+1], A2 = (qd−2, qd−1] ∪ (qd+1, qd+2], . . . , Ad = [0, q1] ∪ (q2d−1,∞),

where 0 < q1 < q2 < . . . < q2d−1 <∞ are 2d−1 boundary points of the partitioning intervals.

It is clear that A1, . . . , Ad are ordered from the center outward. Define

Yn,j = I(Xn ∈ Aj), for j = 1, 2, . . . , d,

where I(a) = 1 if a is “true” and 0 otherwise. We can see that Yn,j indicates whether Xn

belongs to the jth interval Aj. So Yn = (Yn,1, Yn,2, . . . , Yn,j)
′ has one and only one component

being 1, and the index of the component being 1 has a discrete distribution with probabilities

fj = P (Xn ∈ Aj), for j = 1, 2, . . . , d. For the convenience of presentation, the distribution

f = (f1, f2, . . . , fd)
′

is called the distribution of Yn. Let f (0) = (f
(0)
1 , f

(0)
2 , . . . , f

(0)
d )

′
be the
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IC distribution of Yn and f (1) = (f
(1)
1 , f

(1)
2 , . . . , f

(1)
d )

′
be its out-of-control (OC) distribution.

Under some regularity conditions, it can be checked that f (1) is different from f (0) if there is a

dispersion shift in Xn. In Li (2021), it was suggested that the parameter qj should be chosen

to be the (j/(2d))-th quantile of the IC process distribution, for each j, and {q1, q2, . . . , q2d−1}
were chosen such that f (0) ≈ (1/d, 1/d, . . . , 1/d)

′
. For count data, this is often difficult to

achieve because of the discreteness of the data. In such cases, we suggest choosing the

parameters such that f (0) is as close to a uniform distribution as possible.

The charting statistic of our proposed CUSUM chart is then defined as follow. Let

Sobs
0 = Sexp

0 = 0 be two d-dimensional vectors, and
Sobs
n = 0, if Cn ≤ kP,

Sexp
n = 0, if Cn ≤ kP,

Sobs
n = (Sobs

n−1 + Yn)(Cn − kP)/Cn, if Cn>kP,
Sexp
n = (Sexp

n−1 + f (0))(Cn − kP)/Cn, if Cn>kP,

where

Cn =
[
(Sobs

n−1 − Sexp
n−1) + (Yn − f (0))

]′ [
diag(Sexp

n−1 + f (0))
]−1 [

(Sobs
n−1 − Sexp

n−1) + (Yn − f (0))
]
,

kP ≥ 0 is the allowance constant, diag(a) denotes a diagonal matrix with its diagonal elements

being the corresponding elements of the vector a, and the superscripts “obs” and “exp” denote

observed and expected counts, respectively. Then, the chartng statistic is defined to be

un,P = (Sobs
n − Sexp

n )′ [diag(Sexp
n )]−1 (Sobs

n − Sexp
n ),

and the chart gives a signal of dispersion shift if

un,P>hP, (1)

where hP > 0 is a control limit. The proposed chart based on Equation (1) is denoted as

P-CUSUM chart hereafter since it is constructed based on the Pearson’s Chi-squared test.

When kP = 0, it is not difficult to check that Sobs
n is a frequency vector with its jth element

being the cumulative observed count of observations in the jth interval Aj as of the time

point n, for j = 1, 2, . . . , d, and Sexp
n is the vector of the corresponding cumulative expected

counts. Therefore, un,P is the Pearson’s Chi-squared test statistic in such cases to measure

the difference between the cumulative observed and expected counts by time n.

Because un,P can only take some discrete values on the positive number line, it could be

hard to find a proper hP value so that a pre-specified nominal ARL0 value is reached within

7



a desired precision. To overcome this limitation, we can use the modification procedure as

in Wang & Qiu (2018) by adding a small random number generated from N(0, s2) to each

component of Yn to alleviate the discreteness of un,P. As long as s is chosen small, the OC

behavior of the chart would not change much and most nominal ARL0 values can be reached

within the desired precision after the modification. In all the simulation studies in this paper,

we choose s = 0.01.

Besides the CUSUM chart (1), we can also construct a CUSUM chart based on the

likelihood ratio test. More specifically, let S̃obs
n and S̃exp

n be quantities defined in the same

way as Sobs
n and Sexp

n used in chart (1), except that kP is replaced by another constant kL

and Cn is replaced by

C̃n = 2(S̃obs
n−1 + Yn)

′
log

(
S̃obs
n−1 + Yn

S̃exp
n−1 + f (0)

)
,

where a/b denotes a vector obtained by component-wise division of the vector a by the

vector b and log(a/b) denotes a component-wise operation as well. Then, the new charting

statistic is defined as

un,L = 2(S̃obs
n )′log

(
S̃obs
n

S̃exp
n

)
.

It gives a signal when

un,L>hL, (2)

where hL > 0 is the control limit. The chart based on Equation (2) is denoted as L-CUSUM.

2.2 Self-starting version of the proposed charts

To implement the proposed control charts, we need to know the quantiles {q1, q2, . . . , q2d−1}
for categorizing the original data. In subsection 2.1, we assume that the size of the IC dataset,

M , is large enough such that the quantiles could be accurately estimated during online process

monitoring. When such IC dataset is unavailable, we suggest the self-starting version of the

proposed charts, in which the estimates of the quantiles are constantly updated. More

specifically, at time n, we have the IC observations X−M+1, . . . , X0, X1, . . . , Xn−1 collected in

the past. Let Xn,(1)<Xn,(2)< . . .Xn,(M+n−1) denote their order statistics. For a given j, find

the integer ln,j such that

| ln,j
M + n

− j

2d
|= min

1≤l≤M+n−1
| l

M + n
− j

2d
|.
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Then, the updated estimate of qj at time n is defined to be

q̂n,j = Xn,(ln,j).

Based on these estimates, we can partition [0,∞) into the following d(d > 1) center-outward

intervals:

Ân,1 = (q̂n,d−1, q̂n,d+1], Ân,2 = (q̂n,d−2, q̂n,d−1]∪(q̂n,d+1, q̂n,d+2], . . . , Ân,d = [0, q̂n,1]∪(q̂n,2d−1,∞).

Define Ŷn,j = I(Xn ∈ Ân,j) and Ŷn = (Ŷn,1, Ŷn,2, . . . , Ŷn,j)
′
, for j = 1, 2, . . . , d. In the self-

starting control chart, we replace Yn in our proposed CUSUM statistic un,P described in

Section 2.1 by Ŷn. Let Ŝobs
n and Ŝexp

n be quantities defined in the same way as Sobs
n and Sexp

n

used in chart (1), except that kP is replaced by another constant kPS and Cn is replaced by

Ĉn =
[
(Ŝobs

n−1 − Ŝexp
n ) + (Ŷn − f (0))

]′ [
diag(Ŝexp

n + f (0))
]−1 [

(Ŝobs
n−1 − Ŝexp

n−1) + (Ŷn − f (0))
]
.

The charting statistic of the self-starting CUSUM chart is then defined to be

un,PS = (Ŝobs
n − Ŝexp

n )′
[
diag(Ŝexp

n )
]−1

(Ŝobs
n − Ŝexp

n ).

It gives a signal when

un,PS>hPS, (3)

where hPS > 0 is the control limit. The chart based on Equation (3) is denoted by PS-

CUSUM. The self-starting version of the L-CUSUM chart can be constructed similarly, which

is denoted as LS-CUSUM.

2.3 Determination of the control limit

In the above CUSUM chart, the allowance constant is usually specified beforehand. Then, the

control limit is chosen such that a pre-specified ARL0 value is reached. Taking the P-CUSUM

chart as an example, to compute hP from the IC dataset, the following iterative bisection

searching algorithm based on the bootstrap resampling idea can be used.The control limit

hL or hPS can be chosen similarly to hP.

Step 1: In the ith iteration, hP is searched in the interval [L(i), U (i)]. When i = 1, L(1) and U (1)

are the pre-specified lower and upper bounds, respectively.
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Step 2: A sequence of observations is selected randomly with replacement from the IC dataset

and this sequence is regarded as process observations for online monitoring. Then, the

P-CUSUM chart with hP = h(i) = (L(i) + U (i))/2 is applied to this sequence and the

run length (RL), denoted as RL(i), is recorded, where RL is defined to be the number

of observation times from the beginning of process monitoring to the first signal time.

Step 3: Step 2 is repeated for N times, and the actual ARL0 value is approximated by the

sample mean ARL0
(i) of the N values of RL(i).

Step 4: If |ARL0
(i)−ARL0| < ε, where ε is a small number and denotes the required searching

accuracy, then the whole algorithm stops and the searched value of hP is h(i). Otherwise,

set L(i+1) = h(i), U (i+1) = U (i), and h(i+1) = (L(i+1) +U (i+1))/2 if ARL0
(i) < ARL0, and

set L(i+1) = L(i), U (i+1) = h(i), and h(i+1) = (L(i+1) + U (i+1))/2 if ARL0
(i) > ARL0. In

this latter case, the algorithm executes the next iteration until the maximum number

Q of iterations is reached.

The above searching algorithm usually converges quickly. Although it is rare, if it does not

stop before the Qth iteration, then define hP = h(Q).

3 Simulation studies

In this section, we investigate the OC performance of the proposed control charts and compare

them with some existing parametric and nonparametric control charts under different discrete

distributions. For measuring the OC performance of a chart, the ARL can be computed

under either the zero-state or the steady-state setting. In this paper, we choose to use the

steady-state OC ARL, denoted as ARL1, as the metric to compare the OC performance of

different control charts. For describing the distribution of count data, the regular Poisson

distribution Poisson(λ) is routinely used, where λ > 0 is a parameter. This distribution has

an important property that its mean and variance are both equal to λ. In the simulation

study, the following two discrete distributions are considered, which are both different from

the regular Poisson distribution.

I. Negative binomial distribution: cases with overdispersion

The negative binomial distribution has two parameters µ and r and is denoted as NB(µ, r).

After an uncommon but useful parameterization (Bliss & Owen, 1958; Collings & Margolin,
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1985), the random variable X ∼ NB(µ, r) has mean µ and the probability mass function

(PMF) being

Pr {X = x} =
Γ(x+ r−1)

x!Γ(r−1)
(

rµ

1 + rµ
)x(

1

1 + rµ
)r
−1

,

where x = 0, 1, 2, . . ., 0<µ<∞. The variance of X is µ(1 + rµ). So, the index of dispersion,

defined as the ratio of variance to mean, is (1+rµ), which implies that the negative binomial

distribution is overdispersed.

II. Generalized Poisson distribution: cases with mixed dispersion

The generalized Poisson distribution (Consul & Jain, 1973) has two parameters µ and β

and is denoted as GP(µ, β). Its PMF is

Pr {X = x} =

{
µ(1− β) [µ(1− β) + βx]x−1 exp[−µ(1−β)−βx]

x!
, for x = 0, 1, 2, . . . ,

0 , for x ≥ m, if µ(1− β) +mβ ≤ 0.

where µ>0, −1 ≤ β ≤ 1. The mean and the variance of this distribution are µ and µ
(1−β)2

, respectively. Thus, the index of dispersion is 1/(1 − β)2. Compared with the Poisson

distribution, the additional parameter β controls the degree of dispersion. With β = 0,

GP(µ, β) is just the Poisson distribution Poisson(µ). When 0<β<1, the index of dispersion

is larger than 1, implying that the generalized Poisson distribution is overdispersed. When

−1<β<0, the index of dispersion is smaller than 1, implying that the generalized Poisson

distribution is underdispersed.

Next, we first evaluate the performance of the proposed P-CUSUM and L-CUSUM charts

in comparison with their self-starting versions for monitoring count data dispersion in Sub-

section 3.1 when a sufficiently large IC dataset is unavailable. The impact of the size of the

IC dataset, the number of categories used, and the allowance constant on the performance

of the P-CUSUM chart is studied in Subsection 3.2. In Subsection 3.3, we evaluate the

performance of the proposed charts P-CUSUM and L-CUSUM in comparison with the corre-

sponding methods discussed in Wang & Qiu (2018) where the observed data are categorized

from the smallest to the largest. Finally, in Subsection 3.4, the proposed control charts are

compared with the traditional parametric control chart proposed by (Lucas, 1985) and the

nonparametric control charts proposed by (Shirke & Barale, 2018).

3.1 Comparison with self-starting version

The performance of the proposed P-CUSUM and L-CUSUM charts depends on the IC data

sizeM . WhenM is small, their self-starting version should be used, as discussed in Subsection
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2.2. In this part, we briefly compare the P-CUSUM and L-CUSUM charts with their self-

starting version PS-CUSUM and LS-CUSUM in cases when M = 50. In the four charts, their

allowance constants are all chosen to be 0.01, their assumed ARL0 values are set to be 200, and

the number of categories d is fixed at 5 in all charts. Their control limits are searched by the

bootstrap procedure with Q = 100 maximum iterations. In each iteration, the ARL0 value is

computed from 10,000 replicated simulation runs. The IC distribution is specified to be one

of the following four distributions, each of which has a mean of 10: Poisson(10), NB(10, 0.4),

GP(10, 0.4), and GP(10, -0.4). These four cases represent different scenarios when the true

IC distribution is equidispersed, overdispersed, or underdispersed. For the negative binomial

distribution and the generalized Poisson distributions, the parameters r and β are used to

simulate the dispersion changes of the count data. The calculated ARL1 values and their

standard errors of the related charts are shown in Table 1. From the table, it can be seen

that the PS-CUSUM (LS-CUSUM) chart is outperformed by the P-CUSUM (L-CUSUM)

chart for detecting small shifts when the true IC distribution is the Poisson distribution,

but the PS-CUSUM chart becomes better when the shift gets larger. When the true IC

distribution is the negative binomial distribution or the generalized Poisson distribution,

the PS-CUSUM (LS-CUSUM) chart performs much better than the P-CUSUM (L-CUSUM)

chart for detecting positive dispersion shifts (dispersion increase) and has worse performance

than the P-CUSUM (L-CUSUM) chart for detecting negative dispersion shifts (dispersion

decrease). This result can be explained by the fact that the self-starting charts could miss

some dispersion shifts, especially when the shifts are negative. In practice, we are usually

more concerned about dispersion increase since it often indicates process deterioration. The

proposed self-starting control charts are more effective and robust to use in such cases.

3.2 Impact of parameter settings on the P-CUSUM chart

In this subsection, we further study the impact of parameter settings in the P-CUSUM chart

on its numerical performance. First, we study the impact of the IC dataset size M on the

performance of the P-CUSUM chart, by changing M among 200, 500, 1,000, and 2,000, and

keeping the other setups of the chart to be the same as those in the example of Table 1. Its

calculated ARL1 values are displayed in Figure 2. From the figure, it can be seen that the

ARL1 values tend to be smaller when M increases, do not change much when M ≥ 500, and

are almost identical when M ≥ 1, 000 in most cases considered. Based on this example, we
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Table 1: ARL1 values and their standard errors (in parentheses) of the P-CUSUM, L-
CUSUM, PS-CUSUM, and LS-CUSUM charts when their nominal ARL0 values are all fixed
at 200, M = 50, and the true IC distribution is Poisson(10), NB(10, 0.4), GP(10, 0.4), or
GP (10, -0.4).

Underlying
distribution

Dispersion
shifts

P-CUSUM PS-CUSUM L-CUSUM LS-CUSUM

Poisson (10)

-8 13.4(0.10) 4.1(0.04) 23.5(0.11) 19.8(0.16)
-6 15.8(0.13) 5.6(0.07) 27.3(0.14) 36.0(0.51)
-4 28.0(0.26) 34.1(1.71) 47.2(0.29) 141.4(1.24)
-2 91.8(1.06) 189.6(5.22) 127.2(0.88) 198.7(0.75)
0 208.6(2.42) 207.9(5.58) 203.4(1.30) 201.4(0.67)
2 94.1(1.05) 159.9(4.85) 126.9(0.86) 188.6(0.83)
4 37.6(0.36) 54.6(2.75) 61.2(0.39) 145.6(1.13)
6 22.0(0.20) 9.9(0.49) 37.7(0.23) 76.9(0.99)
8 17.1(0.14) 5.8(0.07) 29.5(0.16) 36.9(0.49)

NB (10, 0.4)

-0.39 22.3(0.28) 16.4(0.26) 43.8(0.29) 73.2(0.43)
-0.3 35.2(0.51) 41.2(1.49) 69.4(0.49) 120.0(0.70)
-0.2 60.7(1.02) 115.3(3.70) 108.0(0.81) 172.1(0.76)
-0.1 120.3(2.55) 194.1(5.22) 161.2(1.19) 198.4(0.69)

0 193.0(4.31) 197.7(5.27) 201.3(1.35) 199.7(0.71)
0.1 178.4(3.89) 162.4(4.85) 203.9(1.32) 185.6(0.79)
0.2 123.0(2.30) 112.3(3.80) 182.4(1.19) 166.0(0.84)
0.3 87.0(1.46) 73.9(2.66) 154.4(1.04) 146.1(0.83)
0.4 68.8(1.07) 49.4(1.80) 132.1(0.91) 130.2(0.83)

GP (10, 0.4)

-0.4 32.0(0.44) 34.5(1.19) 64.3(0.44) 109.8(0.66)
-0.3 39.3(0.57) 56.5(2.08) 77.4(0.55) 134.7(0.75)
-0.2 52.9(0.83) 112.5(3.75) 99.7(0.73) 165.4(0.79)
-0.1 85.9(1.59) 186.8(5.07) 140.1(1.03) 194.2(0.72)

0 200.8(4.21) 201.9(5.34) 198.0(1.34) 200.0(0.70)
0.1 176.2(3.24) 112.5(3.73) 189.5(1.17) 165.7(0.84)
0.2 68.0(0.93) 32.6(1.10) 115.7(0.75) 110.2(0.75)
0.3 36.0(0.41) 13.5(0.21) 68.0(0.43) 64.4(0.48)
0.4 22.5(0.23) 8.3(0.10) 43.3(0.25) 39.0(0.27)

GP (10, -0.4)

-0.4 123.0(1.42) 115.2(3.74) 153.8(0.97) 171.5(0.77)
-0.3 142.7(1.72) 148.1(4.39) 168.6(1.08) 185.5(0.74)
-0.2 165.8(2.11) 185.6(5.13) 182.8(1.17) 196.0(0.72)
-0.1 186.4(2.45) 200.2(5.35) 194.7(1.24) 201.6(0.68)

0 200.3(2.81) 198.6(5.29) 201.2(1.28) 200.0(0.70)
0.1 204.8(2.90) 169.2(4.83) 199.2(1.24) 190.1(0.75)
0.2 178.5(2.51) 117.5(3.81) 185.1(1.14) 172.3(0.82)
0.3 138.5(1.76) 69.5(2.48) 162.6(1.00) 146.1(0.83)
0.4 102.3(1.44) 52.0(1.97) 149.6(0.92) 132.4(0.81)
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Figure 2: ARL1 values of the P-CUSUM chart when M=200, 500, 1,000, or 2,000, kP = 0.01,
d = 5, and the true IC process distribution is (A) Poisson(10), (B) NB(10, 0.4), (C) GP(10,
0.4), or (D) GP (10, -0.4).

suggest that an IC dataset with size M ≥ 500 is needed if the P-CUSUM chart is used.

Next, we study the impact of the number of categories d used in categorizing the observed

count data (cf., Subsection 2.1) on the performance of the P-CUSUM chart. As discussed

in Section 1, the information loss due to data categorization is controlled by d. The infor-

mation loss would be smaller when d is larger. At the same time, the computation would

be more time-consuming and there would be more procedure parameters (e.g., the quantiles

{q1, q2, . . . , q2d−1}) to estimate in that case. To study the selection of d, we compute the

ARL1 values of the P-CUSUM chart in cases when d is chosen to be 5, 10, 20, or 30. The IC

data size M is fixed at 500 for all charts based on the results in Figure 2, and all other setups

are the same as those in the example of Table 1. The results are shown in Figure 3. From the

figure, it can be seen that the performance of the P-CUSUM chart is indeed affected by d.

In general, the P-CUSUM chart with a larger d would have a better ARL1 than those with

smaller d for detecting dispersion increases, and vice versa for detecting dispersion decreases.

In practice, if dispersion increase is our major concern, then we suggest choosing d ≥ 20.

Otherwise, d can be chosen as small as 5.
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Figure 3: ARL1 values of the P-CUSUM chart when d = 5, 10, 20, or 30, kP = 0.01, M = 500,
and the true IC process distribution is (A) Poisson(10), (B) NB(10, 0.4), (C) GP(10, 0.4),
or (D) GP(10, -0.4).

Finally, we study the impact of the allowance constant kP on the OC performance of the

P-CUSUM chart, by changing the value of kP among 0.01, 0.05, 0.1, and 0.2. The IC data

size M is fixed at 500, the number of categories d is chosen to be 5, and all other setups are

the same as those in the example of Table 1. The calculated ARL1 values of the P-CUSUM

chart are shown in Figure 4. From the figure, it can be seen that the ARL1 values are

uniformly larger when kP = 0.2, suggesting that a smaller kP value should be chosen, which

is consistent with the conclusion in Qiu & Li (2011). Based on this example, we suggest

choosing kP ≤ 0.1.

3.3 Comparison with the methods in Wang & Qiu (2018)

Recall that the observed count data can be categorized either in a small-to-large fashion or in a

center-outward fashion. The proposed charts P-CUSUM and L-CUSUM in this paper use the

center-outward data categorization, and the two corresponding charts in Wang & Qiu (2018),

denoted as P0-CUSUM and L0-CUSUM, use the small-to-large data categorization. In this

subsection, we compare their OC performance using the same setting as those in Subsection
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Figure 4: ARL1 values of the P-CUSUM chart when kP=0.01, 0.05, 0.1, or 0.2, d = 5,
M = 500, and the true IC process distribution is (A) Poisson(10), (B) NB(10, 0.4), (C)
GP(10, 0.4), or (D) GP(10, -0.4).

3.2. In the four charts, their allowance constants are all chosen to be 0.01, their assumed

ARL0 values are set to be 200, and the number of categories d is fixed at 5 in all charts.

Their control limits are also searched by the bootstrap procedure with Q = 100 maximum

iterations. In each iteration, the ARL0 value is computed from 10,000 replicated simulation

runs, in each of which the bootstrap resampling procedure is applied to an IC dataset of size

M = 500. The IC distribution is still the four cases mentioned above. The ARL1 values

and their standard errors of the four charts in various cases considered are shown in Table

2. From 2, it can be seen that i) all control charts can be used to monitor data dispersion as

expected, ii) the P-CUSUM (P0-CUSUM) chart almost always outperforms the L-CUSUM

(L0-CUSUM) chart, which is consistent with the conclusion in Wang & Qiu (2018), iii) the P-

CUSUM (L-CUSUM) chart performs better than the P0-CUSUM (L0-CUSUM) chart in most

cases when the IC process distribution is overdispersed or underdispersed, indicating that

the control charts based on center-outward data categorization are generally more powerful

for detecting dispersion shifts of count data than the ones based on small-to-large data

categorization in such cases, and iv) when the IC process distribution is equidispersed, the
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P0-CUSUM (L0-CUSUM) chart could perform better than the P-CUSUM (L-CUSUM) chart.

In summary, although control charts based on categorizing the data from the smallest to

the largest can be applied to monitor process changes, they are less powerful for detecting

dispersion differences. Therefore, to develop a CUSUM statistic that is more powerful for

dispersion changes, we consider making use of the center-outward ordering of the data.

3.4 Comparison with some other alternative methods

In this part, we compare our proposed charts P-CUSUM and L-CUSUM with some represen-

tative charts designed for monitoring process dispersion. The first existing method considered

is the T-CUSUM chart suggested by Lucas (1985), which is constructed and designed based

on the assumption that the process under monitoring has a regular Poisson distribution.

We also consider the nonparametric CUSUM chart suggested by Shirke & Barale (2018)

for monitoring process dispersion based on a sign test, which is denoted as S-CUSUM. The

control limit of T-CUSUM is determined based on the Poisson distribution assumption. For

the P-CUSUM, L-CUSUM, and S-CUSUM charts, their control limits are obtained by the

bootstrap procedure discussed in Subsection 2.3 with Q = 100. All other settings are kept

to be the same as those in the example of Table 2. Based on 10,000 replicated simulations,

the ARL1 values of the four charts are presented in Figure 5. From the figure, it can be seen

that i) the proposed P-CUSUM chart outperforms the S-CUSUM and L-CUSUM charts in

all cases, ii) the S-CUSUM chart has a better performance than the L-CUSUM chart in most

cases considered, and iii) the parametric T-CUSUM chart performs the best among the four

charts in plot (A) when its Poisson distribution assumption is valid, and performs poorly in

all three other plots when its distributional assumption is violated.

This example shows that nonparametric charts can generally provide more robust and

effective monitoring of count data dispersion when the pre-specified parametric distribution

assumption is violated. Among the three nonparametric charts considered here, the proposed

P-CUSUM chart performs the best in most cases considered.

4 An application

In this section, we apply the proposed control charts discussed in the previous sections to a

real data example about the daily confirmed cases of Coronavirus Disease 2019 (COVID-19)

in China from October 31, 2020 to January 31, 2021. This dataset can be found on the
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Table 2: The ARL1 values and their standard errors (in parentheses) of the P-CUSUM, L-
CUSUM, P0-CUSUM, and L0-CUSUM charts when their nominal ARL0 values are all fixed
at 200 and the true IC distributions is Poisson (10), NB (10, 0.4), GP (10, 0.4), or GP (10,
-0.4).

Underlying
distribution

Dispersion
shifts

P-CUSUM P0-CUSUM L-CUSUM L0-CUSUM

Poisson (10)

-8 7.1(0.08) 9.5(0.09) 17.5(0.09) 20.4(0.09)
-6 9.4(0.12) 10.8(0.10) 23.0(0.14) 23.3(0.11)
-4 19.6(0.31) 17.5(0.18) 48.5(0.35) 36.7(0.20)
-2 112.8(3.16) 46.4(0.61) 165.7(1.05) 92.5(0.56)
0 204.2(6.07) 196.8(4.88) 200.2(0.99) 198.4(1.27)
2 56.2(1.26) 22.2(0.35) 119.5(0.89) 53.6(0.41)
4 19.2(0.30) 11.8(0.17) 48.3(0.36) 29.3(0.20)
6 11.7(0.16) 9.0(0.11) 29.0(0.20) 22.3(0.14)
8 9.1(0.12) 8.0(0.10) 22.2(0.14) 19.4(0.12)

NB (10, 0.4)

-0.39 21.7(0.32) 20.1(0.29) 51.5(0.32) 46.2(0.31)
-0.3 34.0(0.55) 32.6(0.55) 77.8(0.55) 74.2(0.55)
-0.2 58.6(1.21) 60.0(1.29) 119.1(0.86) 119.1(0.87)
-0.1 130.6(3.53) 133.9(3.54) 175.2(1.08) 171.8(1.08)

0 194.5(5.46) 192.2(5.64) 200.8(1.04) 200.2(1.04)
0.1 141.9(3.98) 164.5(4.60) 180.1(1.05) 187.4(1.06)
0.2 85.1(2.09) 109.7(2.86) 150.1(1.02) 164.4(1.02)
0.3 60.1(1.29) 73.4(1.66) 124.0(0.93) 139.4(0.98)
0.4 45.3(0.91) 57.5(1.14) 103.8(0.77) 119.7(0.87)

GP (10, 0.4)

-0.4 32.0(0.51) 34.7(0.58) 73.6(0.49) 79.3(0.55)
-0.3 40.8(0.69) 46.7(0.84) 90.8(0.61) 100.1(0.70)
-0.2 61.0(1.17) 71.2(1.50) 120.6(0.81) 134.4(0.90)
-0.1 125.4(3.28) 147.6(3.93) 169.4(1.02) 182.7(1.02)

0 191.5(5.74) 207.9(5.99) 198.3(0.95) 200.8(0.99)
0.1 72.5(1.75) 85.6(2.20) 136.2(1.01) 147.2(1.04)
0.2 32.0(0.61) 39.1(0.74) 77.8(0.64) 89.3(0.72)
0.3 18.7(0.31) 23.5(0.38) 47.1(0.37) 56.5(0.45)
0.4 12.3(0.18) 15.0(0.23) 31.2(0.23) 37.2(0.27)

GP (10,-0.4)

-0.4 57.2(1.14) 63.6(1.36) 115.6(0.80) 128.7(0.93)
-0.3 74.2(1.65) 81.4(1.91) 136.3(0.93) 148.2(1.03)
-0.2 113.7(2.89) 114.6(3.07) 161.3(1.03) 169.9(1.11)
-0.1 176.1(4.84) 164.3(4.65) 187.0(1.04) 190.5(1.16)

0 209.4(6.02) 193.8(5.45) 201.7(1.00) 202.0(1.14)
0.1 186.6(5.28) 186.1(5.22) 193.1(1.02) 199.3(1.14)
0.2 107.1(2.67) 138.1(3.62) 163.4(1.02) 182.7(1.11)
0.3 64.8(1.36) 90.8(2.04) 129.2(0.91) 155.6(1.05)
0.4 53.0(1.05) 75.2(1.61) 114.1(0.83) 142.4(0.97)
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Figure 5: ARL1 values of the four control charts when ARL0 = 200, M = 500, d = 5, and
the true IC process distribution is (A) Poisson(10), (B) NB(10, 0.4), (C) GP(10, 0.4), or (D)
GP(10, -0.4).

web page http://www.nhc.gov.cn/, and is shown in Figure 6. It can be seen from the figure

that the fluctuation in the observed counts of daily confirmed COVID-19 cases from October

31, 2020 to January 5, 2021 is much smaller than the fluctuation in the observed counts

after January 5, 2021. It seems that the process mean and dispersion changed after January

5, 2021. In fact, the data variance of the daily confirmed cases from October 31, 2020 to

January 5, 2021 is 67.53, and it increases to 1,108.40 in the time period afterward since there

was a big disease outbreak in a region of Shijiazhuang, Hebei Province of China on January

6, 2021. Thus, the data collected between October 31, 2020 and January 5, 2021 are used

as the IC data in this example, and the data collected afterward are used for online process

monitoring. The vertical dashed line in Figure 6 separates the IC dataset from the data for

process monitoring.

Figure 7 shows the density histogram of the daily confirmed cases of COVID-19 in China

from October 31, 2020 to January 5, 2021 along with the estimated density curve (solid) and

the density curve of a Poisson distribution (dashed) with the same mean as that of the IC

data. From the figure, it can be seen that the distribution of the observed IC data is quite
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Figure 6: Daily confirmed cases of COVID-19 in China from October 31, 2020 to January
31, 2021.

different from the Poisson distribution. The Poisson goodness-of-fit test gives a P value of

0.000, implying that the distribution of the observed data is indeed significantly different from

a Poisson distribution. Therefore, the three nonparametric charts P-CUSUM, L-CUSUM,

and S-CUSUM are considered here.

When implementing the related control charts, we fix ARL0 = 200 for all charts, and

choose d = 5 for the P-CUSUM and L-CUSUM charts, the subgroup size of 3 for the SCUSUM

chart, and the allowance constants to be 0.01 for all three nonparametric charts. The three

control charts are shown in Figure 8, where the red horizontal dashed lines denote the control

limits of the corresponding control charts. From the plots, it can be seen that the P-CUSUM,

L-CUSUM, and S-CUSUM charts give their first signals at the 9th, 26th, and 15th observation

times, respectively, during online process monitoring. So the P-CUSUM chart is the most

effective one for detecting process dispersion shift in this example.
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Figure 7: Density histogram with the estimated density curve (solid) of the daily confirmed
cases of COVID-19 in China from October 31, 2020 to January 5, 2021, together with the
density curve of a Poisson distribution (dashed) with the same mean as that of the IC data.

Figure 8: The P-CUSUM, L-CUSUM, and S-CUSUM charts for monitoring the observed
counts of daily confirmed cases of COVID-19 in China are shown in Figure 6. The horizontal
dashed line in each plot denotes the control limit of the related chart.

5 Concluding remarks

Statistical process control for count data is important because count data are a basic data

format in practice. In the literature, most existing control charts for monitoring count data

are based on assumed parametric probability models and focus more on detecting location

shifts. In various applications, however, the assumed parametric models are rarely valid, due

to the complicated impact of various confounding factors (e.g., the environment, weather, and
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so forth) on the count data. We have shown in this paper that parametric control charts are

unreliable to use in such cases, as their actual ARL0 values could be substantially different

from a pre-specified nominal ARL0 level. In this paper, we suggest using nonparametric

charts instead. Moreover, it is also highly desirable and important to monitor the dispersion of

count data. To this end, new nonparametric control charts and their self-starting versions are

suggested in this paper for monitoring the dispersion of count data. Numerical results show

that the proposed P-CUSUM control chart is more effective and robust than the competing

charts L-CUSUM, S-CUSUM, and T-CUSUM in various cases considered.

Several issues have not been discussed thoroughly in the current paper about the proposed

method, and are worth further study in future research. First, we focus solely on online

monitoring of the process dispersion in this paper. In some applications, simultaneous online

monitoring of the process mean and dispersion would be our interest. Second, our proposed

control charts do not require the specification of the IC distribution. However, it is assumed

that an IC dataset is available for estimating certain IC parameters, which requires a proper

Phase I analysis that has not been discussed in this paper. Third, the proposed control charts

involve some procedure parameters such as the allowance constant. Proper selection of these

parameters is important, and adaptive CUSUM charts to accommodate their data-driven

estimates might be of interest for future research.
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