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Abstract

Network sequence has been commonly used for describing the longitudinal pattern of a

dynamic system. Proper online monitoring of a network sequence is thus important for detecting

temporal structural changes of the system. To this end, there have been some discussions in

the statistical process control (SPC) literature to first extract some features from the observed

networks and then apply an SPC chart to monitor the extracted features sequentially over time.

However, the features used in many existing methods are insensitive to some important network

structural changes, and the control charts used cannot accommodate the complex structure of

the extracted features properly. In this paper, we suggest using four specific features to describe

the structure of an observed network, and their combination can reflect most network structural

changes that we are interested in detecting in various applications. After the four features are

extracted from the observed networks, we suggest using a multivariate nonparametric control

chart to monitor the extracted features online. Numerical studies show that our proposed network

monitoring method is more reliable and effective than some representative existing methods in

various cases considered.

Key Words: Dynamic networks; Features; Hurdle model; Multivariate nonparametric control

charts; Network surveillance; Statistical process control.

1 Introduction

Many economic, biological, electrical, and social systems can be described by networks to show

pairwise interactions among system entities (e.g., Harrison 1992, Leskovec et al. 2007, Lotker 2021).

1The data that support the findings of this study are available from the corresponding author upon reasonable

request.
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As an example, in the enterprise network data collected by the Los Alamos National Laboratory

(Turcotte et al. 2019), communications among 27,436 enterprise computers running the Microsoft

Windows operating system over a period of 89 days can be described by a network (Lee et al. 2022).

When the network structure can change over time, the related network is called dynamic network in

the literature (Newmann 2018). Dynamic networks have been routinely used in practice since they

can describe the complex longitudinal structural change trajectories of dynamic systems in concern.

One fundamental task to analyze dynamic network data is to monitor the sequence of observed

networks at different time points and detect any network structural changes in a timely manner.

This paper aims to develop a flexible and effective method for this purpose.

In the literature, there have been many discussions about online monitoring of dynamic networks.

Most existing methods first extract certain features from the observed networks and then monitor

the extracted features over time (e.g., Leskovec et al. 2007, Perry 2020, Flossdorf and Jentsch 2021).

Some existing methods first fit dynamic network models and then monitor the model-based metrics

about the observed networks (Zhang et al. 2017, Kim et al. 2018). The dynamic network models

considered include the stochastic block models (Holland et al. 1983, Karrer and Newman 2011, Xu

and Hero 2014), the latent space models (Hoff et al. 2002, Sewell and Chen 2015), the temporal

exponential random graph model (Hanneke et al. 2010), and more. Wilson et al. (2019) used the

Shewhart and the exponentially weighted moving average (EWMA) control charts to monitor the

estimated parameters of stochastic block models for dynamic network monitoring. Dong et al. (2020)

suggested a multilayer weighted stochastic block modeling scheme for online monitoring of multilayer

dynamic networks. Ebrahimi et al. (2021) integrated hurdle models with state-space models to

capture the temporal dynamics of the edge formation process of a network sequence, and then

monitored the sequence by an EWMA chart based on the estimated state-space hurdle models. Lee

et al. (2022) recently developed a method for online monitoring of directed activities in large-scale

networks based on latent network space modeling with latent nodal attributes. For overviews on

network modeling and/or monitoring, see papers such as Savage et al. (2014), Ranshous et al.

(2015), Woodall et al. (2017), Jeske et al. (2018), Yu et al. (2022), and the references cited therein.

Although dynamic network modeling approaches can provide us an analytic tool to approximate

or predict the dynamic patterns of network sequences, their model assumptions are often restrictive

and hard to justify in practice. For instance, the assumption that the set of nodes does not change

over time required by many existing methods may not be realistic in many dynamic network

applications (e.g., Liu et al. 2021). Specifically, in the message network example that will be
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discussed in Subsection 4.1, all active members of an online community constitute the set of nodes

of the related network. In this example, because new members can join the community and existing

members can leave the community at any time, the node set could change over time. Some existing

methods based on stochastic block models require the number of communities within a network

does not change over time (e.g., Zhao et al. 2012, Nguyen et al. 2014, Rossetti and Cazabet 2018),

which may not be realistic in many applications either. In addition, many dynamic network models

(e.g., the hurdle models) have parametric forms, and a proper justification of the parametric forms

is often challenging (Hunter et al. 2008).

After certain network features are extracted based on dynamic network modeling and/or task-

specific intuition (e.g., using the total number of nodes of a network if we want to monitor the

network size over time), traditional statistical process control (SPC) charts, such as the Shewhart,

cumulative sum (CUSUM) and EWMA charts, are routinely used to monitor the extracted features

sequentially over time (McCulloh and Carley 2011, Flossdorf and Jentsch 2021, Yu et al. 2022).

However, these charts are usually designed for cases when the in-control (IC) process observations

at different time points are assumed independent and identically distributed with a pre-specified

parametric distribution form (cf., Qiu 2014). In the SPC literature, it has been well demonstrated

that these assumptions are rarely valid in practice and the traditional SPC charts would be unreliable

to use when one or more of their model assumptions are violated (Apley and Tsung 2002, Capizzi

and Masarotto 2008, Jones-Farmer 2009, Qiu and Xiang 2014, Qiu 2018). To circumvent the “data

independence” assumption, Ofori-Boateng et al. (2021) proposed a change-point detection method

for monitoring a network sequence, based on time series modeling for a network summary statistic.

Their proposed method derived the sequential decision rule by approximating the IC distribution of

a test statistic at each observation time using the sieve bootstrap procedure. This method is thus

hard to use for online monitoring of a network sequence because bootstrapping at each observation

time until a signal is time-consuming. For monitoring dynamic networks with a fixed node set,

Salmasnia et al. (2020) used the multivariate EWMA chart to monitor four summary statistics

(or features) of individual networks in a network sequence. To use this approach, a considerable

amount (e.g., 150) of networks needs to be collected at each observation time, so that the batch

means of the summary statistics at each observation time would be roughly normally distributed.

However, combining networks into batches can delay the detection of a distributional shift in the

summary statistics, as discussed in Zwetsloot and Woodall (2021).

To overcome the major limitations discussed above about the existing dynamic network monitor-
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ing methods, this paper aims to make two contributions. First, instead of using a dynamic network

model with restrictive model assumptions to extract network features, we suggest monitoring the

following four features of an individual network in a network sequence: i) the number of nodes in

the network that represents the network size, ii) the average degree of all nodes in the network that

represents the overall connectivity of the network, iii) the number of connected components in the

network that represents the quantity of connected local communities in the network, and iv) the

average diameter of all connected components in the network that represents the overall size of

connected local communities. Their formal definitions will be given in Section 2. The combination of

these four features should be sensitive to most structural changes of interest in a network sequence.

As a special case, if the node set of a dynamic network does not change over time in an application,

then only the last three features need to be monitored. Second, instead of using a conventional SPC

chart with restrictive model assumptions, we suggest using a multivariate nonparametric CUSUM

chart to monitor the four extracted features. Possible serial correlation among the values of the

extracted features at different time points can be accommodated by this CUSUM chart. Numerical

studies show that our proposed method is effective for online monitoring of dynamic networks in

various cases considered.

The remainder of the paper is organized as follows. Section 2 describes the proposed dynamic

network monitoring procedure, including the four network features mentioned above and a sequential

network monitoring scheme, in detail. Section 3 presents some simulation results for evaluating the

numerical performance of the proposed method, in comparison with some representative existing

methods. Section 4 demonstrates the proposed method using three real data examples about

sequential monitoring of three dynamic social systems. Some remarks conclude the paper in

Section 5.

2 Proposed Method

Description of the proposed method for online monitoring of dynamic networks is given in three

parts in this section. First, dynamic network processes are discussed in Subsection 2.1. Then, the

four proposed network features are described in Subsection 2.2. Online monitoring of these network

features is discussed in Subsection 2.3.
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2.1 Dynamic network processes

Assume that a sequence of networks is under online monitoring and denoted as {Gt, t ≥ 1}, where

Gt denotes the network observed at the time point t. For each t, Gt consists of a set of nodes (or

vertices) denoted as Vt and a set of edges (or links) denoted as Et. The numbers of nodes and

edges are denoted as nv,t and ne,t, respectively. In the literature, a dynamic network Gt is often

described by its nv,t × nv,t adjacency matrix At whose (i, j)th element aij,t denotes the “weight” of

the edge between the two nodes in the (i, j)th pair, for each 1 ≤ i, j ≤ nv,t, with aij,t = 0 implying

no edge between the two related nodes. In this paper, we focus on undirected networks whose edges

do not have directions. In such cases, At is a symmetric matrix with non-negative elements. In

addition, self-loops are not considered (i.e., aii,t = 0 for each i), and it is assumed that the weights

aij,t are non-negative integers although the proposed method in this paper can be extended easily

to cases when aij,t are non-negative binary or real numbers. In the literature, a network with some

weights larger than 1 is called a weighted network, and it is called an unweighted network if all

weights equal 0 or 1 only. So, this paper focuses on weighted networks with all {aij,t} values being

non-negative integers. In such cases, for each i, j and t, aij,t can be interpretted as the number of

edges between the two nodes in the (i, j)th pair, and we have

ne,t =
1

2

nv,t∑
i=1

nv,t∑
j=1

aij,t.

Figure 1 illustrates a dynamic network process representing social dynamics among 184 employees

at the Enron Corporation during 1998-2002. In the figure, three snapshots of the dynamic network

process on three specific days (all Mondays) are shown, in which each little circle denotes an Enron

employee (i.e., node) and a thin line (i.e., edge) connecting two nodes implies that the two related

employees had an email exchange on the specific day. From the figure, it can be seen that the

dynamics of email communications among the Enron employees changed quite significantly over

time. For instance, the network on October 22, 2001 has more edges than the other two networks,

and it has a quite large connected local community (i.e., its nodes all connect to each other) located

in the lower-left part. This phenomenon should be related to the events that Enron reported a $638

million third quarter loss on October 16, 2001 and announced SEC probe on October 22, 2001 (Yu

et al. 2018).
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(a) (b) (c)

Figure 1: Networks of email communications among Enron employees on August 28, 2000 (plot

(a)), December 4, 2000 (plot (b)), and October 22, 2001 (plot (c)).

2.2 Four suggested network features to monitor

To monitor a dynamic network process, it is nature to first extract certain features from the observed

networks and then monitor the extracted network features over time. So, many different network

features (or summary statistics) have been proposed in the past several decades (Guzman et al.

2014, Newman 2018, Sizemore and Bassett 2018). However, if the nature of dynamic networks is not

considered carefully, the existing features could be misused, or they cannot effectively capture the

structural changes in concern in the underlying dynamic network process. For instance, Segarra and

Ribeiro (2015) pointed out that a feature called “betweenness centrality” of a node was unstable

because its value is vulnerable to weight perturbation. Friedkin (1981) illustrated that the feature

“network density”, which is commonly used to measure network cohesion, is inappropriate to compare

networks of different sizes. Therefore, proper selection of network features is critically important for

online monitoring of dynamic networks.

In this paper, we suggest using the four network features described below for online monitoring

of dynamic networks. The first feature is the number of nodes nv,t of the network Gt observed at

time t. In practice, nodes in a network often represent entities of the underlying system. For a

dynamic network system, new entities can enter the system and existing entities can leave the system

over time. The quantity nv,t represents the overall size of the system, and the sequence {nv,t, t ≥ 1}

can describe the temporal growth of the system size. See Rossetti and Cazabet (2018) for an

example about community growth. Proper monitoring of this feature is thus important. Besides the

network size, another important aspect of the network structure is reflected in interactions among
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the nodes in the network that are represented by the network edges. In practice, edges are used to

describe the traffic routes in transportation networks (cf., Rodŕıguez-Núñez and Garćıa-Palomares

2014), disease transmissions in infectious disease networks (cf., Liu et al. 2021), communications

among a group of people in social networks (cf., Friedkin 1981, Sparks and Wilson 2019), and so

forth. In all these examples, it is important to monitor the interactions among the nodes of the

dynamic networks over time. In the literature, the number of edges connecting a given node with

other nodes in the same network is called the degree of the given node. Then, the second feature is

defined to be the average degree of all nodes in the network Gt, denoted as dt. Namely,

dt =
2ne,t
nv,t

.

The first two features discussed above reflect the size of a network and the connectivity among

all nodes in the network. However, they cannot reflect other important aspects of the network

structure. In the literature of network research, structure of connected components is considered to

be central for describing network topology (Chung and Lu 2002, von Landesberger et al. 2009). For

instance, a star-shaped connected component formed by linking isolated nodes to a common node

in a network often represents the network structural change that a group of isolated individuals

is organized by a leader (Neil et al. 2013). Following the task taxonomy discussed in Ahn et al.

(2013), some typical structural changes of connected components are summarized in Figure 2. In

the figure, “Growth” (“Contraction”) of a connected component indicates increasing (decreasing)

number of edges. “Merging” (“Splitting”) connected components can result in less (more) connected

components. “Birth” of a connected component implies a new connected component is created,

“Death” of a connected component means an existing connected component disappears, and “Shape

Change” of a connected component denotes the case when the numbers of nodes and edges do not

change but the component structure changes. To describe the structure of connected components in

the network Gt, the third feature we suggest using is the number of connected components in Gt,

denoted as nc,t.

From Figure 2, the number of connected components nc,t alone cannot describe the structure

of all connected components in Gt well. For instance, in the case of “Shape Change” shown in

the figure, although the two connected components have the same numbers of nodes and edges,

their structure is quite different. The one at time t is star-shaped while the one at time t + 1 is

dumbbell-shaped. To describe a main structure of a connected component, we suggest using its

diameter, defined to be the length of the longest geodesic path between any pair of nodes in the

connected component. More specifically, the diameter of the jth connected component Cj in the
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Figure 2: Typical structural changes of connected components. For birth or death of a connected

component, the empty graph with no nodes is denoted as ℵ. In the demonstrated shape change of a

connected component, the numbers of nodes and edges remain the same. For plots in the second

row, the unchanged connected components at two time points are shown with thicker edges.

network Gt can be calculated by

lj = max
u,v∈Cj

dis(u, v),

where dis(u, v) denotes the length of the shortest path between nodes u and v. Thus, each isolated

node has the diameter of 0. In the example of “Shape Change” shown in Figure 2, the connected

component at time t has the diameter of 2, and the connected component at time t + 1 has the

diameter of 5. Then, the fourth feature that we suggest using is the average diameter of all connected

components in Gt, denoted as lt. Namely,

lt =
1

nc,t

nc,t∑
j=1

lj .
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It can be checked that joint use of nc,t and lt would be sensitive to all seven types of structural

changes shown in Figure 2.

As a summary, we suggest using four features to monitor dynamic networks. The first feature

(i.e., the number of nodes nv,t) reflects the size of the network Gt, the second feature (i.e., the

average degree dt of all nodes in Gt) reflects the connectivity among all nodes in Gt, and the third

and fourth features (i.e., the number of connected components nc,t and the average diameter lt of all

connected components in Gt) reflect the number and average size of the connected components of

Gt. Most temporal changes in the structure of a dynamic network can be captured by one or more

of these features. For instance, changes in communications among people in a social network would

be reflected in the values of dt, nc,t and lt. A communication outbreak would increase the average

degree dt, decrease the number of connected components nc,t, and increase the average diameter

lt. It should be pointed out that structural changes in a dynamic network are often reflected in

multiple features discussed above. As an example, Figure 3 shows three snapshots of a dynamic

network. It can be seen that the number of nodes, the average degree of all nodes, the number of

connected components, and the average diameter of connected components all increase from the first

network to the third network. In addition, the four features are usually correlated with each other.

For instance, if the number of nodes nv,t is stable over time, then nc,t and lt would be negatively

correlated. If ne,t remains stable over time, then dt and nv,t would be negatively correlated as well.

Based on these considerations, the four features (nv,t, dt, nc,t, lt) should be monitored together in

order to detect structural changes in a dynamic network effectively.

(a) (b) (c)

Figure 3: Three snapshots of a dynamic network at three different time points. The number of

nodes, the average degree of all nodes, the number of connected components, and the average

diameter of connected components all increase from plot (a) to plot (c).
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In practice, we often do not know what type of structural change would occur in a dynamic

network process, and joint monitoring of the four suggested features can capture main structural

changes in many dynamic network process monitoring appllications, as discussed above. However,

we would also like to point out that some structural changes can be left undetected by monitoring

the four features alone. For instance, in the dumbbell-shaped connected component shown in the

bottom row of Figure 2, if one edge of the two central nodes changes its location to become an

edge of two nodes located at the upper-right corner of the connected component, then this small

structural change cannot be detected by using the four suggested features. Thus, if such structural

changes are also of our interest to detect in a given research, then the proposed method needs to be

generalized, which is left for future research.

2.3 Online monitoring of a dynamic network

Based on the above discussions, for a dynamic network sequence {Gt, t ≥ 1}, we suggest monitoring

the following four features:

Xt =
(
nv,t, dt, nc,t, lt

)′
, for t ≥ 1.

In certain applications (e.g., the airline traffic network in US), the number of nodes (i.e., airports)

may not change in a given period of time. In such applications where nv,t does not change over

time, only the last three features need to monitor. Without loss of generality, our discussion below

is for monitoring all four features, and the method for monitoring the last three features only can

be discussed in a similar way.

As discussed in Subsection 2.2, the four features are usually correlated with each other. In

addition, their observations at different time points would be serially correlated as well, although

most existing methods for network monitoring assume that observed networks and their metrics at

different time points are independent (e.g., Dong et al. 2020). In addition, it is rare in practice that

the four features would follow a joint normal distribution. See Section 4 for three real-data examples

where serial data correlation and non-normality are confirmed. To monitor the multivariate process

{Xt, t ≥ 1} properly, we suggest using the multivariate nonparametric CUSUM chart suggested by

Xue and Qiu (2021). Its major steps are briefly described below.

To use the method in Xue and Qiu (2021), an initial IC data X (0)
IC = {X1, . . . ,Xm0} is assumed

to be available in advance, where m0 is the sample size of the initial IC data. That method assumes

that serial data correlation in the observed data is stationary and short-ranged when the process

10



under monitoring is IC. More specifically, the covariance matrix γ(s) = Cov(Xt,Xt+s), for any

t, s ≥ 1, is assumed to depend on s only when t changes. In addition, it is assumed that γ(s) = 0

when s > bmax, where bmax ≥ 1 denotes the range of serial correlation. This latter assumption implies

that the correlation between two process observations decreases gradually when their observation

times get farther away and the serial correlation can be ignored if the two observation times are

at least bmax points away, which should be reasonable in practice. By the way, if the stationarity

assumption is violated, then the alternative monitoring procedure discussed in Qiu and Xie (2022)

can be considered.

Then, the IC mean µ0 and the IC covariance matrices {γ(s), 0 ≤ s ≤ bmax} of {Xt, t ≥ 1} can

be estimated from the initial IC data by the moment estimates as follows:

µ̂
(0)
0 =

1

m0

m0∑
t=1

Xt,

γ̂(0)(s) =
1

m0 − s

m0−s∑
t=1

(
Xt+s − µ̂(0)

0

)(
Xt − µ̂(0)

0

)′
, for 0 ≤ s ≤ bmax.

(1)

To sequentially monitor the multivariate observations {Xt, t ≥ m0+1}, the observation Xt at the

current time point t should be decorrelated with its previous observations {Xn, t− bmax ≤ n ≤ t−1}

in advance, because most existing online monitoring procedures are designed for monitoring processes

with serially uncorrelated observations (cf., Qiu 2014). To further reduce computation, Xue and Qiu

(2021) suggested using the spring length concept suggested originally in Chatterjee and Qiu (2009),

where the spring length lt at time t is defined to be the number of observation times between t and

the last time when the CUSUM charting statistic (see definition below) is reset to 0. Because the

CUSUM chart has the restarting mechanism that all observations collected before the time t− lt are

ignored in the subsequent process monitoring, Xt only needs to be decorrelated with observations

collected at the previous bt = min{lt−1, bmax} time points, where lt−1, instead of lt, is used here

since lt is unavailable yet before a decision is made about the process status at time t. The resulting

recursive algorithm for data decorrelation used in online process monitoring is briefly described

below:

• When t = m0 + 1, the standardized observation is defined to be X∗t = [γ̂(0)(0)]−1/2(Xt− µ̂(0)
0 ).

Stop the data decorrelation procedure if the CUSUM chart gives a signal at t. Otherwise, set

t = m0 + 2.

• When t > m0+1, if lt−1 = 0, then define X∗t = [γ̂(t−m0−1)(0)]−1/2(Xt−µ̂(t−m0−1)
0 ). Otherwise,
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the estimated covariance matrix of (X
′
t−lt−1

, . . . ,X
′
t)
′

can be defined to be

Σ̂t,t =


γ̂(t−m0−1)(0) . . . γ̂(t−m0−1)(lt−1)

...
. . .

...[
γ̂(t−m0−1)(lt−1)

]′
. . . γ̂(t−m0−1)(0)

 =

Σ̂t−1,t−1 σ̂t−1

[σ̂t−1]
′

γ̂(t−m0−1)(0)

 ,

where σ̂t−1 = ([γ̂(t−m0−1)(lt−1)]
′
, . . . , [γ̂(t−m0−1)(1)]

′
)
′
, µ̂

(t−m0−1)
0 and {γ̂(t−m0−1)(s), 0 ≤ s ≤

lt−1} can be calculated from Equation (3) below. Then, the decorrelated and standardized

observation at time t is defined to be

X∗t = D̂
−1/2
t

[
Xt − µ̂(t−m0−1)

0 − σ̂′t−1Σ̂−1t−1,t−1êt−1
]
,

where D̂t = γ̂(t−m0−1)(0)−σ̂′t−1Σ̂
−1
t−1,t−1σ̂t−1, and êt−1 = [(Xt−lt−1−µ̂

(t−m0−1)
0 )

′
, . . . , (Xt−1−

µ̂
(t−m0−1)
0 )

′
]
′
. If the CUSUM charting statistic (cf., Equation (2) below) at t is 0, then set

lt = 0. Otherwise, define lt = min(lt−1 + 1, bmax). Stop the iterative procedure if the chart

gives a signal. Otherwise, set t = t+ 1, and repeat this step until the control chart gives a

signal.

In practice, the IC distribution of the decorrelated data {X∗t , t ≥ m0 + 1} could be substan-

tially different from normal in cases when the distribution of the original data {Xt, t ≥ m0 + 1}

is substantially different from normal. Thus, for the p-dimensional decorrelated data {X∗t =

(X∗t1, . . . , X
∗
tp)
′
, t ≥ m0 + 1} with p = 4, the multivariate nonparametric CUSUM chart suggested

originally by Qiu (2008) can be considered. To this end, let {m∗j , j = 1, . . . , p} be the IC medians of

the p components of X∗t , and Y∗t = (Y ∗t1, . . . , Y
∗
tp)
′

be the categorized version of X∗t , where

Y ∗tj = I(X∗tj > m∗j ), for 1 ≤ j ≤ p, t ≥ m0 + 1,

and I(u) is the indicator function that equals 0 and 1, respectively, when u is FALSE and TRUE.

Let the IC distribution of Y∗t be f (0), which is a long vector with the elements

f
(0)
j1,...,jp

= P (Y ∗t1 = j1, . . . , Y
∗
tp = jp), for j1, . . . , jp = 0, 1,

and g(t) be the corresponding long vector with elements

gj1,...,jp(t) = I(Y ∗t1 = j1, . . . , Y
∗
np = jp), for j1, . . . , jp = 0, 1,

arranged in the same order as that of f (0). Then, g(t) is the empirical distribution of Y∗t . By

comparing the empirical distribution g(t) and the IC distribution f (0) in a cumulative manner, the

multivariate nonparametric CUSUM charting statistic is defined to be

Ct =
(
Sobs
t − Sexp

t

)′
[diag(Sexp

t )]
−1
(
Sobs
t − Sexp

t

)
, (2)
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where 
Sobs
0 = Sexp

0 = 0, if Ut ≤ k,

Sobs
t =

[
Sobs
t−1 + g(t)

]
(Ut − k)/Ut, if Ut > k,

Sexp
t =

[
Sexp
t−1 + f (0)

]
(Ut − k)/Ut, if Ut > k,

Ut =
[(

Sobs
t−1 − Sexp

t−1

)
+
(
g(t)− f (0)

)]′ [
diag

(
Sexp
t−1 + f (0)

)]−1 [(
Sobs
t−1 − Sexp

t−1

)
+
(
g(t)− f (0)

)]
,

diag(A) denotes a diagonal matrix in which the diagonal elements being those of A, and k > 0 is

an allowance constant. Then, the chart gives a signal when

Ct > h,

where h > 0 is a control limit. Since different components of X∗t have been decorrelated, the

components of Y∗t would be roughly independent. Thus, each component of the IC distribution f (0)

can be specified to be 2−p. For a given value of the IC average run length, denoted as ARL0, once

the value of k is pre-specified, the control limit h can be determined by a Monte Carlo simulation

as described in Appendix A.1 of the supplementary file.

When the CUSUM chart (2) does not give a signal at time t, the process under monitoring would

be claimed to be IC. Thus, the observation Xt can be combined with the IC dataset {X1, . . . ,Xt−1}

at the time t− 1. Then, the estimates of the IC parameters µ0 and {γ(s), 0 ≤ s ≤ bmax} can be

updated recursively using the combined IC data as follows: for t ≥ m0 + 1 and 0 ≤ s ≤ bmax,

µ̂
(t−m0)
0 =

1

t
Xt +

t− 1

t
µ̂
(t−m0−1)
0 ,

γ̂(t−m0)(s) =
1

t− s

(
Xt − µ̂(t−m0)

0

)(
Xt−s − µ̂(t−m0)

0

)′
+
t− s− 1

t− s
γ̂(t−m0−1)(s).

(3)

In Equation (3), µ̂
(0)
0 and {γ̂(0)(s), 0 ≤ s ≤ bmax} are defined in Equation (1). The IC medians

{m∗j , j = 1, . . . , p} used in computing the charting statistic Ct in Equation (2) can be estimated by

the sample medians of the IC dataset, and the sample medians {m̂∗j , j = 1, . . . , p} at the current

time point t can be obtained recursively by updating the sample medians at the time t− 1, after

comparing their values with the decorrelated observations at the times t− 2 and t. Regarding the

parameter bmax, based on an extensive numerical study, Xue and Qiu (2021) suggested choosing it

in the interval [10, 20]. Thus, in all numerical examples in Sections 3 and 4, bmax is chosen to be 20.

Because the estimates of the IC parameters have been updated during the online process

monitoring process, the entire process monitoring procedure is a self-starting procedure (cf., Hawkins

1987). For this reason, our proposed process monitoring procedure described in this section is
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denoted as SS-MCUSUM, where SS denotes “self-starting” and MCUSUM implies that the major

charting scheme (2) is a multivariate CUSUM chart.

3 Simulation Studies

In this section, we investigate the numerical performance of the proposed method for dynamic

network monitoring using Monte Carlo simulations, in comparison with six representative existing

methods that are discussed in Subsection 3.1. The method to generate a sequence of networks is

described in Subsection 3.2, and the simulation results are presented in Subsection 3.3.

3.1 Six representative existing network monitoring methods

One straightforward network monitoring strategy is to use a summary statistic Xt to describe the

observed network Gt, and then sequentially monitor the sequence {Xt, t ≥ 1}. To this end, a series

of papers used the EWMA chart to detect anomalous changes in a dynamic network process by

using various summary statistics (e.g., Hosseini and Noorossana 2018; Flossdorf and Jentsch 2021,

Yu et al. 2022). More specifically, the charting statistic is defined to be

Et = λ(Xt − µ0) + (1− λ)Et−1, for t ≥ m0 + 1,

where λ ∈ (0, 1] is a weighting parameter, Em0 = 0, and µ0 is the IC mean of Xt. In all the papers

mentioned above, their EWMA charts are designed for cases when IC process observations are

assumed to be independent and identically distributed (i.i.d.) at different observation times with

a normal IC distribution. These assumptions are rarely valid in practice. But, some researchers

think that the EWMA chart is robust to some of these assumptions if the weighting parameter λ is

chosen properly (e.g., Borror et al. 1999, Horng Shiau and Ya-Chen 2005). Under the assumptions

mentioned above, the control limit of the above EWMA chart can be determined by Monte Carlo

simulations to reach a given ARL0 value. See Table 5.1 in Qiu (2014) for the control limit values

corresponding to some commonly used ARL0 and λ values. In this section, we consider three such

EWMA charts. Two were suggested by Yu et al. (2022) for monitoring the maximum degree (dmax)

and the average degree (d̄), respectively, of a dynamic network, and the other was discussed in

Flossdorf and Jentsch (2021) for monitoring the spectral norm (SN) of the adjacency matrix of the

dynamic network. These three methods are denoted as EWMA-dmax, EWMA-d̄, and EWMA-SN,

respectively.
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In cases when the node set of a dynamic network is fixed over time, a number of researchers

have proposed scan-based network monitoring schemes. One well-known method was proposed by

Priebe et al. (2005), which used the temporal moving-window idea. More specifically, at the current

time t, let us consider all previous networks in the time window {t− L, . . . , t− 1} of length L. For

a given node i ∈ {1, . . . , nv} (note: the notation nv,t has been simplified to nv here since the node

set does not change with t), the total number of edges of all nodes within its lth neighborhood at

time t is denoted as Olt,i, for l = 0, 1, 2, where the lth neighborhood of a given node is defined to

be the set of nodes in a network whose shortest paths to the given node are at most l. Then, the

quantities {Olt,i} are first normalized as follows:

Õlt,i =
Olt,i − µ̂lO,t,i

max (σ̂lO,t,i, 1)
,

where µ̂lO,t,i =
∑L

k=1O
l
t−k,i/L and σ̂lO,t,i =

√∑L
k=1(O

l
t−k,i − µ̂lO,t,i)2/(L− 1). The denominator in

the above expression sets a lower bound of 1 to avoid fragility for nodes with little or no variation

in activity over time. Then, we define

Slt = max
{
Õlt,1, . . . , Õ

l
t,nv

}
, for l = 0, 1, 2.

For the quantities {Slt}, they are standardized as follows:

S̃lt =
Slt − µ̂lS,t

max (σ̂lS,t, 1)
,

where µ̂lS,t =
∑L

k=1 S
l
t−k/L and σ̂lS,t =

√∑L
k=1(S

l
t−k − µ̂lS,t)2/(L− 1). Then, the charting (scan)

statistic is

St = max
{
S0
t , S

1
t , S

2
t

}
,

and the chart gives a signal when St > hp. Priebe et al. (2005) pointed out that the IC distribution

of the charting scan statistic St was usually unknown and its values at different time points could

be serially correlated. So, a block bootstrap procedure is used in this paper to determine the

control limit hp, which is described in Appendix A.2 of the supplementary file. The above network

monitoring method is denoted as PSCAN.

When the node set of a dynamic network does not change over time, Chen (2019) proposed

another online network monitoring procedure based on change-point detection, which is briefly

described below. At time t, consider a time window {t− L+ 1, . . . , t} of length L. For a potential

change-point at t− L+ 1 ≤ n ≤ t in the time window, let us compare the two groups of networks:
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{Gt−L+1, . . . , Gn} and {Gn+1, . . . , Gt}. For a given network, if another network is one of its ρ

nearest neighbors judged by a similarity measure between the two networks, then we claim that

there is an edge connecting the two networks. This graphic structure is called the K-nearest-neighbor

(KNN) graph in the literature (cf., Schilling 1986, Henze 1988). Let ZL(n, t) be a pre-specified

decreasing function of the number of edges connecting the networks in {Gt−L+1, . . . , Gn} and the

networks in {Gn+1, . . . , Gt}. Then, the likelihood that n is a change-point would be relatively large

if the value of ZL(n, t) is large. Based on this intuition, the change-point detection (CPD) chart

gives a signal when

max
t−t1≤n≤t−t0

ZL(n, t) > bZ ,

where t1 and t0 are two pre-specified small positive integers, and bZ is a control limit. To determine

the control limit bZ to reach a given ARL0 value, Chen (2019) recommended using an analytic

formula. However, the integrand in the formula can be infinite and thus a reasonable bZ value would

not be well defined in such cases. In this paper, we suggest an alternative approach to determine

bZ from the set of IC networks. See Appendix A.3 of the supplementary file for details. The

above network monitoring method is denoted as CPD-KNN hereafter. In CPD-KNN, the similarity

measure between two networks at times t and s is defined to be

‖At −As‖2F
‖At‖F ‖As‖F

,

where At and As are the adjacency matrices of the related networks, and ‖·‖F is the Frobenius

norm of a matrix. Chen (2019) suggested choosing ρ = 5, L = 50, t0 = 3, and t1 = L− t0, which

has been adopted in all numerical studies in this paper.

If the fixed node set of a dynamic network is assumed to follow a two-community structure

(Lancichinetti et al. 2008), Yu et al. (2022) (also see Wilson et al. (2019)) suggested to use a

Shewhart chart to monitor the unique entries of the estimated propensity matrix P̂t (cf., Section B in

the supplementary file for a related discussion) for detecting structural changes in the network. More

specifically, for communities c1 and c2, the number of nodes in the two communities are denoted as nc1

and nc2 , respectively. At time t, the estimated entries of P̂t are defined to be P̂c1,c2 = wc1,c2/(nc1nc2),

for c1, c2 = 1, 2, where wc1,c2 is the sum of all edges between the communities c1 and c2. Then, each

one of the three unique entries in P̂t is used as the charting statistic of the Shewhart chart and

it gives a signal if the statistic value is beyond the control limits µ̂ ± 3σ̂, where µ̂ and σ̂ are the

estimated mean and standard deviation of the charting statistic obtained from the m0 IC networks.

A structural change of the network is detected if any one of the three individual charts gives a signal.

This method is denoted as Shewhart.
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3.2 Generation of network sequences for Monte Carlo simulations

In this paper, a dynamic network model is used when generating a network sequence for simulation

studies, by which the network topology can be controlled by changing parameter values in the model

(cf., Snijders 2005, Peel and Clauset 2015). First, the following Poisson hurdle model is used to

specify the edge distribution of a network: for 1 ≤ i 6= j ≤ nv,t and t ≥ 1,

P (aij,t = u) =

 πt, if u = 0,

(1−πt)exp(−ωt)ωt
u

u![1−exp(−ωt)]
, if u > 0,

(4)

where πt is the probability of no edge between the two nodes in the (i, j)th pair, and the connectivity

parameter ωt controls the edge weight. Equation (4) is the mixture of a Bernoulli distribution with

the parameter πt and a Positive Poisson distribution with the parameter ωt (Grogger and Carson

1991), and the value of πt is large (or small) for a sparse (or dense) network.

Then, the network sequence {Gt, 1 ≤ t ≤ T} is generated as follows. First, let nv be a pre-

specified integer (e.g., 100) representing the expected IC network size. The number of nodes of Gt

at time t is then determined by nv,t = max{10, 〈nv + ξt〉}, where 〈·〉 rounds a value to the nearest

integer, and ξt is generated by the AR(1) model

ξt = 0.5ξt−1 + εt1,

where ξ0 = 0 and {εt1} are i.i.d. random numbers generated from the N(0, 52) distribution. Second,

determine the value of πt used in Equation (4) as follows. At time t, the expected number of nodes

that are not isolated is denoted as nv,t. Then, nv,t is determined by nv,t = 〈ptnv,t〉, where pt is

randomly generated from the uniform distribution on the interval [p1, p2], and p1 and p2 represent the

lower and upper proportions of nodes that are expected to have edges in the network. The number

of expected binary edges is denoted as ne,t. Then, its maximum value is nmax
e = nv,t(nv,t− 1)/2, and

its minimum value is nmin
e = (nv,t + 1)/2 if nv,t is an odd number and nmin

e = nv,t/2 if nv,t is an even

number. Then, ne,t is chosen to be

ne,t =


〈nv,t + εt2〉, if nmin

e ≤ 〈nv,t + εt2〉 ≤ nmax
e ,

nmin
e , if nmin

e > 〈nv,t + εt2〉,

nmax
e , if nmax

e < 〈nv,t + εt2〉,

(5)

where {εt2} are i.i.d. random numbers generated from the N(0, 22) distribution. Equation (5) has

made use of the linear relationship between the number of non-isolated nodes and the number
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of binary edges observed in real temporal networks (cf., Leskovec and Krevl 2014). After ne,t is

determined, the value of the sparsity parameter is chosen to be

πt = 1− 2ne,t
nv,t(nv,t − 1)

.

Third, determine the value of ωt used in Equation (4). To this end, let µe be a pre-specified

value (e.g., 2) of the expected degree of a node. Based on the Poisson hurdle model, this number

can be calculated to be (nv,t − 1)E(aij,t), which is the sum of the expected edge weights between

node i and all other nodes in Gt. Then, from the equation µe = (nv,t − 1)E(aij,t) and (4), we have

µe
(nv,t − 1)(1− πt)

=
ωt

1− exp(−ωt)
.

Since nv,t and πt in the above expression have been determined in advance, the value of ωt can be

determined by solving the above equation, which is unique when πt > 1− µe/(nv,t − 1).

After the values of {nv,t, πt, ωt} are determined as described above, the adjacency matrix At

can be generated by Equation (4) at each observation time t, and then a network sequence can be

generated afterwards. From the above description, it can be seen that the structure of the network

sequence generated based on the Poisson hurdle model is uniquely determined by the pre-specified

values of {nv, p1, p2, µe}.

Following the network generation framework in Yu et al. (2022), we also use the hurdle degree

corrected stochastic block model (HDCSBM) to generate the network sequence in some examples.

The simulated networks are assumed to follow the two-community structure, and the community

structure is controlled by the tuning parameters in a propensity matrix. See Appendix B of the

supplementary file for details.

3.3 Simulation results

In this part, we present some simulation examples, in which the nominal ARL0 values of all network

monitoring methods are fixed at 200. If there is no further specification, the allowance constant

k in the SS-MCUSUM chart is chosen to be 0.1, the weighting parameter λ in the EWMA-dmax,

EWMA-d̄, and EWMA-SN charts is fixed at 0.05 as suggested by Yu et al. (2022), the moving

window size L in PSCAN is chosen to be 20 as suggested by Priebe et al. (2005), and the number

of nearest neighbors ρ used in CPD-KNN is chosen to be 5 as suggested by Chen (2019).
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To evaluate the IC performance of the related methods, the following eleven cases are considered,

among which the Poisson hurdle model is used for generating network sequences in the first seven

cases and the HDCSBM model is used in the remaining cases.

Case I: The expected network size is set to be nv = 100, the expected proportion of non-isolated

nodes in the network is chosen between p1 = 0.2 and p2 = 0.4, and the expected degree of a

node in the network is set to be µe = 2.

Case II: The four parameters are chosen to be nv = 100, p1 = 0.6, p2 = 0.8, and µe = 4.

Case III: Same as Case I, except that the distribution of {εt1} used in generating nv,t is the one

of 5(ξ − 3)/
√

6, and the distribution of {εt2} used in generating ne,t is the one of 2(ξ − 3)/
√

6,

where ξ is a random variable with the distribution χ2
3.

Cases IV–VI: Same as Cases I–III, respectively, except that the node set is fixed with nv,t ≡ 100.

Cases VII–XI: Each network has the two-community structure with the propensity matrix P

specified as

0.12 0.04

0.04 0.12

 in all Cases VII, IX, and XI, and

0.08 0.08

0.08 0.08

 and

0.16 0.08

0.08 0.04


in Cases VIII and X, respectively. Other simulation settings in these cases can be found in

Appendix B.

In Case I, the network size varies around 100 over time, and the generated networks are quite sparse

since all p1, p2 and µe are quite small. Compared to Case I, the generated networks in Case II are

relatively dense since the values of p1, p2 and µe are chosen larger than those in Case I. Case III is

the same as Case I, except that the distributions of nv,t and ne,t in the former case are quite skewed.

Dynamic networks with fixed node sets are considered in Cases IV–VI. Cases VII–XI consider

various scenarios when the network sequence has the fixed node set that has the two-community

structure.

Evaluation of the IC performance: We first evaluate the IC performance of the related

network monitoring methods. In cases when the node set can change over time (i.e., Cases I–III),

we compare the proposed method SS-MCUSUM with EWMA-dmax, EWMA-d̄, and EWMA-SN

only, since the other methods PSCAN, CPD-KNN, and Shewhart are designed for cases with fixed

node set. When the IC sample size m0 changes among {200, 300, 400, 500, 1, 000}, the estimated

actual ARL0 values of the four methods SS-MCUSUM, EWMA-dmax, EWMA-d̄, and EWMA-SN

are presented in Table 1. For each method, the actual ARL0 value is estimated as follows. First,
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after m0 IC networks are generated, some IC parameters used by the method are estimated from the

IC networks. Second, the monitoring method is then applied to a sequence of 2,000 IC networks for

online process monitoring, and its run length (RL) value is recorded. The online process monitoring

is then repeated for 1,000 times, and the average of the 1,000 RL values is used as an estimate of the

actual conditional ARL0 value, conditional on the m0 IC networks. Finally, to obtain an estimate

of the actual (unconditional) ARL0 value, all steps described above, starting from the generation

of the m0 IC networks to the computation of the estimated actual conditional ARL0 value, are

repeated for 100 times. The actual ARL0 value of the monitoring method is then estimated by the

average of the 100 estimates of the actual conditional ARL0 value.

Table 1: Estimated actual ARL0 values and their standard errors (in parentheses) of four control

charts in Cases I-III when their nominal ARL0 values are fixed at 200, and the number of IC

networks m0 in the initial IC data changes among 200, 300, 400, 500, and 1,000.

Case Methods m0 = 200 300 400 500 1000

SS-MCUSUM 218 (3.36) 216 (3.58) 216 (3.22) 211 (2.89) 204 (2.42)

EWMA-dmax 176 (5.75) 177 (4.99) 181 (4.30) 183 (4.06) 192 (2.91)
I

EWMA-d̄ 181 (5.48) 180 (4.20) 182 (3.67) 183 (3.03) 193 (2.42)

EWMA-SN 174 (5.22) 180 (4.65) 181 (3.93) 186 (3.97) 193 (2.71)

SS-MCUSUM 225 (3.21) 220 (2.71) 222 (2.77) 218 (2.72) 209 (2.61)

EWMA-dmax 179 (5.70) 184 (5.68) 186 (3.91) 190 (3.91) 195 (3.15)
II

EWMA-d̄ 174 (5.36) 180 (4.66) 178 (3.37) 187 (3.73) 199 (2.66)

EWMA-SN 173 (5.48) 176 (4.76) 181 (3.58) 184 (3.11) 193 (2.31)

SS-MCUSUM 204 (3.89) 205 (3.53) 205 (3.68) 202 (3.20) 201 (2.21)

EWMA-dmax 175 (5.57) 185 (6.15) 187 (4.73) 186 (4.40) 194 (2.78)
III

EWMA-d̄ 178 (5.65) 186 (4.76) 186 (3.48) 185 (2.99) 193 (2.37)

EWMA-SN 179 (6.13) 183 (4.61) 186 (4.21) 189 (3.86) 194 (2.42)

For Table 1, we can have the following conclusions. (i) The IC performance of all four charts is

quite reliable in Cases I–III when m0 ≥ 500 since their estimated actual ARL0 values are within

10% of the nominal ARL0 value of 200 in all cases considered. (ii) It seems that SS-MCUSUM is bit

better than the other three charts in Cases I and III when m0 ≥ 500 while its advantage disappears

in Case II when the networks are dense. This example shows that in cases when the node set can

change over time, all the charts SS-MCUSUM, EWMA-dmax, EWMA-d̄, and EWMA-SN seem to
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have a quite reliable IC performance when m0 ≥ 500 in the simulation settings considered.

Note that the weighting parameter is chosen to be 0.05 in EWMA-dmax, EWMA-d̄, and

EWMA-SN. In cases considered in Table 1, if the weighting parameter is chosen to be one of

{0.1, 0.2, 0.3, 0.4, 0.5} in these three charts, then their estimated actual ARL0 values when m0 = 500

are presented in Table 2. From the table, it can be seen that the IC performance of the three charts

are quite sensitive to the weighting parameter value, and their IC performance becomes unreliable

when the weighting parameter is chosen to be larger than or equal to 0.3.

Table 2: Estimated actual ARL0 values and their standard errors (in parentheses) of the three

EWMA charts when their nominal ARL0 values are fixed at 200, m0 = 500, and the weighting

parameter changes among 0.1, 0.2, 0.3, 0.4, and 0.5.

Case Methods λ = 0.1 0.2 0.3 0.4 0.5

EWMA-dmax 179 (4.62) 157 (4.36) 132 (3.51) 113 (2.80) 99 (2.28)

I EWMA-d̄ 184 (3.65) 180 (4.17) 174 (4.26) 166 (4.18) 158 (3.97)

EWMA-SN 185 (4.78) 175 (5.05) 158 (4.57) 141 (3.93) 126 (3.32)

EWMA-dmax 188 (4.62) 166 (5.36) 145 (4.67) 126 (3.84) 110 (3.15)

II EWMA-d̄ 193 (3.96) 185 (3.70) 184 (3.90) 182 (4.08) 179 (4.06)

EWMA-SN 190 (4.51) 182 (5.48) 173 (5.45) 161 (5.09) 149 (4.63)

EWMA-dmax 183 (4.74) 166 (5.43) 142 (4.60) 120 (3.59) 105 (2.92)

III EWMA-d̄ 186 (4.24) 184 (5.18) 179 (5.35) 172 (5.47) 164 (5.22)

EWMA-SN 189 (3.78) 188 (5.58) 177 (6.23) 160 (5.82) 144 (5.15)

Next, we consider Cases IV–VI when the node set is fixed. In such cases, we compare the

proposed method SS-MCUSUM with the two existing methods PSCAN and CPD-KNN, since

these two existing methods were designed for cases with a fixed node set. The estimated actual

ARL0 values of the three completing methods are presented in Table 3, along with their standard

errors, when m0 changes among {150, 200, 250, 300, 500}. From the table, we can have the following

conclusions. (i) The SS-MCUSUM chart has a quite reliable IC performance in all Cases IV–VI

when m0 ≥ 200 since its estimated actual ARL0 values are within 10% of the nominal ARL0 value of

200 in these cases. (ii) The PSCAN chart performs reasonably well in Cases IV–VI when m0 = 500.

(iii) In all cases considered, the estimated actual ARL0 values of the CPD-KNN chart are well below

the nominal ARL0 value of 200. So, we can conclude that its IC performance is unreliable in these
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cases. So, from this example, it seems that SS-MCUSUM has a more reliable IC performance than

that of PSCAN and CPD-KNN in all cases considered.

Table 3: Estimated actual ARL0 values and their standard errors (in parentheses) of three network

monitoring methods in Cases IV-VI when their nominal ARL0 values are fixed at 200, and the

number of IC networks m0 changes among 150, 200, 250, 300, and 500.

Case Methods m0 = 150 200 250 300 500

SS-MCUSUM 174 (3.65) 180 (3.45) 189 (4.04) 190 (3.49) 192 (3.15)

IV PSCAN 258 (5.25) 240 (4.59) 224 (3.31) 221 (3.33) 213 (2.45)

CPD-KNN 126 (3.31) 132 (2.94) 131 (2.76) 133 (2.91) 128 (3.11)

SS-MCUSUM 186 (3.50) 193 (3.70) 194 (3.44) 198 (3.84) 197 (3.60)

V PSCAN 269 (8.24) 253 (7.83) 234 (6.78) 235 (5.30) 216 (3.98)

CPD-KNN 128 (3.44) 128 (3.37) 130 (2.71) 131 (3.13) 126 (3.14)

SS-MCUSUM 174 (4.22) 181 (3.24) 188 (3.88) 194 (3.93) 197 (3.15)

VI PSCAN 256 (4.98) 241 (4.15) 233 (3.87) 225 (2.93) 214 (2.56)

CPD-KNN 129 (2.76) 130 (2.80) 139 (2.43) 128 (3.42) 127 (3.00)

In the network monitoring method CPD-KNN, the parameter ρ which determines the maximum

number of nearest neighbors in that method is chosen to be 5 in the above example, as recommended

by Chen (2019). To study its IC performance when ρ is chosen to be other values, we consider

Cases IV–VI when m0 = 300 and ρ varies among {6, 7, 8, 9, 10}. The estimated actual ARL0 values

of CPD-KNN are presented in Table 4 in such cases. From the table, it can be seen that the

estimated actual ARL0 values of CPD-KNN are much less than the nominal ARL0 value of 200 in

all cases considered. Thus, the recommended value of ρ would indeed improve the IC performance

of CPD-KNN, although the IC performance of CPD-KNN in such cases is still unsatisfactory.

Table 4: Estimated actual ARL0 values and their standard errors (in parentheses) of CPD-KNN in

Cases IV–VI when its nominal ARL0 value is fixed at 200, m0 = 300, and ρ changes among 6, 7, 8,

9, and 10.

Case ρ = 6 7 8 9 10

IV 100 (2.68) 104 (2.81) 99 (2.99) 94 (2.98) 91 (2.81)

V 98 (2.67) 89 (2.67) 87 (2.69) 84 (2.64) 81 (2.52)

VI 94 (2.97) 98 (3.14) 93 (3.09) 89 (3.01) 85 (2.99)
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Next, we consider Cases VII–XI when the fixed node set is assumed to follow the two-community

structure and the networks are generated by the HDCSBM model. In such cases, we compare the

proposed method SS-MCUSUM with the existing method Shewhart since this existing method was

designed to monitor dynamic networks. The estimated actual ARL0 values of the two completing

methods when m0 changes among {150, 200, 250, 300, 500}, along with their standard errors, are

presented in Table B.2 of the supplementary file. From the table, we can have the following

conclusions. (i) The SS-MCUSUM chart has a reliable IC performance in all Cases VII–XI when

m0 ≥ 200 since its estimated actual ARL0 values are within 10% of the nominal ARL0 value of 200

in these cases. (ii) In all cases considered, the estimated actual ARL0 values of the Shewhart chart

is much smaller than 200. Thus, we can conclude that the IC performance of the SS-MCUSUM

chart is reliable and the IC performance of the Shewhart chart is unreliable in this example.

Evaluation of the OC performance: Let us first consider Cases I–III when the node set of

the dynamic network can change over time. In such cases, we compare the OC performance of the

four methods SS-MCUSUM, EWMA-dmax, EWMA-d̄, and EWMA-SN when m0 is fixed at 500 and

a network structural change occurs at the beginning of online process monitoring. The value 500 is

chosen for m0 because all four methods have quite reliable IC performance in such a case according

to Table 1. From the discussion in Subsection 3.2, the network structural change is determined by

the four parameters {nv, p1, p2, µe}, whose IC values are denoted as {n(IC)
v , p

(IC)
1 , p

(IC)
2 , µ

(IC)
e } and

OC values are denoted as {n(OC)
v , p

(OC)
1 , p

(OC)
2 , µ

(OC)
e }. Then, the following three types of network

structural changes are considered in this study:

Network size changes: n
(OC)
v = n

(IC)
v + 2.5γ, where n

(IC)
v = 100 in Cases I–III, γ = ±1,±2,±3

or ±4, and the other three parameters {p1, p2, µe} do not change;

Communication changes: (p
(OC)
1 , p

(OC)
2 , µ

(OC)
e ) = (p

(IC)
1 , p

(IC)
2 , µ

(IC)
e )+(0.05, 0.05, 0.125)γ, where

(p
(IC)
1 , p

(IC)
2 , µ

(IC)
e ) = (0.2, 0.4, 2) in Cases I and III, (p

(IC)
1 , p

(IC)
2 , µ

(IC)
e ) = (0.6, 0.8, 4) in Case

II, γ = ±1,±2,±3 or ±4, and the parameter nv does not change;

Evolution changes: (n
(OC)
v , p

(OC)
1 , p

(OC)
2 , µ

(OC)
e ) = (n

(IC)
v , p

(IC)
1 , p

(IC)
2 , µ

(IC)
e )+(2.5, 0.05, 0.05, 0.125)γ,

where n
(IC)
v = 100 in Cases I–III, (p

(IC)
1 , p

(IC)
2 , µ

(IC)
e ) = (0.2, 0.4, 2) in Cases I and III,

(p
(IC)
1 , p

(IC)
2 , µ

(IC)
e ) = (0.6, 0.8, 4) in Case II, and γ = ±1,±2,±3 or ±4.

Network size changes are related to changes in the number of nodes only, communication changes

represent changes in network connectivity and/or communications among nodes, and evolution
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changes happen when the dynamic network system under monitoring grows or shrinks over time.

To make the comparison among different network monitoring methods fair, the control limits of

the competing methods have all been adjusted properly so that their actual ARL0 values equal to

the nominal ARL0 value of 200. In addition, the OC performance of different methods depends

on the selection of their procedure parameters (e.g, the allowance constant k of the SS-MCUSUM

chart (2)). Therefore, the OC performance of different methods may not be comparable when their

procedure parameters are specified in advance (Qiu 2008). To avoid this limitation, Qiu (2008)

suggested comparing the optimal OC performance of different methods by choosing the procedure

parameters of each method such that its OC average run length (denoted as ARL1) reached the

minimum for detecting a given process structural change. This approach to compare the optimal

OC performance of different methods has been adopted here.

In the same setups as those in Table 1, the optimal ARL1 values of the four competing methods

SS-MCUSUM, EWMA-dmax, EWMA-d̄, and EWMA-SN are shown in Figure 4. From the figure, we

can have the following conclusions. (i) For detecting network size changes, SS-MCUSUM outperforms

the methods EWMA-dmax, EWMA-d̄, and EWMA-SN in big margins in all cases considered. (ii)

For detecting communication and evolution changes, the SS-MCUSUM chart outperforms the other

three methods in most cases considered, while its OC performance is close to that of EWMA-SN in

Cases I and III when γ is negative.

Next, we consider Cases IV–VI when the node set of the dynamic network is fixed over time.

In such cases, we would like to compare the OC performance of the network monitoring methods

SS-MCUSUM, PSCAN and CPD-KNN. From the results in Table 3, m0 is fixed at 300 so that

SS-MCUSUM has a reliable IC performance. Because the network size does not change over time in

Cases IV–VI, only the communication changes are considered here. To make the comparison among

different methods fair, their control limits have been adjusted properly so that their actual ARL0

values all equal to the nominal ARL0 value of 200. Other setups are the same as those in Table

3. The optimal ARL1 values of the three methods are shown in Figure 5. From the figure, we can

have the following conclusions. (i) SS-MCUSUM outperforms both PSCAN and CPD-KNN in quite

large margins in all cases considered. (ii) Both PSCAN and CPD-KNN perform poorly in Cases

IV–VI, and thus are insensitive to communication changes.

For detecting changes in community structure, we consider Cases VII–XI when the fixed node

set is assumed to have the two-community structure. In such cases, the OC performance of the

methods SS-MCUSUM and Shewhart are compared. From Table B.2 in the supplementary file, m0
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Figure 4: Optimal ARL1 values of the four charts SS-MCUSUM, EWMA-dmax, EWMA-d̄ and

EWMA-SN when their nominal ARL0 values are fixed at 200, and m0 = 500. Plots in the first row

show the optimal ARL1 values for detecting network size changes, plots in the second row show the

optimal ARL1 values for detecting communication changes, and plots in the third row show the

optimal ARL1 values for detecting evolution changes. In each plot, the y-axis denotes the optimal

ARL1 values in natural log scale.
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detecting communication changes in Cases IV–VI when their nominal ARL0 values are fixed at 200

and m0 = 300. In each plot, the y-axis denotes the optimal ARL1 values in natural log scale.

is fixed at 300 so that SS-MCUSUM has a reliable IC performance. Different community structure

changes considered in this example and the related optimal ARL1 values of the two methods are

presented in Table B.1 in the supplementary file. As in previous examples, the control limits of the

two methods are adjusted properly so that their actual ARL0 values are both 200 in all cases. From

Table B.1, it can be seen that SS-MCUSUM outperforms Shewhart in all cases considered.

4 Case Studies

In this section, we demonstrate the proposed dynamic network monitoring method using three

real-data examples. The first example is about an online community message network in which the

node set could change over time, the second example is about the Enron email network where the

node set does not change during a specific time period, and the third example is about a rating

network of an online Bitcoin trading platform.
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4.1 Message networks of an online community

For an online community at the University of California at Irvine, Panzarasa et al. (2009) provided

a dataset about private messaging communications among community members. In the online

community, members can search for other members and then initiate private messaging conversations

based on the profile information. In this case, an edge of a dynamic network represents a private

message from one member to another member, and members of the online community can join or

leave the community any time. So, the node set can change over time. In this example, we use the

observed data from July 6, 2004 to September 27, 2004. A total of 504 networks are constructed by

aggregating event records in four-hour intervals. So, there are 6 networks every day, starting from

the first one in 00:00-04:00 on July 6, 2004. Among the 504 networks, the 38th and 321st networks

are excluded because their network sizes are much larger than the other networks. So, a total of 502

networks are actually used in this example.

Figure 6 shows the four features {nv,t, dt, nc,t, lt} of the original data. Recall that these features

represent the number of nodes, the average degree of all nodes, the number of connected components,

and the average diameter of all connected components in a network. From the figure, the data

from July 6 to September 10 (i.e., the first 400 observations), which are located on the left side

of the vertical dotted lines in the plots, seem quite stable. Thus, they are used as the initial IC

data. Figure 7 shows the first 42 original observations of the four features (i.e., the observed data

during the first week), where the number attached to each observation denotes the time period

of that observation within a specific day. From the figure, it can be seen that there is a quite

obvious hour-of-day effect. For instance, for the first feature nv,t shown in the top panel of the

figure, its values in the 5th and 6th time periods (i.e., during 16:00-24:00) are always quite large,

and its values in the 2nd time periods (i.e., during 04:00-08:00) are always quite small. To eliminate

the hour-of-day effect, we standardize all observations in the following way. First, for each time

period, the sample mean and sample standard deviation are computed for each feature from the

IC data. Second, for each feature, its observations in a given time period are standardized using

the corresponding sample mean and sample standard deviation of that time period. Then, the

standardized data are shown in Figure 8.

Next, the Durbin-Waston (DW) test is used to check the autocorrelation in the standardized

IC data. The p-values of the DW test for the four features are computed to be 3.341 × 10−21,

2.465×10−3, 8.604×10−17, and 2.538×10−3, respectively, which imply significant autocorrelation in
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Figure 6: Original observations of the four features {nv,t, dt, nc,t, lt} for the 502 networks in the

online community example. The vertical dotted line in each panel separates the IC data from the

data for online process monitoring, and the vertical solid line in each panel indicates the first signal

time of the SS-MCUSUM chart.

the time series of all four features. To check the stationarity of the autocorrelation, the augmented

Dickey-Fuller (ADF) test is used, and its p-values for the four features are all < 0.01, implying that

the stationary assumption is valid for the four features in the IC data. To check the normality

assumption for the IC data, the Shapiro-Wilk (SW) test is used for each feature, and its p-values for

the four features are 1.159×10−8, 2.429×10−18, 1.551×10−6, and 7.482×10−18, respectively. Thus,

the normality assumption is significantly violated for the four features. Based on these results, the

proposed network monitoring method SS-MCUSUM is appropriate to use, since it can accommodate

stationary serial correlation in the observed data and a nonparametric IC data distribution.
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Figure 7: First 42 observations of the four features {nv,t, dt, nc,t, lt} in the online community example.

The number attached to each observation denotes the time period of that observation within a

specific day.

In this example, because the node set changes over time, we consider applying the four network

monitoring methods SS-MCUSUM, EWMA-dmax, EWMA-d̄, and EWMA-SN to the standardized

data for online network monitoring. For the methods EWMA-dmax, EWMA-d̄, and EWMA-SN,

they use the features dmax,t, d̄t, and SNt, respectively. The original observations of these three

features are shown in Figure 9, and their standardized observations after the hour-of-day effect is

excluded are shown in Figure 10. For their standardized IC data, the p-values of the DW test are

1.279× 10−2, 2.465× 10−3, and 5.814× 10−3, implying significant autocorrelation in the IC data.

The Shapiro-Wilk (SW) test for checking the normality assumption gives the p-values < 2.2× 10−16

for the three features, implying that the distributions of their IC data are significantly different

from normal.
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Figure 8: Standardized observations of the four features {nv,t, dt, nc,t, lt} for the 502 networks in

the online community example. The vertical dotted line in each panel separates the IC data from

the data for online process monitoring, and the vertical solid line in each panel indicates the first

signal time of the SS-MCUSUM chart.

For the four methods SS-MCUSUM, EWMA-dmax, EWMA-d̄, and EWMA-SN, their control

limits are computed as in Section 3. The four charts are shown in Figure 11. From the figure, it can

be seen that the charts SS-MCUCUM, EWMA-dmax, EWMA-d̄, and EWMA-SN give their first

signals on September 14, September 17, September 15, and September 15, respectively. So, the

signal by SS-MCUSUM is the earliest among the four methods in this example. To further interpret

structural changes related to the signal given by SS-MCUSUM, we apply a modified local linear

kernel estimator (cf., Brabanter et al. 2011) to obtain estimated mean curves of the standardized

observations of the four network features. The estimated mean curves around the signal time of

SS-MCUSUM are presented in Figure 12. From the figure, it can be seen that the signal is mainly
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Figure 9: Original observations of the features dmax,t, d̄t, and SNt for the 502 networks in the online

community example. The vertical dotted line in each panel separates the IC data from the data for

online process monitoring, and the vertical solid line in each panel indicates the first signal time of

the related control chart.

related to the increase of active community members (i.e., both nv,t and nc,t increase before the

signal time) and the increase of local connected communities (i.e., l̄t increases before the signal

time).

4.2 Email networks of the Enron corporation

The Enron email corpus is a well-known network dataset reflecting communications in a real energy

trading company. The Enron scandal, publicized in October 2001, eventually led to the bankruptcy

of the company on December 21 of the same year. For the 184 Enron employees, the dataset contains

their email communications over a time period from 1998 to 2002. In this example, we use the

observed data from August 21, 2000 to November 24, 2001, with a total of 461 networks obtained by
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Figure 10: Standardized observations of the features dmax,t, d̄t, and SNt for the 502 networks in the

online community example. The vertical dotted line in each panel separates the IC data from the

data for online process monitoring, and the vertical solid line in each panel indicates the first signal

time of the related control chart.

aggregating daily email records during that time period. For the 461 networks, the 275th network

is excluded because it has an extremely large number of edges compared to the other networks,

resulting in a total of 460 networks used in this example.

In this example, the number of nodes did not change in the time period under consideration. So,

we only monitor the three features {dt, nc,t, lt} related to the average degree of all nodes, the number

of connected components, and the average diameter of all connected components in a network.

Figure 13 shows the observed data of these three features. From the figure, it can be seen that the

data on the left-hand-side of the vertical dotted lines in the plots, which correspond to the data

from August 21, 2000 (Monday) to May 27, 2001 (Sunday), are quite stable. Thus, this part of

the observed data is used as the initial IC data. As in the example in Subsection 4.1, there is an

obvious day-of-week pattern in the observed data. After that pattern is deleted, the standardized
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Figure 11: Control charts SS-MCUCUM, EWMA-dmax, EWMA-d̄, and EWMA-SN for monitoring

the dynamic messaging network of the online community at the University of California at Irvine.

The horizontal dashed line in each panel denotes the control limit of the related control chart.

data are shown in Figure 14.

To check the significance of autocorrelation in the standardized IC data, the DW test is used and

its p-values for the three features are 3.823× 10−4, 6.147× 10−7, and 1.355× 10−7, respectively. So,

there is significant autocorrelation in the time series of the three features. In addition, the p-values

of the ADF test for the three features are all < 0.01, implying that the stationary assumption is valid

for the three features in the IC data. The SW test is then used to check the normality assumption in
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Figure 12: Estimated mean curves of the standardized observations of the four features

{nv,t, d̄t, nc,t, l̄t} around the signal time (vertical solid line in each plot) of SS-MCUSUM in the

online community example.

the standardized IC data for each feature, and its p-values for the three features are 3.632× 10−11,

0.012, and 0.014, respectively. Thus, the normality assumption is significantly violated for the

three features in this example, and the multivariate nonparametric chart SS-MCUSUM should be

appropriate to use here.

We then apply the three monitoring methods SS-MCUSUM, PSCAN and CPD-KNN to this

dataset to monitor the networks starting from May 28, 2001 (i.e., the first observation after

the vertical dotted lines in Figure 14). To use the method CPD-KNN, the similarity measure

between two networks cannot be calculated if there are no edges in either network. In such

cases, the network with no edges is always merged into the next network with edges in order

to use that method properly. The control limits of the three charts are computed as in Section

3. Then, the three charts are shown in Figure 15. From the figure, it can be seen that SS-

MCUSUM, PSCAN, and CPD-KNN give their first signals on June 5, 2001, August 24, 2001,
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Figure 13: Original observations of the three features {dt, nc,t, lt} for the 460 networks in the Enron

email example. The vertical dotted line in each panel separates the IC data from the data for online

process monitoring, and the vertical solid line in each panel indicates the first signal time of the

SS-MCUSUM chart.

and June 13, 2001, respectively. So, the SS-MCUSUM chart gives the earliest first signal among

all three methods in this example. As in the previous example, we use a modified local linear

kernel smoothing procedure to obtain estimated mean curves of the standardized observations

of the three features. The estimated mean curves around the signal time of SS-MCUCUM are

presented in Figure 16. From the figure, it can be seen that the signal is related to decreasing

email communications (i.e., d̄t decreases and nc,t increases before the signal time) and decreasing

local connected communities (i.e., l̄t decreases before the signal time) among Enron employees.

From the Enron Timeline (https://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html),

the Federal Energy Regulatory Commission finally instituted price caps across the western states,

and the California energy crisis ended in June 2021, which might be related to the reduced email

communications among Enron employees.
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Figure 14: Standardized observations of the three features {dt, nc,t, lt} for the 460 networks in the

Enron email example. The vertical dotted line in each panel separates the IC data from the data

for online process monitoring, and the vertical solid line in each panel indicates the first signal time

of the SS-MCUSUM chart.

4.3 Rating network of an online trading platform

Bitcoin Alpha is an online trading platform where users can trade Bitcoin with others. Because

Bitcoin users are anonymous, users of the platform often rate other users during or after transactions.

In this example, an edge of a dynamic network represents a rating action from one user to another,

and we use the observed data from April 10, 2012 to April 25, 2013. For the 1,618 users, a total of

381 networks are constructed by aggregating daily rating records during that time period. For the

381 networks, the 42nd, 44th, 168th, and 183rd networks are removed because they have extremely

large numbers of edges compared to other networks, resulting in a total of 377 networks used in our

analysis.

In this example, the number of nodes is fixed during the time period considered. So, the three

features {d̄t, nc,t, l̄t} are monitored. After the day-of-week pattern is removed as in the previous two

examples, the standardized values of the three features are shown in Figure 17. From the figure, the
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Figure 15: Control charts SS-MCUCUM, PSCAN and CPD-KNN for monitoring the email networks

of Enron employees. The horizontal dashed line in each panel denotes the control limit of the related

control chart.

data from April 10, 2012 to February 7, 2013 (i.e., the first 300 observations located on the left

side of the vertical dotted lines) are quite stable. So, they are used as the initial IC data. As in

the previous two examples, the DW, ADF and SW tests confirm that the initial IC data contain

significant stationary autocorrelation and the normality assumption would be violated. Thus, the

multivariate nonparametric chart SS-MCUSUM should be appropriate to use in this example.

We then apply the three monitoring methods SS-MCUSUM, PSCAN and CPD-KNN to this

dataset to monitor the networks starting from February 8, 2013 (i.e., the first observation after

the vertical dotted lines in Figure 17). The control limits of the three charts are computed as

in Section 3. Plots of the three charts are shown in Figure 18. From the figure, it can be seen

that SS-MCUSUM and PSCAN give their first signals on February 20, 2013 and March 25, 2013,

respectively, and no signal is given by CPD-KNN. The SS-MCUSUM chart thus gives the earliest

first signal among all three methods in this example. As in the previous example, a modified local

linear kernel smoothing procedure is used to estimate mean curves of the standardized data, and

the estimated mean curves around the signal time of SS-MCUSUM are shown in Figure 19. From

the figure, it can be seen that the signal is related to the increasing rating actions (i.e., d̄t increases

and nc,t decreases before the signal time) and the increasing local connected communities (i.e., l̄t

increases around the signal time). In February 2013, the Bitcoin-based payment processor Coinbase
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Figure 16: Estimated mean curves of the standardized observations of the three features {d̄t, nc,t, l̄t}

around the signal time of SS-MCUCUM in the Enron email example. The vertical solid line in each

plot indicates the first signal time given by the SS-MCUSUM chart.

reported selling $1 million worth of Bitcoins in a single month, and the American digital library

(The Internet Archive) announced that it was ready to accept donations as Bitcoins and that it

intended to give employees the option to receive portions of their salaries in Bitcoin. These events

might stimulate transactions on Bitcoin Alpha, and increasing the rating actions on the platform.

5 Concluding Remarks

We have described a general framework for online monitoring of dynamic networks. By the

proposed network monitoring approach, four network features are first extracted from each observed

network, which represent the number of nodes, the average degree of all nodes, the number of

connected components, and the average diameter of all connected components in a network. Then,

a multivariate nonparametric control chart is applied to the extracted features for detecting network

structural changes. This method is flexible in the sense that it can accommodate nonparametric

data distribution and serial data correlation, and sensitive to various network structural changes.

Both simulation studies and real network data examples show that the proposed method provides

a reliable and effective tool for dynamic network monitoring. However, the current version of the

proposed method still has several limitations. First, the number of connected components and
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Figure 17: Standardized observations of the three features {dt, nc,t, lt} for the 377 networks in the

Bitcoin Alpha example. The vertical dotted line in each panel separates the IC data from the data

for online process monitoring, and the vertical solid line in each panel indicates the first signal time

of the SS-MCUSUM chart.

the average diameter of all connected components are chosen by considering the network structure

of connected components only. They can be quite stable when the observed networks are highly

connected (e.g., each network has only one connected component). In such cases, these two features

may not be very sensitive to network structural changes. There are two possible ways to overcome

this limitation. One is to construct sparser networks by aggregating event records within smaller

time intervals, and the other is to use a weighted average diameter of all connected components in a

network as an alternative feature. Second, some specific network changes (e.g., membership changes

in the example discussed in Subsection 4.1) can be missed by considering undirected networks

with no attributes. As a future research topic, the proposed method might be generalized to

handle dynamic networks with attributes and directed edges (Savage et al. 2014). Third, intrinsic
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Figure 18: Control charts of SS-MCUCUM, PSCAN and CPD-KNN for monitoring the rating

networks of users on Bitcoin Alpha. The horizontal dashed line in each panel denotes the control

limit of the related control chart.

hierarchical structure is common in a network system. To monitor such dynamic network sequences,

the monitoring method should make use of the intrinsic hierarchical structure in order to detect

changes in the hierarchical structure effectively, which has not been discussed in this paper. Last

but not the least, after a structure change is detected by the proposed monitoring procedure, a

post-signal network analysis should be performed to figure out when and where the detected change

occurs in the dynamic network system. All these topics require much future research effort.
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