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Abstract

In nonparametric regression with jump discontinuities, one major challenge is to
determine the number of jumps in a regression curve. Most existing methods to solve
that problem are based on either a sequence of hypothesis tests or model selection, by
introducing some extra tuning parameters that may not be easy to determine in prac-
tice. This paper aims to develop a data-driven new methodology for determining the
number of jumps, using an order-preserved sample-splitting strategy together with
a cross-validation-based criterion. Statistical consistency of the determined number
of jumps by our proposed method is established. More interestingly, the proposed
method allows us to move beyond just point estimation, and it can quantify uncer-
tainty of the proposed estimate. The key idea behind our method is the construction
of a series of statistics with marginal symmetry property and this property can be
used for choosing a data-driven threshold to control the false discovery rate of our
method. The proposed method is computationally efficient. Numerical experiments
indicate that it has a reliable performance in finite-sample cases. A R package jra is
developed to implement the proposed method.

Keywords: Cross-validation; False discovery rate; Jump discontinuity; Local linear smooth-
ing; Nonparametric regression; Uniform convergence.
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1 Introduction

Nonparametric regression analysis when the underlying regression curve has jumps, or

simply one-dimensional (1-D) jump regression analysis (JRA), has received much attention

in the literature because of its broad applications in internet traffic management, disease

surveillance, environment monitoring, meteorology, and more. Conventional smoothing

techniques for estimating continuous regression curves (Fan and Gijbels, 1996) cannot work

well for 1-D JRA because the jump structure, which is often important for a specific

application, would be blurred by them. For a comprehensive overview on 1-D JRA, see

Chapter 3 in Qiu (2005). In general, 1-D JRA has two major goals. One is to estimate the

jump part of the true regression curve, including the number, locations and magnitudes

of jumps, and the other is to estimate the entire regression curve with the possible jumps

preserved. These two problems are often referred to as jump detection and jump-preserving

curve estimation, respectively. This paper focuses on jump detection.

Consider the following nonparametric regression model:

Yi = f(ti) + εi, i = 1, . . . , n, (1)

where t1 < · · · < tn are fixed design points in the interval [0, 1], εi’s are independent and

identically distributed (i.i.d.) random errors with mean zero and variance σ2, and f(t) is

the regression function. In this paper, f(t) is assumed to have the following structure:

f(t) = fC(t) +
J∗∑
j=1

δ∗j I{t≥t∗j}, (2)

where fC(t) is the continuity part of f(t), and
∑J∗

j=1 δ
∗
j I{t≥t∗j} is the jump part with the jump

locations 0 < t∗1 < · · · < t∗J∗ < 1, the jump magnitudes {δ∗j}, and the number of jumps J∗.
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In (2), all quantities are unknown and need to be estimated from the observations {Yi}.

For jump detection, most existing approaches start with a diagnostic statistic computed

from observations in a local neighborhood of a given point, such as the difference between

a right- and a left-sided local weighted average. Then, a large value of the diagnostic

statistic would indicate a potential jump near the given point. Some examples of existing

methods based on that idea can be found in Müller (1992), Loader (1996), Gijbels et al.

(1999), Delgado and Hidalgo (2000) and Grégoire and Hamrouni (2002). In jump detec-

tion, determination of the number of jumps naturally plays a key role. In the literature,

several methods have been proposed for that purpose. These existing methods estimate

the number of jumps by either performing a sequence of hypothesis tests for existence of

jumps at individual design points, or introducing a thresholding rule for determining the

jump locations (Qiu, 1994; Wu and Chu, 1993a). Such methods are often difficult to use

in practice since the convergence rates of the related test statistics are rather slow and/or

some nuisance parameters need to be selected in advance. Recently, Xia and Qiu (2015)

proposed a jump information criterion (JIC) from a model selection perspective. Specifi-

cally, the JIC consists of two terms: one measures the goodness-of-fit of a potential model

estimate and the other penalizes for model complexity. Unlike the conventional Bayesian

information criterion (BIC, Schwarz (1978)) in the model selection context, the penalty

term in JIC incorporates the information about the jump part of f(t) (cf., (2)). However,

JIC involves tuning parameters that need to be specified in advance, and their optimal

values may depend on the underlying model. Thus, there are no guidelines about their

selection that are universally appropriate.
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In this paper, we suggest a new method for estimating the number of jumps. Its novelty

lies behind the fact that it is data-driven and no tuning parameters except a bandwidth are

involved in the estimation. Guidelines on how to choose the bandwidth in a data-driven

way are provided. Thus, it can be used in applications conveniently. The new method

is based on the Order-Preserved Splitting (OPS) strategy that was proposed recently by

Zou et al. (2020). By OPS, all observations are divided into two parts: one consists of

observations at odd-indexed design points and the other consists of observations at even-

indexed design points. Thus, the two parts have almost the same number of observations,

and each part should contain information about the original jump structure of the regression

model (1). Then, the number of jumps can be estimated by using a cross-validation (CV)

criterion, in which the jump part of f(t) is first estimated from one part of the observed

data and then the estimate is validated using the other part. Under some mild conditions,

it can be verified that the estimated number of jumps is statistically consistent. Numerical

experiments will show that the proposed method has a reliable performance in a variety of

simulated and real-data examples. As far as we know, the only related work is Müller and

Stadtmüller (1999) which proposed to minimize a cross-validated residual sum of squares

with respect to the number of jumps. However, they did not provide any theoretical results

on the estimated number of jumps.

The JIC and CV methods discussed above focus mainly on consistent point estimation

of the number of jumps J∗. They cannot avoid under- or over-estimation in finite sample

cases. To overcome that limitation, we try to make another contribution in this paper

by proposing an estimation procedure with the false discovery rate (FDR; Benjamini and
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Hochberg (1995)) controlled properly. As mentioned earlier about the existing methods,

to achieve consistent estimation of the number of jumps, they often impose some stringent

conditions on the minimum jump magnitude so that the largest J∗ local maximizers of

their jump detection criteria can be computed for estimating the J∗ true jump points.

In many applications, a slightly conservative estimation of the number of jumps (i.e., the

estimate of J∗ is a bit larger than J∗) is often preferred because we do not want to miss any

important jumps. In such cases, measures like FDR can help us quantify the uncertainty

in the estimated jumps. However, it is not an easy task to control FDR when estimating

the jump points, because this is equivalent to conducting a test using a statistic with

complicated null distribution. To overcome this difficulty, we develop a simple but effective

procedure that avoids using any asymptotic distributions while controlling FDR. With the

help of OPS, our proposed method entails finding a series of statistics with the marginal

symmetry property, by which the empirical distribution of the negative statistics can be

used for approximating that of the positive ones. The new method is computationally

efficient, and its ability in controlling FDR has an intuitive explanation. This FDR control

procedure is data-driven, and only a bandwidth involved needs to be chosen. To specify

the bandwidth properly, some practical guidelines are provided. Thus, the proposed FDR

control procedure is convenient for practical use.

The remainder of this paper is organized as follows. In Section 2, we present our

proposed method for estimating the number of jumps using the CV criterion. Section 3

describes our proposed procedure to determine a final set of the detected jump points with

FDR properly controlled. Section 4 provides some details on their implementation, includ-
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ing guidelines on how to select the bandwidth involved in both procedures. A number

of simulated and real-data examples are presented in Section 5 regarding the numerical

performance of the proposed methods. Finally, some remarks conclude the paper in Sec-

tion 6. Proofs of theoretical results and some additional numerical examples are given in

Supplementary Material.

2 Consistent estimation of the number of jumps

2.1 Proposed method

We suggest a data-driven method to estimate the number of jumps J∗. First, by applying

the OPS strategy (Zou et al., 2020), all observed data are divided into two parts according

to the parity of their time indices, being either odd (O) or even (E),

ZO := {(Y O
k , t

O
k ) : Y O

k = Y2k−1, t
O
k = t2k−1, k = 1, . . . ,m},

ZE := {(Y E
k , t

E
k ) : Y E

k = Y2k, t
E
k = t2k, k = 1, . . . ,m},

where for simplicity it has been assumed that the sample size n = 2m is even. Then, one of

these two parts is used as a training dataset for estimating the jump part of f(t), and the

other is for validation. Compared to the random sampling scheme to divide the observed

data into two parts, this OPS strategy can preserve the underlying jump structure as much

as possible in both ZO and ZE.

Without loss of generality, let us use ZO as the training dataset for jump detection, and

ZE for validation. To detect jumps using ZO, we choose a local smoothing method similar

to some existing methods introduced in Section 1. To be more specific, the local linear
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kernel (LLK) estimation (Grégoire and Hamrouni, 2002; Loader, 1996; Xia and Qiu, 2015)

will be adopted, because of its good properties of design adaptation and small boundary

biases (Fan and Gijbels, 1996). Let K(·) be a kernel function with the support [0, 1] and

h > 0 be a bandwidth. Then, for a candidate jump location t ∈ [h, 1−h], the corresponding

jump magnitude can be estimated by the difference between a right- and a left-sided LLK

estimate of f(t) based on ZO, namely,

δ̂O(t) = Ŷ O
+ (t)− Ŷ O

− (t), (3)

where

Ŷ O
+ (t) =

∑m
k=1w

O
k (t;K+)Y O

k∑m
k=1 w

O
k (t;K+)

,

wOk (t;K+) =
{
sO2 (t;K+)− sO1 (t;K+) (tOk − t)

}
K+

(
tOk − t
h

)
,

sOr (t;K+) =
m∑
k=1

(tOk − t)rK+

(
tOk − t
h

)
, r = 0, 1, 2,

K+(u) = K(u)I{u∈[0,1]}, and Ŷ O
− (t) is defined in the same way as Ŷ O

+ (t) except that all

subscripts “+” should be replaced by “−” and that K−(u) = K(−u)I{u∈[−1,0)} needs to

be used. Intuitively, if t is close to a true jump point, then |δ̂O(t)| would be relatively

large. Consequently, the maximizer of |δ̂O(t)| over t ∈ [h, 1−h] can be used as the estimate

of the most “significant” jump location, denoted as t̂O1 . For practical implementation, we

introduce the searching grid G = {ti, i = 1, . . . , n}∩[h, 1−h]. Then, t̂O1 = arg maxt∈G|δ̂O(t)|.

Estimates of subsequent possible jumps can be found by

t̂Oj = arg max
t∈G\∪j−1

k=1[t̂Ok −κh,t̂
O
k +κh]

|δ̂O(t)|, j = 2, 3, . . . , (4)

where κ > 0 is a constant that is set to be 1 in our numerical analysis. Obviously, the

procedure (4) is essentially a “forward” searching procedure, and similar to the binary
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segmentation algorithm in the change-point literature (Hawkins, 2001), while in each re-

cursive step small neighborhoods of previously detected jumps have been removed to avoid

false jump detection. It should be pointed out that the true jump points are estimated

by discrete design points in (4) because the observed data cannot accurately specify a

jump location between two consecutive design points, which is routinely done in the JRA

literature (Loader, 1996).

In the above jump detection algorithm, the searching procedure (4) would be terminated

with say J̃O (J̃O ≤ d1/(κh)e) estimated jumps by its definition or could be intentionally

interrupted up to some pre-specified value for the number of candidate jumps say J̄ . Here

dxe represents the smallest integer not less than x. As a result, the number of the final

detected jumps is J̄O := min{J̄ , J̃O}. To avoid missing any important jumps in the regres-

sion model, J̄ should be chosen large intentionally, namely, J̄ ≥ J∗. In practice, J∗ should

be much less than 1/(κh), for a reasonably small bandwidth h. Thus, we can safely set

J̄ = d1/(κh)e in a specific application problem.

However, in such cases, some of the detected jumps could be false jumps and they

need to be screened out. To this end, the test dataset ZE can be used to validate the

estimates. Let δ̂E(t) = Ŷ E
+ (t) − Ŷ E

− (t), where Ŷ E
+ (t) and Ŷ E

− (t) are defined in the same

way as Ŷ O
+ (t) and Ŷ O

− (t), except that all superscripts “O” in their definitions need to be

replaced by “E”. For 1 ≤ J ≤ J̄O, let δ̃O(t̂Oj ) = δ̂O(t̂Oj ), for j = 1, . . . , J , and δ̃O(t̂Oj ) = 0,

for j = J + 1, . . . , J̄O. Then, {δ̃O(t̂Oj )}J̄Oj=1 represents our estimation of the jump part of

f(t) from the training dataset when the number of jumps is set to be J . To check whether

our estimated jump part from the training dataset is reasonable, we can compare it with
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{δ̂E(t̂Oj )}J̄Oj=1 which is computed from the test dataset, by considering

C(J ;ZO,ZE) =

J̄O∑
j=1

{
δ̂E(t̂Oj )− δ̃O(t̂Oj )

}2

=
J∑
j=1

{
δ̂E(t̂Oj )− δ̂O(t̂Oj )

}2

+

J̄O∑
j=J+1

{
δ̂E(t̂Oj )

}2

. (5)

Intuitively, if for each j = 1, . . . , J∗, t̂Oj is closely located around t∗kj for some kj ∈

{1, . . . , J∗}, then both δ̂O(t̂Oj ) and δ̂E(t̂Oj ) would approximate δ∗kj well. Our procedure could

then pick all J∗ jumps out in the first J∗ steps if two successive jumps is not too close.

Consequently, when J < J∗, the second term in (5) could be relatively large, compared to

the first term, which helps prevent underfitting (if the last J∗ − J jump magnitudes are

not very small). When J > J∗, both terms would be small. But, according to the proof

of Theorem 1, it turns out that δ̂O(t̂Oj ) − δ∗kj would be of higher order than δ̂E(t̂Oj ) − δ∗kj

asymptotically, where we set δ∗kj = 0 for j > J∗. This can be explained by the fact that

the former is a local maximization-induced statistic that has a lower bound of the order√
log n/(nh) (cf., Lemma ?? in Supplementary Material) which is larger than the upper

bound with the order
√

1/(nh) of the latter term. Hence the first term in (5) would

dominate the second term, and it can help avoid overfitting. In conclusion, C(J ;ZO,ZE)

is a reasonable criterion for determining the number of jumps J∗.

In practice, we can also define C(J ;ZE,ZO) in a similar way as that for C(J ;ZO,ZE),

by switching the positions of ZO and ZE. Thus, our cross-validated estimate of J∗ is defined

to be

Ĵ∗ = arg min1≤J≤Jc{C(J ;ZO,ZE) + C(J ;ZE,ZO)}, (6)

where Jc = min{J̄O, J̄E} and J̄E is the largest number of candidate jumps when applying
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the searching procedure on ZE. This is in fact a specialized two-fold CV metric, where the

data is split into two folds with each fold preserving the original jump structure as much as

possible. The CV strategy is preferred here, because it can reduce variance of the resulting

estimate as verified by our simulation studies. After J∗ is estimated, the jump locations

can then be estimated by applying the jump detection algorithm (4) to the entire dataset

(i.e., {(Yi, ti), i = 1, . . . , n}) using the knowledge that the number of jumps is Ĵ∗. Note

that our procedure does not require the knowledge of the variance σ2 or its estimate.

As a comparison, the JIC method proposed by Xia and Qiu (2015) estimates J∗ via

minimizing

JIC(J) = n log

[
n−1

n∑
i=1

{
Yi − f̂(ti; J)

}2
]

+ Pn

J∑
j=1

|δ̂(t̂j)|−ν ,

where the estimated jump locations t̂1, . . . , t̂J are obtained as in (4) but from the entire

dataset {(Yi, ti), i = 1, . . . , n}, f̂(t; J) is a LLK estimate of the underlying regression curve

f(t) based on the assumption that there are J jumps in f(t), and δ̂(t) is the estimated

jump magnitude at t obtained as in (3) but from the entire dataset. In the above JIC

criterion, Pn is an adjustment factor for the penalty term
∑J

j=1 |δ̂(t̂j)|−ν and ν ≥ 0 is a

tuning parameter. It has been shown that Pn plays an important role in balancing the

under- and over-estimation. Based on some study on its asymptotic properties, Xia and

Qiu (2015) suggested choosing Pn to be a quantity in the order of (nh/ log n)−ν/2nh. For

practical applications, one may set Pn = C(nh/ log n)−ν/2nh for some constant C > 0

and an appropriate value of ν. However, simulation studies reveal that the optimal values

of C and ν may vary from the underlying jump structure such as the number, locations

and/or magnitudes of jumps. Consequently, there are no universal guidelines to specify it
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before use. In our criterion (5), the first term plays a similar role to that of the second

term in JIC(J). Both of them are used to avoid overestimation. As opposed to the JIC

method, our CV-based objective function in (6) is data-driven and no nuisance parameters

(except for a bandwidth) need to be selected in advance. Therefore, it is more convenient

to use the proposed method in practice. This data-driven feature benefits from the use of

sample-splitting and thus certain efficiency loss would be incurred in the exchange for the

robustness in finite sample scenarios.

2.2 Theoretical justifications

Our proposed method for estimating the true number of jumps will be called Cross-

validation with Order-Preserved Splitting (COPS) method in the remaining part of the

paper. Its statistical consistency is established in Theorem 1.

Theorem 1. Under Assumptions ??–?? in Section ?? of Supplementary Material, the

COPS estimate is consistent in the sense that Pr(Ĵ∗ = J∗)→ 1, as n→∞.

A technical discussion on the assumptions is deferred to Section ?? of Supplementary

Material. Zou et al. (2020) showed that the CV-based procedure can achieve selection

consistency under a class of parametric models and conjectured that this should also be

valid for nonparametric regression models. Theorem 1 confirms this conjecture.
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3 Jump detection with FDR under control

It has been shown above that the estimated number of jumps is consistent under some con-

ditions. In fact, it can be further verified that the first J∗ detected jump points t̂O1 , . . . , t̂
O
J∗

would each lie in a neighborhood of a true jump location t∗j . In finite-sample cases, how-

ever, this property typically does not hold. Intuitively, if some δ∗j ’s are small, then they are

very likely to be missed in the first J∗ steps of the recursive jump detection algorithm but

could be recovered in later steps. In such cases, the “entire solution path” {t̂O1 , . . . , t̂OJ }
J̄O
J=1

would be overfitting, and {t̂O1 , . . . , t̂OJ }J
∗
J=1 would not be a correct estimate. Accordingly,

because one is often reluctant to miss any important jumps, we usually prefer an overfitting

estimate with the number (or rate) of falsely identified jump points under control.

Here, we consider using the false discovery rate (FDR) which is a particularly useful

tool to maintain the ability to reliably detect true signals without excessive false positive

results (Benjamini and Hochberg, 1995). In the context of change-point detection, some

related works on error rate control include Siegmund et al. (2011), Hao et al. (2013), Frick

et al. (2014) and Li et al. (2016). To our best knowledge, there is no existing study on

using FDR to determine the number of jumps in the nonparametric regression literature.

3.1 Definition of false discoveries

Before proceeding, it is necessary to discuss the definition of false discoveries. Let T =

(τ1, . . . , τJ̄) be a candidate jump set, for example, T = (t̂O1 , . . . , t̂
O
J̄O

) obtained in Section 2.

A selection procedure is then applied to T to determine which elements are “true” jumps.

For a given element τk, even τk 6= t∗j , for any j = 1, . . . , J∗, it can still be a good estimate if it
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is close to one of t∗j ’s. Hence, we will use the concepts of “informative” and “uninformative”

points to classify the points in T , analogous to the “alternative” and “null” hypotheses in

the context of multiple testing. It seems reasonable to define τk to be an informative point

if

min
1≤j≤J∗

|τk − t∗j | ≤ ω,

where ω is a user-specified threshold, for example, ω = h. This notion provides immediate

control over location accuracy and has been used in the literature of change-point analysis

(Hao et al., 2013). But, it is inappropriate in the situation of overfitting that we are mainly

concerned about. Imagining that there are more than one τk’s close to a true change-point

(their distances are all less than ω), all of them will be viewed as informative points. Also,

choosing ω is somewhat subjective, which we always want to avoid.

To overcome the limitation mentioned above, we adopt the definition given by Li et al.

(2016): τk is classified as an informative point if there is a true jump point lying in

[
(τk−1 + τk)/2, (τk + τk+1)/2

)
, (7)

where τ0 = 0 and τJ̄+1 = 1; otherwise, it is an uninformative point. We denote by I0 and I1

the uninformative and informative sets, respectively. This notion is well defined since every

candidate jump point is either informative or uninformative, but not both, and there is at

most one informative point corresponding to each true jump point. The Eq. (7) is a weak

definition of informative point in the sense that it neglects the location accuracy of τk’s,

but it is suitable for our current research problem which primarily focuses on determination

of the number of jumps rather than estimating the locations.

Consider a procedure to select a subset of detected jumps from T , and the selected
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subset is denoted as S = (τk1 , . . . , τk|S|). A false discovery is made by S if τk ∈ I0 ∩ S.

Then, the FDP associated with S is defined to be

FDP(S) =
#{k : τk ∈ I0 ∩ S}

|S| ∨ 1
,

and the FDR is accordingly defined as the expectation of FDP(S).

3.2 Method construction

Let T = (t̂O1 , . . . , t̂
O
J̄

). The “likelihood” of t̂Ok being a jump point can be measured by

Wk = nhδ̂O(t̂Ok )δ̂E(t̂Ok ), k = 1, . . . , J̄ .

Clearly, Wk is likely to be large for most informative points regardless of the signs of jumps,

and small for most uninformative points. Note that Wk is (asymptotically) symmetric with

mean zero for any t̂Ok ∈ I0 due to the asymptotic normality of δ̂E(t̂Ok ) by the central limit

theorem and the independence between ZO and ZE. Thus, we can choose a threshold L > 0

by setting

L = inf

{
s > 0 :

1 + #{k : Wk ≤ −s}
#{k : Wk ≥ s} ∨ 1

≤ α

}
, (8)

and identify t̂Ok as an informative point if Wk ≥ L, where α is the target FDR level. If the

set on the right-hand-side of (8) is empty, then we simply set L = +∞. The selected set

of informative jumps is denoted as S(L).

Note that the set {k : Wk ≤ −s, t̂Ok ∈ I1} is often very small when the jump magnitudes

are not too small. Thus, #{k : Wk ≤ −s} is a good approximation to #{k : Wk ≤ −s, t̂Ok ∈

I0} which is a good approximation to #{k : Wk ≥ s, t̂Ok ∈ I0} due to the marginal symmetry
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of Wk for t̂Ok ∈ I0. This implies that the fraction in (8) should be a good estimate of the

proportion of false discoveries. Since we use the empirical distribution of the negative

statistics to approximate that of the positive ones, we call our method Symmetry-based

OPS (SOPS) selection procedure. Benefiting from the joint use of Wk and L, the SOPS

procedure is data-driven and its implementation does not depend on any asymptotic or

simulated distributions for procedure calibration.

The definition of L in (8) is similar to that in the knockoff framework introduced by

Barber and Candès (2015) for parametric regression modeling. The knockoff procedure

operates by constructing copies of each of the covariates with certain knowledge of the

covariates or responses. However, in the current problems, such copies are not directly

available. Instead, our sample-splitting strategy, in conjunction with the proposed statistic

Wk, fulfills our goal to control FDR.

3.3 Theoretical justifications

Assumption 1 (Strong signals). The jump magnitudes {δ∗j} satisfy the conditions that

max1≤j≤J∗ |δ∗j | = O(1) and, as n → ∞, βn → ∞, where βn = |Mδ| and Mδ = {1 ≤ j ≤

J∗ :
(
|δ∗j |/σ

) /√
log n/(nh)→∞}.

Theorem 2. Under Assumptions ??–?? in Section ?? of Supplementary Material and the

condition that J̄(log n)3/2/
√
nh→ 0 as n→∞, we have lim supn→∞ FDR(L) ≤ α, if either

of the following two conditions holds:

(i) With probability tending to one, Wk’s are independent of each other for t̂Ok ∈ I0;

(ii) Assumption 1 holds.
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Theorem 2 implies that the SOPS jump selection procedure can control the FDR level

asymptotically under some mild conditions. In this theorem, J̄ is allowed to increase with

n (so is J∗), as long as J̄(log n)3/2/
√
nh → 0. In cases when Wk’s are independent (e.g.,

when κ > 2 in (4)), we do not need any other conditions on the jump magnitudes, such

as Assumption ?? (see Section ?? of Supplementary Material) required in Theorem 1. In

more general cases when Wk’s are correlated, Assumption 1 is needed, which implies that

the number of jumps with identifiable jump magnitudes is not too small as n → ∞. As

opposed to Assumption ??, here we allow a certain amount of jumps that are small and may

not be distinguishable from random noise. In such situations, some uninformative points

would be included in T before some informative ones, and consequently some existing

methods, such as the JIC and COPS, would produce “inconsistent” jump detection results.

In contrast, the SOPS method, which usually yields overestimation, can guarantee that the

rate of uninformative points included in S(L) is under control. If in addition Assumption

?? holds, the SOPS method is capable of selecting all informative points in the sense that

limn→∞ Pr {S(L) ⊇ I1} = 1 (see Section ?? of Supplementary Material).

4 Implementation

4.1 Computation

Both the proposed COPS and SOPS methods rely on evaluations of the LLK estimates at

the grid set G, which would require O(n2h) operations for a naive implementation. This

can be improved to O(n) operations by using for example the updating strategy discussed
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in Fan and Marron (1994), although we will not pursue it here. Then, finding all candidate

jumps could be achieved by an efficient sorting algorithm with the computing complexity of

O(n log n). In the model selection stage to determine the number of jumps, both methods

only need to do a few additional evaluations with the computing complexity of at most

O(h−1×nh) = O(n) about the LLK estimates computed from the validation dataset at the

selected jumps. Hence, both COPS and SOPS methods require at most O(n2h) operations

in total.

4.2 Guidelines on bandwidth selection

Bandwidth selection plays a key role in JRA, and different choices for the bandwidth often

lead to different conclusions. If the goal is to accurately recover the underlying regression

function, Wu and Chu (1993b) proposed selecting the bandwidth by minimizing a cross-

validated residual sum of squares in all subintervals segmented by the detected jumps,

and Spokoiny (1998) suggested a pointwise adaptive strategy that searched for a maximal

bandwidth for fitting the regression function. If the target is for jump detection, then a

small value of the bandwidth should be used as it could capture the data structure around

the jumps, although the selected bandwidth should not be too small to avoid artificial peaks

in the related jump detection criterion. Gijbels and Goderniaux (2004) proposed selecting

the bandwidth by maximizing the probability of accurately localizing a jump via bootstrap.

However, the bootstrap approximation is not computationally efficient even in cases with

just one jump, because the procedure requires first refitting the regression model based on

the detected jump with the bandwidth selected by a CV method and then generating the
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bootstrap replications for obtaining a sequence of bootstrap estimates of the jumps.

In this paper, we provide some guidelines on selecting a globally effective bandwidth

for both of the proposed procedures COPS and SOPS. These guidelines are data-driven,

except that a sequence of candidate values for the bandwidth, denoted as H, needs to be

specified in advance. To be more specific, let H = {h = hmaxa
j : h ≥ hmin, j = 0, 1, 2, . . .},

where 0 < hmin < hmax are the minimum and maximum candidate values and 0 < a < 1

is a constant. Then, for selecting a global bandwidth for the COPS procedure, we suggest

using a three-fold OPS strategy described below. Let

Z(s) := {(Y (s)
k , t

(s)
k ) : Y

(s)
k = YIsk , t

(s)
k = tIsk , k = 1, . . . ,m}, s = 1, 2, 3,

where I1k ∈ {3k − 2, 3k − 1, 3k}, I2k ∈ {3k − 2, 3k − 1, 3k}\I1k and I3k ∈ {3k − 2, 3k −

1, 3k}\{I1k ∪ I2k}, for k = 1, . . . ,m. Without loss of generality, assume that n = 3m.

Then, Z(1) will be used to estimate the jump part of the regression function, and Z(2) will

be used to select the number of jumps, similarly to the roles played by ZO and ZE in the

original COPS procedure. The remaining dataset Z(3) will be used for bandwidth selection.

To proceed, for a specific candidate value h ∈ H, a sequence of jumps can be determined

by applying the COPS to Z(1) and Z(2). Then, we can obtain an estimate of the underlying

regression function based on Z(1), denoted as f̂ (12)(t). This estimate can be used to predict

the response values at t
(3)
k ’s in Z(3). By comparing these predicted responses with Y

(3)
k ’s, we

can define the residual sum of squares RSS(h) =
∑m

k=1

{
Y

(3)
k − f̂ (12)(t

(3)
k )
}2

. A bandwidth

that minimizes RSS(h) should be good for estimating the regression function. This strategy

has certain similarity to the leave-one-out CV method used for bandwidth selection in Wu

and Chu (1993b), although the OPS strategy is used here. Asymptotically speaking, the
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estimated number of jumps based on Z(1) and Z(2) should still be consistent for any given

bandwidth that meets the assumptions in Theorem 1. But, it is still an open problem

whether the bandwidth that minimizes RSS(h) defined above can keep the consistency.

This theoretical issue will be studied in our future research.

For practical purposes, in order to improve the stability of bandwidth selection and

reduce the power loss due to sample-splitting, we suggest a multiple-splitting strategy by

randomizing the construction of Isk, for s = 1, 2, 3. More specifically, let us randomly

select three consecutive observations without replacement from the original observed data

{(Yi, ti), i = 1, 2, . . . , n}, and randomly assign one and only one of them to each of Z(1), Z(2)

and Z(3). This random-selection process continues until each of Z(1), Z(2) and Z(3) has m

observations, and one random sample-splitting is then completed. Assume that a total of U

random sample-splittings have been completed. Then, we can obtain U sets of residual sum

of squares, denoted as {RSSu(h), h ∈ H}, for u = 1, . . . , U , each of which is computed from

one randomly splitted samples. Let ĥu = arg minh∈HRSSu(h), for u = 1, . . . , U . Then, we

select h to be ĥ = maxu=1,...,U ĥu, which returns the most parsimonious model.

For the SOPS procedures, we suggest first applying the bandwidth selection method for

the COPS procedure to the observed data, and then using the selected bandwidth value

for the original SOPS procedure. Our simulation studies show that the performance of the

proposed bandwidth-adaptive COPS and SOPS procedures is satisfactory, and not sensitive

to the specification of (hmin, hmax, a). In practice, we recommend using (hmin, hmax, a) =

(0.01, 0.4, 0.8) to allow a wide range of candidates for the bandwidth. The number of

random sample-splitting is set to be U = 20 in all our numerical studies.
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To facilitate the implementation of both procedures, we have developed a R package jra,

which integrated R and C++ codes using the package Rcpp to speed up the computation.

A well-documented vignette to illustrate its usage is provided together with the R package,

both of which will be published online in the journal web page.

5 Numerical Studies

In this section, we investigate the finite-sample numerical performance of the proposed

COPS and SOPS methods in a wide range of simulated examples. All performance measures

presented in this section are obtained based on 1,000 replicated simulations. The following

two different JRA models are considered. In both models, we set ti
iid∼ U(0, 1) and εi = σε̃i,

for i = 1, . . . , n, where ε̃i’s are i.i.d. with E(ε̃i) = 0 and Var(ε̃i) = 1.

• (Model I) Two jumps exist at locations 0.3 and 0.7 with magnitudes δ∗j = µ, for

j = 1, 2. The continuity part of the regression function is set to be

fC(t) =


−3t+ 2, 0 ≤ t ≤ 0.3,

−3t+ 2− sin {π(t− 0.3)/0.2} , 0.3 < t ≤ 0.7,

t/2− 0.45, 0.7 < t ≤ 1.

This model with µ = 1 was considered in Xia and Qiu (2015).

• (Model II) The second model allows the number of jumps J∗ to grow with n by

the formula J∗ = b(log n)ζc, where ζ is a parameter and bxc represents the largest

integer that is not greater than x. The jump locations are set to be t∗j = j/(J∗ +

1) + U(−1, 1)× n−3/5 and the jump magnitudes are δ∗j = µ with probability 0.7 and
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δ∗j = −µ with probability 0.3, for j = 1, . . . , J∗. The continuity part is fC(t) =

sin{4π(t+ 0.2)}/(t+ 0.2).

5.1 Estimate the number of true jumps

We first evaluate the performance of the proposed COPS method for estimating the number

of true jumps J∗. Because this method is based on the LLK smoothing, the JIC method

proposed by Xia and Qiu (2015), which is also based on the LLK smoothing, is used as a

benchmark. As mentioned earlier, the choice of Pn is crucial for that method. To investigate

the impact of Pn on the performance of that method, we fix ν = 1 and consider the

following three values for Pn: {nh2(log n)2}1/2, (nh log n)1/2 and (nh)1/2 log n, to represent

small, moderate and large penalty terms, respectively, as discussed in Xia and Qiu (2015).

The corresponding JIC methods are denoted as JIC-S, JIC-M and JIC-L. In the COPS

method, we use K(u) = 1.5(1 − u2), for 0 ≤ u ≤ 1. In the JIC methods, the two-sided

kernel function K−+(u) = 0.75(1− u2), for −1 ≤ u ≤ 1, is used.

To make a fair comparison among different methods and evaluate the impact of the

bandwidth on their performance, each method will use a sequence of exponentially de-

creasing values in H specified in Section 4.2 for the bandwidth. The COPS method with

the data-adaptive bandwidth is also considered, and it is denoted as COPS*, in which

K−+(u) is used for estimating the regression function.

Example I: We consider Model I with n = 1, 000, µ = 1 and ε̃i
iid∼ N(0, 1). The noise

level σ is one of {0.4, 0.3} to represent a relatively low and a relatively high level of the

signal-to-noise ratio (SNR), respectively.
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Figure 1: Probabilities of correct, under- and over-estimation of the number of true jumps

by different methods in Example I when the bandwidth h changes.

Figure 1 presents the probabilities of correct, under- and over-estimation of the number

of true jumps by different methods when the bandwidth h changes. From the plots in the

figure, we can first observe that the impact of h on the performance of the JIC and COPS

methods is quite significant. This is not surprising since bandwidth selection is important

for all local smoothing methods. From the plots, it can be seen that when h is chosen too

small, the model would be highly underestimated by the JIC and COPS methods because

the variance of the LLK estimates are large in such cases, and consequently only the jumps

with very large magnitudes can be detected by these methods. As h increases, the LLK

estimates are getting more accurate and the probability of correctly identifying the number

of jumps by the JIC and COPS methods would increase as well. However, when h exceeds a

certain level, the probability of correctly identifying the number of jumps by these methods
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declines significantly as the model tends to be overestimated. An interesting phenomenon

is that the ability of correctly identifying the number of jumps by these methods seems to

be revived for some large h values (e.g., near 0.16 for the JIC method when σ = 0.4). In

fact, this is not the whole story if we also check the estimation precision of the detected

jumps presented in Figures ??–?? in Supplementary Material. In such cases, it can be

seen that although the number of jumps can be estimated relatively well, the estimated

jump locations would differ substantially from the true jump locations. When h further

increases, we get a highly underestimated model once again by these methods, since only

a few (here, it is just one) candidate values are available when detecting the jumps by (4).

As a comparison, the COPS method with the data-adaptive bandwidth performs well in

this example. In summary, the bandwidth should not be chosen too small or too large for

both the JIC and COPS methods, since such a bandwidth could result in underestimation

of the number of jumps. Therefore, proper selection of the bandwidth is indeed important.

It can also be seen form Figure 1 that the performance of the JIC method indeed

depends heavily on the choice of Pn. Xia and Qiu (2015) suggested using JIC-M with

Pn = (nh log n)1/2 in practice, while we observe in Example I that JIC-S with a smaller

penalty can perform better than JIC-M in many cases considered. For the JIC method, it

is difficult to specify a universally applicable adjust factor Pn, since its optimal value may

depend on the underlying jump regression model. In contrast, the proposed COPS method

is more convenient to use since there are no tuning parameters other than the bandwidth

that need to be selected in advance. Taking the bandwidth selection into consideration,

the COPS method is at least comparable to, and sometimes better than the JIC method

23



(more evidence will be revealed in Example II), if both methods are well tuned. The COPS

method in conjunction with the proposed data-adaptive bandwidth selection strategy, i.e.,

the COPS*, can reduce the impact of the bandwidth to a certain degree and perform

robustly under different SNR levels.
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Figure 2: Probabilities of correct estimation of the number of true jumps by different

methods in Example II when the bandwidth h changes. Different plots correspond to

different combinations of the number of jumps and the SNR.

Example II: We consider Model II with n = 2, 000, ζ ∈ {0.5, 0.75, 1}, µ = 0.6 and

ε̃i being generated from the standardized t5 distribution. The noise level σ can change

between 0.3 and 0.2 to represent two different levels of SNR.

Figure 2 shows the probabilities of correct estimation of the number of true jumps by

different methods when the bandwidth h changes, under different combinations of the num-

ber of jumps and the SNR. First, note that when ζ = 0.5, the most favorable bandwidth
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for some methods is around the value of 0.25, which should be excluded from our consider-

ation, however, since the precision of the estimated jump locations is unsatisfactory in that

case (cf., the results in Figure ?? of the Supplementary Material). Similar phenomenon

has been observed in Example I. After taking this into account, it can be seen from the

plots that the COPS method outperforms all three versions of the JIC method by a quite

large margin if each method selects its most favorable bandwidth in the relatively low SNR

scenario (i.e., σ = 0.3). In the relatively high SNR scenario (i.e., σ = 0.2), the performance

of the COPS method is comparable to that of JIC-S and JIC-M, and much better than

that of JIC-L. As a comparison, the COPS* method performs well in all cases considered.

Based on the numerical results in this subsection, we have the following suggestions.

i) The JIC method can be used in applications when one has a prior information that

the underlying SNR is relatively large and when its adjustment factor Pn can be chosen

properly. ii) In cases when such prior information is unavailable, the COPS method with

the proposed data-adaptive bandwidth selection strategy should be a good choice.

5.2 Select the detected jumps by controlling FDR

In this subsection, we investigate the numerical performance of the proposed SOPS method

for selecting the detected jumps with FDR under a proper control.

For comparison purposes, the standard Benjamini-Hochberg (BH) FDR control method

that uses the entire sample is considered here. To use the BH method, we need to specify

the null distribution of δ̂(t̂j) in cases when there are no jumps in the regression function.

This is quite complicated because δ̂(t̂j) is a local maximum of a sequence of two-sample
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t-statistics and its distribution usually converges rather slowly. To address this issue, we

consider using simulations to obtain an approximate distribution. Specifically, we generate

data with f = 0 and ε̃i
iid∼ N(0, 1). The nuisance parameter σ in that method is estimated

via σ̂2 = {2(n− 1)}−1
∑n−1

i=1 (yi+1 − yi)2 (Rice, 1984), which is an appropriate choice if the

number and magnitudes of the jumps are not too large. The target FDR level is then fixed

at α = 20%. The performance of the COPS, BH and SOPS methods are compared in terms

of the actual FDR, TPR (i.e., the proportion of true jumps among all detected ones) and

the coverage probability (CP, i.e., the proportion of true jumps that are detected).

Similar to the previous subsection, each method will use a sequence of exponentially

decreasing values for the bandwidth. Thus, we can see how the bandwidth affects the

performance of each method, and make a fair comparison among different methods. The

bandwidth-adaptive SOPS method is also considered here, and it is denoted as SOPS*.

Example III: We consider Model II with n = 2, 000, J∗ = 7 and µ = 0.6. The value of

σ is chosen to be one of {0.5, 0.3}, and the following two noise distributions are considered:

(i) εi
iid∼ N(0, 1), and (ii) {εi} are iid with the standardized t3 distribution.

Figure 3 shows the FDR and TPR values of different methods when the bandwidth h

changes, under different combinations of the noise level and the noise distribution consid-

ered in Example III. It can be seen from the figure that the impact of h on FDR is not

significant for the proposed SOPS method, and that the impact on its TPR is much more

significant. Let us study the results in cases with the N(0, 1) noise distribution. In such

cases, if h is chosen too small, both FDR and TPR are very small for the BH and SOPS

methods, since they rarely report “positives” (i.e., detected jumps). This fact is also true
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Figure 3: FDR and TPR values of different methods when the bandwidth h changes, under

different combinations of the noise level and the noise distribution considered in Example

III.

for the COPS method, although its FDR is unnecessarily large in those cases because that

method can always detect at least one jump, which could be a false jump. If h is chosen

too large, then the COPS and BH methods could detect some “true positives” (informative

points) without detecting any “false positives” (uninformative points). However, the SOPS

method is less tolerant to large bandwidth values and it tends to report no positives. As

a comparison, the bandwidth-adaptive SOPS method, i.e., SOPS*, performs well in all

cases considered. Its FDR values are close to the nominal level, and its TPR values are

comparable to the best TPR values of the other methods.

Figure ?? in Supplementary Material shows the coverage probability (CP) against the

bandwidth for different methods in the cases considered above. Results in that figure show
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that the BH and SOPS methods have larger CP values than those of the COPS method.

The CP for the SOPS* method is reasonably good in all cases considered, although it

sacrifices some efficiency for such a robustness porperty, as shown in Figure 3.

5.3 A real-data example

In this part, we apply the proposed methods to a financial time series data to demonstrate

their use in a real-data setup. The dataset includes weekly open price of the Dow Jones

Industrial Average over the period 02/04/1985–03/29/2021. The data can be downloaded

from the Yahoo Finance. For this dataset, we are interested in detecting possible jumps in

the underlying regression function of the open prices of the Dow Jones Industrial Average.

Figure ?? in Supplementary Material shows the estimated numbers of jumps against

the value of the bandwidth for the three versions of JIC, the COPS and SOPS methods

considered in Sections 5.1–5.2. For the SOPS procedure, we use α = 20%. It can be seen

that the detected numbers of jumps are close to each other among all methods considered

for a given bandwidth, and for a given method the estimated number of jumps decreases

significantly as the bandwidth increases.

Next, we focus on the results of the COPS* and SOPS* methods, which are the

bandwidth-adaptive versions of the proposed COPS and SOPS procedures, respectively.

The dates corresponding to the detected jumps are annotated in Figure 4 by small trian-

gles and dots located around the horizontal line of y = 20, 000, where the results of the two

methods are comparable in this setting. To save some space, the specific dates of the de-

tected jumps and the corresponding jump magnitudes are listed in Table ?? in Supplemen-
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Figure 4: The original time series data is plotted as grey dots. Vertical dotted lines represent

some notorious time points of stock market crashes or bear markets as indicated by the

labeled names. Jumps detected by the proposed methods are also pointed around the line

y = 20, 000 ( : COPS*; : SOPS*).

tary Material. Figure 4 also presents the original time series data, and some notorious time

points of stock market crashes or bear markets (cf. https://en.wikipedia.org/wiki/

List_of_stock_market_crashes_and_bear_markets) that are indicated by the vertical

dotted lines. It can be seen that some of the detected jumps are close to the dates of

such stock market crashes. In addition, there are three detected jumps with positive jump

magnitudes, which indicate a bull market at these three time points.

The data considered here are collected discretely by weeks. It should be interesting

to study whether our methods, after some necessary modifications, could also be used for

detecting jumps in continuously sampled financial time series data. See related discussions
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in Bajgrowicz et al. (2016); Scaillet et al. (2020).

6 Concluding Remarks

Determination of the number of jumps is an important but challenging problem for jump

regression analysis. With the help of the order-preserved sample-splitting strategy, this

paper introduces two data-driven methods (i.e., COPS and SOPS) for solving this problem.

The COPS method is based on the cross-validation idea and capable to provide a consistent

estimate of the number of jumps under some regularity conditions, including the one that

the jump magnitudes are not too small. When this condition on jump magnitudes is

questionable in a specific application, the SOPS method can be considered, which often

results in a slightly overfitting model without excessive false positives. The SOPS method

is shown to control the FDR well; thus, it could serve as a useful alternative to the COPS

method for practical use.

There are still some issues related to the proposed methods that need to be addressed

in the future research. For instance, it is of great importance to theoretically investigate

whether the proposed data-adaptive strategy for bandwidth selection could yield consistent

estimate of the number of jumps or achieve the FDR control property. Also, both COPS

and SOPS methods assume that the observed data are independent at different time points.

It is necessary to generalize the proposed methods to cases with autocorrelated data. Last

but not the least, the current paper focuses on 1-D cases. We expect that the proposed

methods in this paper can be generalized to 2-D cases to detect jump location curves, which

certainly warrants much future research.
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Supplementary Material

The supplementary material contains a list of assumptions and proofs of Theorems 1 and

2, along with some additional numerical results. The jra package that implements the

proposed COPS and SOPS methods can be found in the attached file jra 0.0.0.9000.tar.gz.

A demonstration example for illustrating the use of the jra package is also included in that

file.
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Grégoire, G., and Hamrouni, Z. (2002), “Change point estimation by local linear smooth-

ing,” J. Multivariate Anal., 83, 56–83.

Hao, N., Niu, Y. S., and Zhang, H. (2013), “Multiple change-point detection via a screening

and ranking algorithm,” Statist. Sinica, 23, 1553–1572.

Hawkins, D. M. (2001), “Fitting multiple change-point models to data,” Comput. Statist.

Data Anal., 37, 323–341.

Li, H., Munk, A., and Sieling, H. (2016), “FDR-control in multiscale change-point segmen-

tation,” Electron. J. Stat., 10, 918–959.

Loader, C. R. (1996), “Change point estimation using nonparametric regression,” Ann.

Statist., 24, 1667–1678.

32



Müller, H.-G. (1992), “Change-points in nonparametric regression analysis,” Ann. Statist.,

20, 737–761.

Müller, H.-G., and Stadtmüller, U. (1999), “Discontinuous versus smooth regression,” Ann.

Statist., 27, 299–337.

Qiu, P. (1994), “Estimation of the number of jumps of the jump regression functions,”

Comm. Statist. Theory Methods, 23, 2141–2155.

— (2005), Image processing and jump regression analysis, Wiley Series in Probability and

Statistics, John Wiley & Sons.

Rice, J. (1984), “Bandwidth choice for nonparametric regression,” Ann. Statist., 12, 1215–

1230.

Scaillet, O., Treccani, A., and Trevisan, C. (2020), “High-Frequency Jump Analysis of the

Bitcoin Market,” Journal of Financial Econometrics, 18, 209–232.

Schwarz, G. (1978), “Estimating the dimension of a model,” Ann. Statist., 6, 461–464.

Siegmund, D. O., Zhang, N. R., and Yakir, B. (2011), “False discovery rate for scanning

statistics,” Biometrika, 98, 979–985.

Spokoiny, V. G. (1998), “Estimation of a function with discontinuities via local polynomial

fit with an adaptive window choice,” The Annals of Statistics, 26, 1356–1378.

Wu, J. S., and Chu, C. K. (1993a), “Kernel-type estimators of jump points and values of

a regression function,” Ann. Statist., 21, 1545–1566.

33



Wu, J. S.— (1993b), “Nonparametric function estimation and bandwidth selection for

discontinuous regression functions,” Statist. Sinica, 3, 557–576.

Xia, Z., and Qiu, P. (2015), “Jump information criterion for statistical inference in esti-

mating discontinuous curves,” Biometrika, 102, 397–408.

Zou, C., Wang, G., and Li, R. (2020), “Consistent selection of the number of change-points

via sample-splitting,” Ann. Statist., 48, 413–439.

34


	Introduction
	Consistent estimation of the number of jumps
	Proposed method
	Theoretical justifications

	Jump detection with FDR under control
	Definition of false discoveries
	Method construction
	Theoretical justifications

	Implementation
	Computation
	Guidelines on bandwidth selection

	Numerical Studies
	Estimate the number of true jumps
	Select the detected jumps by controlling FDR
	A real-data example

	Concluding Remarks

