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SUMMARY

Nonparametric regression analysis when the regression function is discontinuous has broad 10

applications. Existing methods for estimating a discontinuous regression curve usually assume

that the number of jumps in the regression curve is known beforehand, which is unrealistic in

certain cases. Although there has been research on estimation of a discontinuous regression curve

when the number of jumps is unknown, this problem is still mostly open because such research

often requires assumptions on other related quantities such as a known minimum jump size. 15

In this paper, we propose a jump information criterion, which consists of a term measuring

the fidelity of the estimated regression curve to the observed data and a penalty related to the

number of jumps and jump sizes. Then, the number of jumps can be determined by minimizing

our criterion. Theoretical and numerical work shows that our method works well in practice.

Some key words: BIC; Jump information criterion; Curve estimation; Jump regression analysis; Kernel smoothing; 20

Penalty.

1. INTRODUCTION

Regression curve estimation from noisy data is a fundamental problem with broad applica-

tions. In some cases, such curves have jumps and other discontinuities. For instance, the sea-

level pressures observed by the Bombay weather station during 1921 and 1990 contain jumps 25

(?). The penny thickness data studied in Gijbels & Goderniaux (2004) have a jump as well. In

cases when a regression curve has jumps, conventional curve estimation methods such as kernel

and spline smoothing methods would not work well at the jump positions. Because jumps are

important data structures, proper estimation of their number, positions and sizes is essential in

such applications. Estimation of jump regression curves is the focus of this paper. 30

There has been much discussion in the literature about estimation of jump regression curves

(Qiu, 2005), but most existing methods assume that the number of jumps is known (e.g., Anto-

niadis & Gijbels, 1993; Hall & Titterington, 1992; Müller, 1992; Ma & Yang, 2011; McDonald

& Owen, 1986; Müller, 2002; Qiu et al., 1991; Wang, 1995). Several papers discuss cases when

the number of jumps is unknown, but require the specification of a minimum jump size (Qiu, 35

1994) or a significance (Koo, 1997; Qiu & Yandell, 1998; Wu & Chu, 1993; Yin, 1988) before-

hand. These methods transfer the difficulty in determining the number of jumps to the difficulty

in specifying an alternative parameter.
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In the context of change-point detection, some people have considered estimation of the num-

ber of change-points using versions of the Bayesian information criterion (Hannart & Naveau,40

2012; Zhang & Siegmund, 2007) or other criteria (Yao, 1988; Frick, Munk & Sieling, 2014).

However, jump regression is quite different from change-point detection, in that the mean re-

sponse could be an arbitrary continuous curve between two consecutive jump points in the for-

mer, but is constant between two consecutive change-points in the latter.

In this paper, we suggest a jump information criterion for estimating a regression curve with45

unknown number of jumps. This criterion contains a penalty term for accommodating the unob-

servable jump structure, different from existing criteria that usually contain penalties related to

the complexity of the entire model (Leeb & Pötscher, 2005; Hastie et al., 2008). We demonstrate

that the model complexity caused by jumps is asymptotically negligible when the complexity of

the entire model is concerned. So, in the jump information criterion, only the model complexity50

due to jumps is included in the penalty. After the jump structure of the regression function f
is estimated, there are two possible ways to estimate f , either in design subintervals separated

by the estimated jump locations, or by firstly removing the estimated jump part of f from the

original data and then estimating the continuous part of f from the resulting new data. Kang

et al. (2000) have shown that the second approach can give a more reliable estimate of f because55

the information contained in the observations in neighboring subintervals can be shared when

estimating f around the detected jump positions. This strategy is also used in this paper.

2. STATISTICAL METHODS

2·1. Statistical model

Assume that n observations {(Yi, xi) : i = 1, . . . , n} are generated from the model60

Yi = f(xi) + εi (i = 1, . . . , n), (1)

where x1 < · · · < xn are fixed design points in the interval [0, 1], and {εi} are independent and

identically distributed random errors with mean 0 and variance σ2. In (1), it is further assumed

that the regression function f is discontinuous with a continuous part fC and a jump part fJ .

If {sj : j = 1, . . . ,m0} are m0 jump positions of f with corresponding jump magnitudes {dj :
j = 1, . . . ,m0}, then65

f(x) = fC(x) + fJ(x) = fC(x) +

m0∑

j=1

djI{x>sj}, x ∈ [0, 1]. (2)

In (2), the number of jumps m0, jump locations sj’s and jump sizes dj’s are all assumed un-

known. For convenience of theoretical inference, the design points are assumed to be equally-

spaced with xi = i/n, for i = 0, 1, . . . , n, and the random errors {εi} are assumed to have equal

variance. All methodologies developed in this paper can be applied to cases with unequally-

spaced design points, after some minor modifications. More specifically, our methods will work70

well in cases when there is a continuous design density function q(x), such that the unequally-

spaced design points can be expressed as
∫ xi

0 q(u) du = i/n. They will also work well in cases

when the error variances are unequal but
∑n

i=1 var(Yi)/n → σ2. Without loss of generality, we

assume that |d1| > · · · > |dm0
|.

2·2. Model estimation when the number of jumps is assumed known75

As mentioned in Section 1, most existing methods for estimating jump regression curves as-

sume that the number of jumps or its upper bound is known to be m, say. Such an assumption can
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result in various problems. For instance, the case of m < m0 could lead to a non-consistent esti-

mate of f near the m0 −m jump positions that are not detected, and the case of m ≥ m0 could

lead to detection of m−m0 spurious jumps. In this subsection, we develop a methodology to 80

detect the jump structure and to estimate f as well when m is assumed known.

In our methodology, the local linear kernel smoothing procedure is used as a building block,

which requires a bandwidth and a kernel function (Loader, 1999). To obtain a reasonably good

estimate, the following two assumptions are needed.

Assumption 1. The bandwidth hn > 0 satisfies logn/(nh3n) = o(1) and nh5n/ log n = o(1). 85

Assumption 2. Let Kc(x) = K(x) be a bounded symmetric density kernel function with sup-

port [−1/2, 1/2] which is uniformly Lipschitz-1 continuous. The two one-sided kernel functions

are defined to be Kl(x) = K(x)I{x∈[−1/2,0)} and Kr(x) = K(x)I{x∈[0,1/2]}.

Then, for a given x ∈ [hn/2, 1− hn/2], we estimate f(x) in the neighborhood [x− hn, x+
hn] and its two one-sided parts [x− hn, x) and [x, x+ hn], respectively, by 90

âj(x) =

n∑

i=1

YiK
∗
j

(
xi − x

hn

)
(j = c, l, r), (3)

where K∗
j {(xi − x)/hn} = Kj{(xi − x)/hn}{wj,2 − wj,1(xi − x)}/(wj,0wj,2 − w2

j,1),

wj,k =
∑n

i=1(xi − x)kKj{(xi − x)/hn}, for j = c, l, r and k = 0, 1, 2. Based on âl(x) and

âr(x), we define Mn(x) = âr(x)− âl(x), which contains information about the jump point

near x. As pointed out by Qiu (1994), Mn(x) ≈ 0 if there are no jumps in [x− hn/2, x+ hn/2],
and Mn(x) is relatively large if there exists a jump around x. More specifically, if x is close 95

to a jump point sj , say x = sj + τhn, for τ ∈ [−1/2, 1/2], we shall show in Theorem 1 that

|Mn(x)| converges to |djg(τ)|, where |g(τ)| is non-negative in interval [−1/2, 1/2] and reaches

its maximum value 1 when τ = 0. The property discussed above is summarized in Theorem 1,

in which the following notation is used:

D = [hn/2, 1− hn/2], Dδ,j = [sj − δ, sj + δ],

Dδ,m1→m2
=

m2⋃

j=m1

Dδ,j , Dδ,m1→m2
= D\Dδ,m1→m2

, 1 ≤ m1 ≤ m2 ≤ m0.

Also, ‖f‖L∞(D) denotes max
x∈D

|f(x)|. 100

THEOREM 1. Assume that f is second-order differentiable and f
′′

is uniformly bounded on

D except at the jump points {sj : j = 1, . . . ,m0} at which f has bounded left and right second-

order derivatives. Then, under Assumptions 1 – 2, we have

(
nhn
log n

)1/2

‖Mn‖L∞(Dhn/2,1→m0
) = O(1),

(
nhn
log n

)1/2 ∥∥M ′
n,j

∥∥
L∞[−1/2,1/2]

= O(1),

where both equations hold almost surely, M ′
n,j(τ) = Mn(sj + τhn)− djg(τ) (j = 1, . . . ,m0),

and g(τ) = Iτ∈[−1/2,0)

∫ 1/2
−τ K∗

r (u)du+ Iτ∈[0,1/2]
∫ −τ
−1/2K

∗
l (u)du. 105

Methods (Müller, 1992; Antoch, Grégoire & Hus̆ková, 2007; Grégoire & Hamrouni, 2002) for

estimating the jump location in cases with one jump point can be extended. From Theorem 1, the

jump detection criterion |Mn(x)| is small in continuity regions Dhn/2,1→m0
and large in regions

around the true jump points. Therefore, if we assume that |d1| > · · · > |dm0
|, for convenience of



4 ZHIMING XIA AND PEIHUA QIU

discussion, then s1 is the asymptotic global maximizer of |Mn(x)| in D, and a natural estimator110

is

ŝ1(m) = argmax
x∈D

|Mn(x)| . (4)

Similarly, s2 is the asymptotic global maximizer of |Mn(x)| in D\D̂ǫhn,1, where D̂ǫhn,1 =
[ŝ1(m)− ǫhn, ŝ1(m) + ǫhn] and ǫ > 1/2 is a positive number, and can be estimated by an esti-

mator defined similarly to (4). Generally, the estimator of sj can be defined by

ŝj(m) = arg max

x∈D\
j−1⋃
i=1

D̂ǫhn,i

|Mn(x)| (j = 1, . . . ,m), (5)

where D̂ǫhn,i = [ŝi(m)− ǫhn, ŝi(m) + ǫhn]. The corresponding estimators of dj can be defined115

by d̂j(m) = Mn{ŝj(m)} (j = 1, . . . ,m). Furthermore, the jump part fJ(x) of the regression

curve f(x) can be estimated by f̂J,m(x) =
∑m

j=1 d̂j(m)I{x>ŝj(m)}.

After the jump part is estimated, we can define new observations {Yi,m = Yi − f̂J,m(xi) : i =
1, . . . , n}, and estimate the continuity part fC(x) by local linear kernel smoothing in the entire

design interval [0, 1] from the new observations. The local linear kernel estimator f̂C,m(x) is120

defined in the same way as âc(x) after replacing Yi by Yi,m. Finally, the regression function

f(x) can be estimated by

f̂m(x) = f̂C,m(x) + f̂J,m(x). (6)

Let Ŷ = (f̂m(x1), . . . , f̂m(xn))
T , ŶC = (f̂C,m(x1), . . . , f̂C,m(xn))

T , ŶJ = (f̂J,m(x1), . . . ,

f̂J,m(xn))
T . Then, by (6), we have

Ŷ = ŶC + ŶJ = HC (I −HJ)Y +HJY = HY, (7)

where HC and HJ are the hat matrices of ŶC and ŶJ , respectively, in terms of Y =125

(Y1, . . . , Yn)
T , and H = HC(I −HJ) +HJ , HJ depends on the estimators ŝj(m) (j =

1, . . . ,m). By Theorem 2, these estimators converge almost surely to the true jump locations

sj . Regarding the hat matrix H , we have the following result.

PROPOSITION 1. Under Assumptions 1 and 2, we have

tr (H) =
K∗

c (0)

hn
+m+ o

(
1

hn

)
, (8)

where tr(H) denotes trace.130

Stein’s unbiased risk estimation theory (Stein, 1981) provides a precise definition of the de-

grees of freedom of an estimator and is often used to measure the model complexity. For an

approximate linear smoother like (7), its degree of freedom is shown to be tr (H) approximately

(Efron, 2004). Because the first term on the right-hand-side of (8) tends to infinity, the impact of

the second term m on tr (H) is negligible, so the overall complexity of the estimated regression135

model does not much depend on the number of jumps, as mentioned in Section 1.

The theorem below builds the uniform strong consistency of the estimators defined in (4)–(6).
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THEOREM 2. Under the assumptions of Theorem 1, if m < m0, then

(
n

hn log n

)1/2

|ŝj(m)− sj | = O(1) (j = 1, . . . ,m),

(
nhn
logn

)1/2 ∣∣∣d̂j(m)− dj

∣∣∣ = O(1) (j = 1, . . . ,m),

(
nhn
logn

)1/2 ∥∥∥f̂m − f
∥∥∥
L∞(Dδn,1→m∩Dhn/2,m+1→m0

)
= O(1),

(
nhn
logn

)1/2 ∥∥∥f̂m(sj + τhn)− f(sj + τhn)− djhc(τ)
∥∥∥
L∞[−1/2,1/2]

= O(1)

(j = m+ 1, . . . ,m0),

where all equations hold almost surely, hc(τ) = I{τ∈[−1/2,0)}

∫ 1/2
−τ K∗

c,0(u)du−

I{τ∈[0,1/2]}
∫ −τ
−1/2K

∗
c,0(u)du, δn = {(hn log n)/n}

1/2−δ, and δ ∈ (0, 1/2). If m ≥ m0, 140

then

(
n

hn log n

)1/2

|ŝj(m)− sj | = O(1) (j = 1, . . . ,m0),

(
nhn
logn

)1/2 ∣∣∣d̂j(m)− dj

∣∣∣ = O(1) (j = 1, . . . ,m0),

(
nhn
logn

)1/2 ∣∣∣d̂j(m)
∣∣∣ = O(1) (j = m0 + 1, . . . ,m),

(
nhn
logn

)1/2 ∥∥∥f̂m − f
∥∥∥
L∞(Dδn,1→m0

)
= O(1),

where all equations hold almost surely.

Theorem 2 shows that if the assumed upper bound of the number of jumps is smaller than

the true number, our method can estimate the largest m jumps consistently. But, it will miss the

remaining m0 −m jumps, which would result in an asymptotic bias of the size djhc(τ) near 145

the jump points sj (j = m0 + 1, . . . ,m), when estimating f . If the assumed number of jumps

is larger than or equal to the true number, Theorem 2 says that all of the m0 true jumps can be

estimated consistently by our approach. But, we artificially create m−m0 more jumps whose

estimated jump sizes converge to zero uniformly in the rate of {log n/(nhn)}
1/2. This rate will

play a key role in constructing our jump information criterion. 150

2·3. Jump information criterion

Theorem 2 shows that there will be problems if the number of jumps or its upper bound is

assumed known. To estimate the number of jumps properly based on the observed data, let us

check Theorem 2 more carefully. Theorem 2 says that the curve estimator f̂m(x) is consistent

when m ≥ m0, and it has relatively large biases at certain jump points when m < m0. These 155

properties of f̂m(x) are reflected in the sum of squares of residuals

SSR(m) =
n∑

i=1

{
Yi − f̂m(xi)

}2
.
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When m < m0, it can be checked that the sum of squares of residuals around a jump point

missed by the jump detection procedure, say the jth jump, is

∑

xi∈Dhn/2,j

{
Yi − f̂m(xi)

}2
= O (nhn) .

When m > m0, the sum of squares of residuals around a spurious jump is about

O{(nhn log n)
1/2} which is much smaller than O (nhn). Although both quantities seem neg-160

ligible compared to SSR(m) = O(n), their difference needs to be taken into account when de-

termining the number of jumps. Another important factor is related to the estimators of jump

sizes. When m ≤ m0, all m estimators of jump sizes converge to non-zero constants. In the case

when m > m0, there are m−m0 spurious jumps and the estimators of their jump sizes will

converge to zero in the rate of {log n/(nhn)}
1/2

. Based on these two considerations, our jump165

information criterion is

JIC(m) = n log{SSR(m)/n}+ P (n)
m∑

j=1

1∣∣∣d̂j(m)
∣∣∣
γ , (9)

where γ ≥ 0 is a tuning parameter, and P (n) is an adjustment factor.

The criterion JIC(m) in (9) has two terms. The first term measures the distance from the esti-

mated regression curve to the observed data. It can be checked that this term is a decreasing func-

tion of m with the rate O(nhn) when m ≤ m0, and the rate becomes O{(nhn log n)
1/2} when170

m > m0. The second term is a penalty consisting of two quantities P (n) and
∑m

j=1 |d̂j(m)|−γ .

The quantity
∑m

j=1 |d̂j(m)|−γ is used as a panelty to take into account both the number of jumps

and the jump sizes of the jump part of model (1). It can be checked that this is an increasing

function of m, and the rate of increase is faster when m > m0, compared to when m ≤ m0. The

adjustment factor P (n) is used to guarantee that JIC(m) is decreasing in m when m ≤ m0 and175

increasing in m when m > m0. It can be checked that such properties are guaranteed when

(
nhn
logn

)−γ/2

nh2n < P (n) < nhn. (10)

By minimizing JIC(m), we can obtain an estimator m̂ of m, and then we can obtain estimators

of the jump locations and jump sizes. More specifically, we define

m̂ = argmin
m≥0

JIC(m), (11)

ŝj = ŝj(m̂), (12)

d̂j = d̂j(m̂), (13)

f̂(x) = f̂m̂(x). (14)

From Theorem 3, in the case when P (n) = (nhn/ log n)
−γ/2 nhn, which is in the range

specified by (10), the estimator m̂ will converge to m0 at the optimal rate of hn +180

{logn/(nhn)}
(γ+1)/2. When P (n) > (nhn/ log n)

−γ/2 nhn, the distribution of m̂ is skewed

to the right, and it is skewed to the left when P (n) < (nhn/ log n)
−γ/2 nhn. In the latter two

cases, the optimal convergence rate of m̂ would not be reached any more.

As mentioned in Section 1, in the literature on change-point detection, several papers proposed

versions of the Bayesian information criterion for determining the number of change points using185

the Bayes factor (Schwarz, 1978; Zhang & Siegmund, 2007; Hannart & Naveau, 2012). Under
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several assumptions, including that the continuous part fC(x) of f(x) is known, we derive the

following criterion in the Supplementary Material,

BIC(m) = n log{SSR(m)/n}+m log(nhn). (15)

This is a special case of (9) when γ = 0 and P (n) = log(nhn), and this selection of P (n) is

beyond the range in (10). Also, the penalty term in (15) depends on m, but not on the jump sizes, 190

making it less sensitive to the jump structure of the observed data, compared to JIC(m). This

intuition is confirmed by the numerical results in Section 4.

3. STATISTICAL PROPERTIES

In this section, we study the statistical properties of the estimators defined in (11)–(14) when

the number of jumps is estimated by the proposed jump information criterion. 195

THEOREM 3. If all assumptions of Theorem 1 hold, then almost surely

Kn

Rn
|m̂−m0| = O(1), (16)

where Kn = min
{
nhn, P (n)(nhn/ log n)

γ/2
}

, and Rn = nh2n + P (n){log n/(nhn)}
1/2.

Theorem 3 shows that it is necessary to have Kn/Rn → ∞ in order for m̂ to be consistent.

The condition (10) is mainly derived from the condition that Kn/Rn → ∞. In such cases, we

can conclude immediately from (16) that 200

pr( lim
n→∞

m̂ = m0) = 1, (17)

and the convergence reaches the optimal rate of O(hn) when P (n) = (nhn/ log n)
−γ/2 nhn.

From (17), m̂ = m0 almost surely when the sample size n is large enough. So, in the next the-

orem about the almost sure consistency of the estimators {ŝj : j = 1, . . . , m̂} and {d̂j : j =
1, . . . , m̂}, the index j will be specified to be one of {1, . . . ,m0}, without loss of generality.

THEOREM 4. Under the conditions of Theorem 3, 205

(
n

hn log n

)1/2

|ŝj − sj | = O(1) (j = 1, . . . ,m0),

(
nhn
log n

)1/2 ∣∣∣d̂j − dj

∣∣∣ = O(1) (j = 1, . . . ,m0),

(
nhn
logn

)1/2 ∥∥∥f̂ − f
∥∥∥
L∞(Dδn,1→m0

)
= O(1),

where all equations hold almost surely, and δn is defined in Theorem 2.

Theorem 4 shows that estimators of the jump locations, jump sizes and the whole discontinu-

ous curve converge to their true values, as if the number of jumps is known in advance.
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Fig. 1. Graph for simulation data based on Model1.

4. NUMERICAL STUDY

4·1. Monte Carlo simulation examples210

Assume that n observations {(xi, Yi) : i = 1, . . . , n} are generated from the model (1). The

regression function is assumed to be

f(x) =





−3x+ 2, [0, 0.3),
−3x+ 3− sin{(x− 0.3)π/0.2}, [0.3, 0.7),
x/2 + 1.55, [0.7, 1),

which has m0 = 2 jump points. Because the central part of f is steep around the two jump

points, the jumps are difficult to detect. See Gijbels et al. (2007) for a related discussion. We then

consider the following three cases.215

Case 1: The design points {xi = i/n : i = 1, . . . , n} are equally spaced in [0, 1], and the

random errors {εi : i = 1, . . . , n} are independent and identically distributed with distribution

N(0, 0.22).
Case 2: The design points {xi : i = 1, . . . , n} are unequally spaced in [0, 1] with a smooth

design density q(x) = 0.6I{x≤0.1} + 1.1I{0.1<x<0.9} + 0.6I{x≥0.9}, and the random errors {εi :220

i = 1, . . . , n} are independent and identically distributed with distribution 0.2t10.

Case 3: The design points {xi : i = 1, . . . , n} are equally spaced in [0, 1], and the random

errors {εi : i = 1, . . . , n} follow the autoregressive model εi = 0.1εi−1 + ui (i = 1, . . . , n),
where ε0 = 0 and {ui : i = 1, . . . , n} are independent and identically distributed with distri-

bution N(0, 0.22).225

Case 2 considers a random design setup, and Case 3 considers a scenario with dependent

observations. They do not satisfy the assumptions of model (1), and are considered here to study

the robustness of the proposed method. One realization of n = 200 observations in Case 1 when

σ = 0.2 is shown in Figure 1. Both jumps, especially the left one, are indeed quite difficult to

detect visually.230

Next, we use the criterion JIC(m) to determine the number of jumps. In the simulation, we

use the Epanechnikov kernel functions Kr(x) = 0.75(1− x2), for x ∈ [0, 1/2], and Kl(x) =
Kr(−x), which satisfy Asssumption 2. The bandwidth is chosen to be hn = 0.3n−1/5. The fac-

tor n−1/5 in hn is mainly due to Assumption 1. The constant 0.3 in hn is chosen using the

following consideration: this constant should be chosen relatively small so that we can include235

multiple jump points in the simulation and they will not have overlapping neighbourhoods, but

it should not be too small, or there will be too few observations in each neighborhood for data
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Table 1. Percentages of 1000 replicated simulations for which the m̂ values obtained by each

method are equal to, smaller than, and larger than the true number of jumps m0.

Method m̂ Case 1 Case 2 Case 3

n =200 500 1000 200 500 1000 200 500 1000

JIC(m) > m0 2.8 0.0 0.0 7.0 0.4 0.0 6.0 0.6 0.2

(small penalty) = m0 96.4 100.0 100.0 93.0 99.6 100.0 93.0 99.4 99.8

< m0 0.8 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

JIC(m) > m0 0.0 0.0 0.0 1.2 0.0 0.0 0.8 0.0 0.0

(moderate penalty) = m0 96.6 100.0 100.0 95.6 100.0 100.0 93.4 100.0 100.0

< m0 3.4 0.0 0.0 3.2 0.0 0.0 5.8 0.0 0.0

JIC(m) > m0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(large penalty) = m0 54.0 94.4 100.0 58.0 90.6 99.2 51.0 90.6 99.8

< m0 46.0 5.6 0.0 42.0 9.4 0.8 49.0 9.4 0.2

BIC(m) > m0 31.8 10.8 4.0 42.8 15.8 9.4 38.8 25.8 13.8

= m0 68.2 89.2 96.0 57.2 84.2 90.6 61.2 74.2 86.2

< m0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

wavelets > m0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

= m0 16.0 88.0 100.0 37.0 86.0 100.0 21.0 84.0 100.0

< m0 84.0 12.0 0.0 63.0 14.0 0.0 79.0 16.0 0.0

smoothing. In JIC(m), we fix γ = 1, and choose P (n) to be
{
nh2n(log n)

2
}1/2

as a small penalty,

(nhn log n)
1/2

as a moderate penalty, or (nhn)
1/2 log n as a large penalty. The selected moderate

penalty is also the one that results in the optimal convergence rate of m̂, discussed immediately 240

after Theorem 3. Apart from these three choices of P (n), we also consider the case when γ = 0
and P (n) = log(nhn), which corresponds to BIC(m) in (15). The wavelet method proposed by

Wang (1995) using the Haar wavelet is also considered, with the true value of σ used in comput-

ing the threshold value for jump detection. The sample size n is chosen to be 200, 500, or 1000,

and the simulation is repeated 1000 times. 245

The results are summarized in Table 1. For the proposed method, the results show that the

frequency of m̂ = m0 tends to be larger when n increases in all cases considered, which con-

firms Theorem 3. The distribution of m̂ is skewed to the right when P (n) is chosen to be the

small penalty, skewed to the left if P (n) is chosen to be the large penalty, and more symmetric

when P (n) is chosen to be the moderate penalty. Furthermore, the frequency of m̂ = m0 is the 250

largest when P (n) is chosen to be the moderate penalty, which confirms the statement made

immediately after Theorem 3 about the optimal convergence rate of m̂. Based on these results,

we suggest using the moderate penalty for P (n) in practice. By comparing the results in Cases

1–3, it seems that the proposed method is robust to the assumptions of independent observations

and fixed design points. Theoretical study of these properties is left to future research. As a com- 255

parison, both the BIC and wavelet methods are not as effective as the proposed method with the

moderate penalty in all cases considered.

Table 1 concerns the estimated number of jumps. Next, we describe how close the estimated

jumps are to the true jumps. Let Ŝ = {ŝ1, . . . , ŝm̂} and S = {s1, . . . , sm0
} denote the sets of
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Table 2. Averaged Hausdorff distances between Ŝ and S and the corresponding stan-

dard errors (in parentheses) based on 1000 replicated simulations. All numbers are in

the unit of 1× 10−2.

n JIC(m) JIC(m) JIC(m) BIC(m) wavelets

(small penalty) (moderate penalty) (large penalty)

Case 1 200 1.13(4.31) 1.73(7.22) 14.17(19.01) 4.96(7.20) 38.60(14.74)

500 0.14(0.03) 0.14(0.03) 2.22(8.88) 1.77(4.96) 9.80(13.06)

1000 0.07 (0.01) 0.07(0.01) 0.07(0.01) 0.57(2.70) 5.00(0.01)

Case 2 200 1.53(3.85) 1.95(7.18) 14.04(18.92) 7.20(8.24) 30.20(19.41)

500 0.24(0.79) 0.19(0.04) 3.62(11.20) 2.52(5.79) 10.60(13.95)

1000 0.09 (0.02) 0.09(0.02) 0.41(3.56) 1.62(5.05) 5.00(0.01)

Case 3 200 1.66(5.16) 2.77(9.26) 15.44(19.36) 6.08(7.58) 36.60(16.37)

500 0.22(0.95) 0.15(0.04) 3.65(11.31) 3.98(7.05) 11.40(14.74)

1000 0.09 (0.47) 0.07(0.01) 0.15(1.79) 1.93(0.05) 5.00(0.01)

detected jump points and of true jump points. The distance between Ŝ and S can be used as a260

quantitative performance measure. A natural choice of such a distance is the Hausdorff distance

defined below.

dH (A,B) = max

(
sup
x∈A

inf
y∈B

‖x− y‖ , sup
y∈B

inf
x∈A

‖x− y‖

)
,

where A and B are two point sets and ‖ · ‖ denotes the Euclidean distance. The smaller the

value of dH

(
Ŝ, S

)
, the better the jump detection procedure performs. The averaged Hausdorff

distances for various methods are presented in Table 2, which are computed based on 1000265

replicates. For the proposed method, the table shows that when n gets larger, the Hausdorff

distance between Ŝ and S gets smaller, and when n is reasonably large, e.g., n = 1000, this

distance does not depend on P (n) much. As in Table 1, both the BIC and wavelet methods are

not as effective as the proposed method in terms of the Hausdorff distance.

4·2. Analysis of the sea-level pressure data270

Our example concerns December sea-level pressures during 1921–1992 observed by the Bom-

bay weather station in India. The data are shown in Figure 2. Qiu & Yandell (1998) confirmed a

jump around the year 1960 in this dataset, using their local polynomial jump detection algorithm.

But this method relies on a threshold which will directly affect the estimated number of jumps.

To determine the threshold, we need to choose a significance level in advance. Therefore, the275

difficulty in determining the number of jumps is transferred by this method to the difficulty in

choosing the significance level, as discussed in Section 1. As a comparison, we do not need to

choose such parameters in the proposed method, so, it should be able to provide a more objective

analysis.

Next, we apply our proposed method to this dataset. The kernel function and the bandwidth280

hn are chosen to be the same as those used in the simulation examples. The adjustment factor is

chosen to be P (n) = (nhn log n)
1/2. Our jump detection procedure identifies two jumps in 1938

and 1960, with corresponding estimated jump sizes 2.27(0.55) and −2.18(0.55), respectively,
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Fig. 2. Sea-level pressure data, the estimated regression curve (solid),
and the detected jump dates (vertical dotted).

where the numbers in parentheses are the standard errors. The two jumps detected, shown in

Figure 2 by vertical lines, catch the discontinuities in the observed data well. For this data, Qiu & 285

Yandell (1998) only detect the jump around the year 1960. As a comparison, the proposed method

in this paper detects that jump and another jump around the year 1938. The jump-preserving

curve estimator is shown by the solid curve.
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