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1. SEVERAL LEMMAS

LEMMA 1. If the kernel function Kj , for j = l, c, r, is uniformly Lipschitz-1 continuous, then 10

∥∥∥h̃j(x, s)− hj(τ)
∥∥∥
L∞[−1/2,1/2]

= O

(
1

nhn

)
(j = l, c, r),

where ‖ · ‖ is with respect to x = s+ τhn when τ ∈ [−1/2, 1/2] , s is a given point in (0, 1),

h̃j(x, s) =
n∑

i=1
K∗

j

(
xi − x

hn

)
I{xi>s} − I{x>s} and

hl(τ) = −I{τ∈[0,1/2]}

−τ∫

−1/2

K∗
l (u)du,

hc(τ) = I{τ∈[−1/2,0)}

1/2∫

−τ

K∗
c (u)du− I{τ∈[0,1/2]}

−τ∫

−1/2

K∗
c (u)du,

hr(τ) = I{τ∈[−1/2,0)}

1/2∫

−τ

K∗
r (u)du.

Proof. The proof is quite straightforward by using the uniform Lipschitz continuity property

of the kernel function Kj . It is therefore omitted here. �

LEMMA 2. Let g(τ) = hr(τ)− hl(τ), where τ ∈ [−1/2, 1/2], and hr and hl are the same as 15

those in Lemma 1. Then, under Assumption 2,

(i) for a given small number ǫ > 0, g′(τ) is strictly increasing in the interval [−ǫ, 0], strictly

decreasing in the interval [0, ǫ], and always satisfies 0 < K∗
r (ǫ) ≤ |g′(τ)| ≤ K∗

r (0);

(ii) the function g(τ) is strictly increasing in the intervals

[
−
vr,2
vr,1

, 0

]
and

[
−
vl,2
vl,1

, 1/2

]
, and

strictly decreasing in the intervals

[
0,−

vl,2
vl,1

]
and

[
−1/2,−

vr,2
vr,1

]
, where vj,k =

∫
vkKj(v)dv, 20

for j = l, r, c, k = 0, 1, 2, 3;
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(iii) the function g(τ), for τ ∈ [−1/2, 1/2], has a unique maximum point at τ = 0 with maxi-

mum value 1.

Proof. (i). It can be checked that

g′(τ) =





Kr(−τ) (vr,2 + vr,1τ)

vr,0vr,2 − v2r,1
, τ ∈ [−1/2, 0),

−Kl(−τ) (vl,2 + vl,1τ)

vl,0vl,2 − v2l,1
, τ ∈ [0, 1/2].

(1)

By the triangle inequality, we know that vr,0vr,2 − v2r,1 > 0. Therefore, the conclusions are valid25

by using the properties of Kr(−τ) and Kl(−τ).
(ii). This is a direct conclusion of formula (1).

(iii). This is a direct conclusion of the result in (ii). �

LEMMA 3. Under the assumptions of Theorem 1,

(i)30

‖âj − E(âj)‖L∞(Dhn/2,1→m0
) = O

{(
lnn

nhn

)1/2
}

(j = c, l, r),

(ii)

‖E(âj)− f‖L∞(Dhn/2,1→m0
) = O(h2n) (j = c, l, r),

(iii)

‖âj − f‖L∞(Dhn/2,1→m0
) = O

{
h2n +

(
lnn

nhn

)1/2
}

(j = c, l, r),

‖âj(sk + τhn)− f(sk + τhn)− dkhj(τ)‖L∞[−1/2,1/2] = O

{
h2n +

(
lnn

nhn

)1/2
}

(j = c, l, r),

where sk is the kth jump position.

Proof. (i). The proof of this result is the same of Theorem 3.1 in Gijbels et al. (2007). It is

therefore omitted here.35

(ii). Without loss of generality, we prove result (iii) in the case when j = r. Then

E {âr(x)} =
n∑

i=1

K∗
r

(
xi − x

hn

)
f(xi)

=

n∑

i=1

K∗
r

(
xi − x

hn

)
f(x+) +

∞∑

j=1

f (j)(x+)

j!
(xi − x)j





= f(x+) +
∞∑

j=1

f (j)(x+)

j!

n∑

i=1

K∗
r

(
xi − x

hn

)
(xi − x)j

= f(x+) +
h2nf

(2)(x+)

2

v2r,2 − vr,1vr,3

vr,0vr,2 − v2r,1
+ o(h2n).
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Because f (2)(x+) is assumed to be uniformly bounded in Dhn/2,1→m0
, the result (ii) can be

obtained from the above formula.

(iii). First, we prove the first formula in (iii). By the triangle inequality and the results (i) and

(ii), we have 40

‖âj − f‖L∞(Dhn/2,1→m0
) ≤ ‖âj − Eâj‖L∞(Dhn/2,1→m0

) + ‖Eâj − f‖L∞(Dhn/2,1→m0
) (2)

= O

{
h2n +

(
lnn

nhn

)1/2
}

(j = c, l, r).

Now, we prove the second formula in (iii). Let Y ′
i = Yi − dkI{xi>sk} = f(xi)− dkI{xi>sk} +

εi, for xi ∈ Dhn/2,k. The one-sided kernel estimator based on the new data {Y ′
i } is defined as

follows

â′j(x) =
n∑

i=1

Y ′
iK

∗
j

(
xi − x

hn

)

=
n∑

i=1

{
f(xi)− dkI{xi>sk} + εi

}
K∗

j

(
xi − x

hn

)

= âj(x)− dk

n∑

i=1

K∗
j

(
xi − x

hn

)
I{xi>sk}, j = l, r, c, x ∈ Dhn/2,k.

Because f(x)− dkI{x>sk} does not have any jumps in the region Dhn/2,k, by the formula (2),

we have 45

∥∥â′j(x)−
(
f(x)− dkI{x>sk}

)∥∥
L∞(Dhn/2,k)

=
∥∥∥âj(x)− f(x)− dkh̃j(x, sk)

∥∥∥
L∞(Dhn/2,k)

= O

(
h2n +

(
lnn

nhn

)1/2
)
,

j = r, l; k = 1, . . . ,m0

almost surely, where h̃j(x, sk) =
n∑

i=1
K∗

j

(
xi − x

hn

)
I{xi>sk} − I{x>sk}.

By combining this result with the ones in Lemma 1, we have

‖âj(sk + τhn)− f(sk + τhn)− dkhj(τ)‖L∞[−1/2,1/2]

≤
∥∥∥âj(sk + τhn)− f(sk + τhn)− dkh̃j(x, sk)

∥∥∥
L∞[−1/2,1/2]

+dk

∥∥∥h̃j(x, sk)− hj(τ)
∥∥∥
L∞[−1/2,1/2]

≤ O

{
h2n +

(
lnn

nhn

)1/2

+
1

nhn

}
= O

{
h2n +

(
lnn

nhn

)1/2
}

(j = c, l, r). �

LEMMA 4. Under the same assumptions of Theorem 1,

lim
n→∞

pr
(
Dhn/2,i ⊂ D̂ǫhn,i

)
= 1 (i = 1, . . . ,m0),

where ǫ > 1/2 is a constant.
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Proof. For an arbitrary positive number ǫ > 1/2, by the first formula in Theorem 2, we have50

|ŝi(m)− si| < (ǫ− 1/2)δn < (ǫ− 1/2)hn, (i = 1, . . . ,m0), (3)

almost surely when n is large enough, where δn = {(hn lnn)/n}
1/2−δ, for δ ∈ (0, 1/2), is de-

fined in Theorem 2. Expression (3) implies that

ŝi(m)− ǫhn < si − hn/2, ŝi(m) + ǫhn > si + hn/2,

almost surely when n is large enough. Thus,

[ŝi(m)− ǫhn, ŝi(m) + ǫhn] ⊃ [si − hn/2, si + hn/2]. �

LEMMA 5. Let ∆̂n(m) = JIC(m)− JIC(m0) and

∆n(m) =





nhnC

m0∑

j=m+1

d2j + P (n)

m0∑

j=m+1

1

|di|
γ , m < m0,

C0 (nhn lnn)
1/2 + (m−m0)CmP (n)

(
nhn
lnn

)γ/2

, m ≥ m0,

(4)

where C0, Cm > 0 are positive constants, Cm depends only on m, γ ≥ 0, and55

C =

0∫

−1/2





1/2∫

−τ

K∗
c (u)du





2

dτ +

1/2∫

0





−τ∫

−1/2

K∗
c (u)du





2

dτ. (5)

Then, under the assumptions of Theorem 3, we have almost surely

sup
m≥0

∣∣∣∆̂n(m)−∆n(m)
∣∣∣ = O (Rn) , (6)

where Rn = nh2n + P (n){lnn/(nhn)}
1/2.

Proof. To study the properties of JIC(m), we first notice that

SSR(m) =
n∑

i=1

{
Yi − f̂m(xi)

}2

=
n∑

i=1

{
f̂m(xi)− f(xi)

}2
+

n∑

i=1

ε2i − 2
n∑

i=1

εi

{
f̂m(xi)− f(xi)

}

= B1(m) +B2 +B3(m).

When m < m0, by the expression (28) and similar arguments to those when discussing A31

in the proof of Theorem 2, we have60

B1(m) =
m∑

j=1

∑

xi∈Dhn/2,j

{
f̂m(xi)− f(xi)

}2
+

m0∑

j=m+1

∑

xi∈Dhn/2,j

{
f̂m(xi)− f(xi)

}2

+
∑

xi∈Dhn/2,1→m0

{
f̂m(xi)− f(xi)

}2
= B11(m) +B12(m) +B13(m),
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where

B11(m) =
m∑

j=1

∑

xi∈Dhn/2,j

{
O

(
lnn

nhn

)
+ d2j

(
I{x>ŝj(m)} − I{x>sj}

)2}

= O (lnn) +O
{
(nhn lnn)

1/2
}
= O

{
(nhn lnn)

1/2
}
,

B12(m) =

m0∑

j=m+1

∑

xi∈Dhn/2,j

{
d2jh

2
c

(
x− sj
hn

)
+O

(
lnn

nhn

)}

= nhnC

m0∑

i=m+1

d2j +O (lnn) ,

B13(m) =
∑

xi∈Dhn/2,1→m0

O

(
lnn

nhn

)
= O

(
lnn

hn

)
.

The constant C above is defined in (5).

We can discuss the case m ≥ m0 similarly. So, we have the following result:

B1(m) =





nhnC

m0∑

i=m+1

d2j +O
{
(nhn lnn)

1/2
}
, m < m0

O
{
(nhn lnn)

1/2
}
, m ≥ m0.

(7)

Now,

SSR(m)− SSR(m0) = {B1(m)−B1(m0)} − 2

n∑

i=1

εiwi, (8)

where wi = f̂m(xi)− f̂m0
(xi). The first term B1(m)−B1(m0) on the right-hand-side of (8) 65

can be handled by (7). Next, we focus on the second term
n∑

i=1
εiwi. In the case when m < m0,

by (24) we have

wi =
{
f̂m(xi)− f(xi)

}
−
{
f̂m0

(xi)− f(xi)
}

=

m0∑

j=m+1

d̂j

{
n∑

k=1

I{xk>ŝj(m)}K
∗
c

(
xk − xi

hn

)
− I{xi>ŝj(m)}

}

= djhc(τi) +O

{(
lnn

nhn

)1/2
}

− dj

{
I{τi>(ŝj(m)−sj)/hn}

− I{τi>0}

}
,

where xi = sj + τihn/2 ∈ Dhn/2,j , τi ∈ [−1/2, 1/2], and j = m+ 1, . . . ,m0. In the above ex-

pression, we have used the result that wi = 0 when xi ∈ Dhn/2,m+1→m0
, which can be checked

easily by some calculations of f̂m(xi), f̂m0
(xi). Correspondingly, 70

n∑

i=1

εiwi =

m0∑

j=m+1

(Fj1 + Fj2 + Fj3) ,
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where

Fj1 = dj
∑

τi∈[−/2,1/2]

hc(τi)εi,

Fj2 =
∑

τi∈[−/2,1/2]

O

{(
lnn

nhn

)1/2
}
εi,

Fj3 = −dj
∑

τi∈[−/2,1/2]

{
I{τi>(ŝj(m)−sj)/hn}

− I{τi>0}

}
εi.

By the triangle inequality,

|Fj1| = O
{
(nhn)

1/2
}
,

|Fj2| ≤





∑

τi∈[−/2,1/2]

O

(
lnn

nhn

)


1/2
 ∑

τi∈[−/2,1/2]

ε2i




1/2

= O
{
(nhn lnn)

1/2
}
,

|Fj3| ≤ |dj |


 ∑

τi∈[−/2,1/2]

{
I{τi>(ŝj(m)−sj)/hn}

− I{τi>0}

}2



1/2
 ∑

τi∈[−/2,1/2]

ε2i




1/2

= O
{
(nhn lnn)

1/2
}

uniformly and almost surely. Thus, almost surely

n∑

i=1

εiwi = O
{
(nhn lnn)

1/2
}
. (9)

In the case when m ≥ m0, we have

wi =
m∑

j=m0+1

d̂j

{
n∑

k=1

I{xk>ŝj(m)}K
∗
c

(
xk − xi

hn

)
− I{xi>ŝj(m)}

}

= O

{(
lnn

nhn

)1/2
}
hc
{
τi|ŝj(m) = s∗j

}
+O

{(
lnn

nhn

)1/2
}
,

where ŝj(m), for j = m0 + 1, . . . ,m, are m−m0 spurious jumps and sj , for j = m0 +75

1, . . . ,m, are m−m0 points in Dhn/2,1→m0
. It can also be checked in this case that wi = 0

when xi ∈ Dhn/2,m0+1→m. Therefore, we have

n∑

i=1

εiwi =
m∑

j=m0+1

(Gj1 +Gj2) ,

where

Gj1 =
∑

τi∈[−/2,1/2]

O

{(
lnn

nhn

)1/2
}
hc
{
τi|ŝj(m) = s∗j

}
εi

Gj2 =
∑

τi∈[−/2,1/2]

O

{(
lnn

nhn

)1/2
}
εi.
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By some similar arguments to those in the case when m < m0, we have

|Gj1| ≤


 ∑

τi∈[−/2,1/2]

O

(
lnn

nhn

)
h2c
{
τi|ŝj(m) = s∗j

}


1/2
 ∑

τi∈[−/2,1/2]

ε2i




1/2

= O
{
(nhn lnn)

1/2
}
,

|Gj2| ≤





∑

τi∈[−/2,1/2]

O

(
lnn

n2h2n

)


1/2
 ∑

τi∈[−/2,1/2]

ε2i




1/2

= O
{
(lnn)1/2

}
.

Thus, 80

n∑

i=1

εiwi = O
{
(nhn lnn)

1/2
}

(10)

almost surely.

After combining formulas (7)-(10), we almost surely have

SSR(m)− SSR(m0) =





nhnC

m0∑

i=m+1

d2j + (nhn lnn)
1/2O(1), m < m0,

(nhn lnn)
1/2O(1), m ≥ m0,

(11)

and

SSR(m)

n
=





σ2 +O(hn), m < m0,

σ2 +O

{(
hn lnn

n

)1/2
}
, m ≥ m0.

(12)

Furthermore, by the formula (12) and Taylor expansion,

∆̂n(m) = n log

{
SSR(m)

SSR(m0)

}
+ P (n)

m∨m0∑

j=m∧m0+1

1∣∣∣d̂j(m)
∣∣∣
γ

= n

[
SSR(m)− SSR(m0)

SSR(m0)
+

{
SSR(m)− SSR(m0)

SSR(m0)

}2

O(1)

]

+P (n)

m∨m0∑

j=m∧m0+1

1∣∣∣d̂j(m)
∣∣∣
γ

=
SSR(m)− SSR(m0)

σ2
+ P (n)

m∨m0∑

j=m∧m0+1

1∣∣∣d̂j(m)
∣∣∣
γ +O(Rm),

where Rm is a remainder that may depend on m. 85
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When m < m0, Rm = nh2n. In such cases, by the formula (11), we have

∆̂n(m) =



nhn

C

σ2

m0∑

j=m+1

d2j + (nhn lnn)
1/2O(1)





+P (n)

m0∑

j=m+1

{
1

|dj |
γ +

(
lnn

nhn

)1/2

O(1)

}
+O(nh2n)

= ∆n(m) +O(R(l)
n ),

where R
(l)
n = nh2n + P (n)

(
lnn

nhn

)1/2

. Similarly, when m ≥ m0, Rm = hn lnn. In such cases,

by the formula (11), we have

∆̂n(m) = (nhn lnn)
1/2O(1) + (m−m0)P (n)

(
nhn
lnn

)γ/2 m∑

i=m0+1

1

Ci
+ hn lnnO(1)

= ∆n(m) +O(R(r)
n ),

where Ci = O(1) > 0, for i = m0 + 1, . . . ,m, and R
(r)
n = hn lnn. Let

Rn = max
(
R(l)

n , R(r)
n

)
= R(l)

n = nh2n + P (n)

(
lnn

nhn

)1/2

.

Then,90

sup
m≥0

∣∣∣∆̂n(m)−∆n(m)
∣∣∣ = O(Rn). �

2. PROOF OF THEOREM 1

By Lemma 3, we almost surely have

(
nhn
lnn

)1/2

‖Mn(x)‖L∞(Dhn/2,1→m0
) =

(
nhn
lnn

)1/2

‖âr(x)− âl(x)‖L∞(Dhn/2,1→m0
)

≤

(
nhn
lnn

)1/2

‖âr(x)− f(x)‖L∞(Dhn/2,1→m0
)

+

(
nhn
lnn

)1/2

‖âl(x)− f(x)‖L∞(Dhn/2,1→m0
)

= O(1).
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Similarly, we have

(
nhn
lnn

)1/2

‖Mn(sj + τhn)− djg(τ)‖L∞[−1/2,1/2]

≤

(
nhn
lnn

)1/2

‖âr(sj + τhn)− f(sj + τhn)− djhr(τ)‖L∞[−1/2,1/2]

+

(
nhn
lnn

)1/2

‖âl(sj + τhn)− f(sj + τhn)− djhl(τ)‖L∞[−1/2,1/2]

= O(1) (j = 1, 2, . . . ,m0),

where the equation holds almost surely and {hj : j = r, l} are defined in Lemma 1. This finishes

the proof. 95

3. PROOF OF PROPOSITION 1

First, we have

H = HC (I −HJ) +HJ

= HC +HJ −HCHJ . (13)

Therefore, tr (H) = tr (HC) + tr (HJ)− tr (HCHJ). The three terms on the right-hand-side of

this expression will be calculated separately below. First, from the expression of the local linear

estimator (cf., the expression given immediately after Assumption 2 in the paper), we have 100

âj(x) = lTj (x)Y, j = l, r, c; x ∈ [hn/2, 1− hn/2], (14)

where lj(x) = (l1,j(x), · · · , ln,j(x))
T

, and li,j(x) = K∗
j

(
xi − x

hn

)
. Then, we can decompose

HJ as HJ =
m∑

j=1

HJ,j , where

HJ,j = [0, . . . , 0, lr{ŝj(m)} − ll{ŝj(m)}, . . . , lr{ŝj(m)} − ll{ŝj(m)}]T ,

the 0 elements of HJ,j correspond to xi ≤ ŝj(m), and the remaing elements correspond

to xi > ŝj(m). By the properties of the local linear kernel estimators, we have tr (HJ,j) =
n∑

i=1
li,r{ŝj(m)} = 1, and the summation of all rows of HJ,j equals 0. Furthermore, we can obtain 105

tr (HJ) =
m∑

j=1

tr (HJ,j) = m, (15)

tr (HCHJ) = 0. (16)

By formula (14), we get

tr (HC) =
n∑

i=1

li,c(xi).

By some similar arguments as those in Lemma 1, we have

li,c(xi) =
1

nhn
K∗

c (0) + o

(
1

nhn

)
.
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So,

tr (HC) =
K∗

c (0)

hn
+ o

(
1

hn

)
. (17)

Finally by formulas (13), (15), (16) and (17), we have the result in the proposition.

4. PROOF OF THEOREM 2110

Proof of part (1). First, we focus on proving the first expression in the theorem in the case

when j = 1. By Theorem 1, we have

(
nhn
lnn

)1/2

‖Mn(x)−mn(x)‖L∞(D) = O(1) (18)

almost surely, where

mn(x) =

m0∑

j=1

gj

(
x− sj
hn

)
I{x∈Dhn/2,j}, x ∈ D,

and gj(τ) = djg(τ). Equivalently, we have

(
nhn
lnn

)1/2

‖ĝ∗(τ)− g∗(τ)‖L∞(Π) = O(1), a.s., (19)

where Π = [−1/2, 1/2], ĝ∗(τ) = |Mn (s1 + τhn) |, and g∗(τ) = mn (s1 + τhn). Actually,115

there exists a 1-1 mapping from x ∈ [0, 1] to τ ∈ Π by the linear transformation τ = (x−
s1)/hn, which shows the equivalence between (18) and (19). In the case when τ ∈ [−1/2, 1/2],
x ∈ [s1 − hn/2, s1 + hn/2] and g∗(τ) = g1(τ) = d1g(τ).

By Theorem 1, we can find a set A such that P (A) = 1 and for all ω ∈ A, the equality in the

formula (18) or (19) is true. Let ǫ > 0 be the same quantity as the one in Lemma 2 and let120

Wn,ǫ =

{
s1 − C1

(
lnn

nhn

)1/2

, s1 + C1

(
lnn

nhn

)1/2
}
,

and C1 = C/K∗
r (ǫ). Then, when n is large enough, Wn,ǫ ⊆ [s1 − ǫ, s1 + ǫ]. Also, there exists a

constant Dn > 0 such that

Dn = g∗(0)− sup
τ∈[−1/2,1/2]∩W c

n,ǫ

g∗(τ)

= g1(0)− g1

{
−C1

(
lnn

nhn

)1/2
}

= g′1(τ
∗)

{
C1

(
lnn

nhn

)1/2
}

≥ C

{(
lnn

nhn

)1/2
}
,

(20)

where τ∗ = −θC1{lnn/(nhn)}
1/2 and θ ∈ (0, 1). On the other hand, by Theorem 1 and the

definition of τ̂ = {ŝ1(m)− hn/2}/hn, for ω ∈ A, there always exist a positive integer N =
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N(ω) and a constant C > 0 such that when n > N , 125

g∗(0)− g∗(τ̂) = {g∗(0)− ĝ∗(0)}+ {ĝ∗(0)− ĝ∗(τ̂)}+ {ĝ∗(τ̂)− g∗(τ̂)}
≤ |g∗(0)− ĝ∗(0)|+ {ĝ∗(0)− ĝ∗(τ̂)}+ |ĝ∗(τ̂)− g∗(τ̂)|

<
C

2

(
lnn

nhn

)1/2

+ 0 +
C

2

(
lnn

nhn

)1/2

= C

(
lnn

nhn

)1/2

.

(21)

By combining (20) and (21), we have

g∗(τ̂) > sup
τ∈[−1/2,1/2]∩W c

n,ǫ

g∗(τ)

= g1

{
C

(
lnn

nhn

)1/2
}
, n > N, ω ∈ A.

This result indicates that τ̂ ∈ Wn,ǫ when n > N and ω ∈ A. Therefore, for each ω ∈ A, we can

find C > 0 such that
(
nhn
lnn

)1/2

|τ̂ | < C,

(
nhn
lnn

)1/2 ∣∣∣∣
ŝ1(m)− s1

hn

∣∣∣∣ < C, (22)

(
n

hn lnn

)1/2

|ŝ1(m)− s1| < C.

So, {n/(hn lnn)}
1/2 |ŝj(m)− sj | = O(1) almost surely when j = 1. According to our algo-

rithm, we’ll delete a ”tie” [ŝ1(m)− (1/2 + ǫ)hn, ŝ1(m) + (1/2 + ǫ)hn], ǫ > 0. By Lemma 4, 130

we know d2 will be the largest jump size in the rest region almost surely. Similarly the corre-

sponding results when j = 2, . . . ,m can be proved in the same way.

Next, we prove the second equation in the theorem. First, we have

(
nhn
lnn

)1/2 ∣∣∣d̂j(m)− dj

∣∣∣

≤

(
nhn
lnn

)1/2 ∣∣∣∣d̂j(m)− gj

{
ŝj(m)− sj

hn

}∣∣∣∣+
(
nhn
lnn

)1/2 ∣∣∣∣gj
{
ŝj(m)− sj

hn

}
− dj

∣∣∣∣
= B1 +B2.

By Theorem 1, we have B1 = O(1) almost surely, and by Lemma 2, we have
∣∣∣∣gj
{
ŝj(m)− sj

hn

}
− dj

∣∣∣∣ =
∣∣∣∣gj
{
ŝj(m)− sj

hn

}
− gj(0)

∣∣∣∣

≤ djK
∗
r (0)

∣∣∣∣
ŝj(m)− sj

hn

∣∣∣∣ , (23)

where gj(τ) = djg(τ), and the last inequality is due to Lemma 2. After combining formulas (22) 135

and (23), we have

B2 ≤ djK
∗
r (0)

(
nhn
lnn

)1/2 ∣∣∣∣
ŝj(m)− sj

hn

∣∣∣∣ ≤ C.

So, the second equation is true.
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Next, we prove the last two equations. First,

f̂m(x)− f(x) =
n∑

i=1

Y ′
iK

∗
c

(
xi − x

hn

)
+ f̂J,m(x)− f(x)

=
n∑

i=1

{
fC(xi) + fJ(xi) + εi − f̂J,m(xi)

}
K∗

c

(
xi − x

hn

)
(24)

+f̂J,m(x)− [fC(x) + fJ(x)]

= A1(x) +A2(x) +A3(x),

where

A1(x) =

n∑

i=1

{fC(xi) + εi}K
∗
c

(
xi − x

hn

)
− fC(x),

A2(x) =

m0∑

j=1

dj

{
n∑

i=1

I{xi>sj}K
∗
c

(
xi − x

hn

)
− I{x>sj}

}
,

A3(x) = −
m∑

j=1

d̂j(m)

{
n∑

i=1

I{xi>ŝj(m)}K
∗
c

(
xi − x

hn

)
− I{x>ŝj(m)}

}
.

Furthermore, by Lemmas 1 and 3, and by Assumption 1,140

A1(x) =

{
h2n +

(
lnn

nhn

)1/2
}
O(1), x ∈ D, (25)

A2(x) =





djhc

(
x− sj
hn

)
+O

(
1

nhn

)
, x ∈ Dhn/2,j , 1 ≤ j ≤ m0

0, x ∈ Dhn/2,1→m0
.

(26)

The term A3(x) is a little more complicated to handle, and we decompose it into

A3(x) =

{
A31(x) +A32(x) +A33(x) +A34(x), x ∈ Dhn/2,j , 1 ≤ j ≤ m

0, x ∈ Dhn/2,1→m,

where

A31(x) = −d̂j(m)
n∑

i=1

{
I{xi>ŝj(m)} − I{xi>sj}

}
K∗

c

(
xi − x

hn

)
= O

{(
lnn

nhn

)1/2
}
,

A32(x) =
{
d̂j(m)− dj

}{
I{x>ŝj(m)} − I{x>sj}

}
= O

{(
lnn

nhn

)1/2
}
,

A33(x) = dj

{
I{x>ŝj(m)} − I{x>sj}

}
,

A34(x) = −d̂j(m)

{
n∑

i=1

I{xi>sj}K
∗
c

(
xi − x

hn

)
− I{x>sj}

}

= −djhc

(
x− sj
hn

)
+O

{(
lnn

nhn

)1/2
}
.
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So we have

A3(x) =





−djhc

(
x− sj
hn

)
+O

{(
lnn

nhn

)1/2
}

+ dj

{
I{x>ŝj(m)} − I{x>sj}

}
,

x ∈ Dhn/2,j , 1 ≤ j ≤ m

0, x ∈ Dhn/2,1→m.

(27)

After combining formulas (24)-(27), we get the following expression 145

f̂m(x)− f(x) =





O

{(
lnn

nhn

)1/2
}

+ dj

{
I{x>ŝj(m)} − I{x>sj}

}
,

x ∈ Dhn/2,j , j = 1, . . . ,m,

djhc

(
x− sj
hn

)
+O

{(
lnn

nhn

)1/2
}
, x ∈ Dhn/2,j , j = m+ 1, . . . ,m0,

O

{(
lnn

nhn

)1/2
}
, x ∈ Dhn/2,1→m0

,

(28)

where the equation is valid almost surely and uniformly in x. Let ǫ > 0 be an arbitrarily small

positive number. Then, by the first formula in Theorem 2, we have ŝj(m) ∈ [sj − ǫδn, sj + ǫδn]
almost surely when n is large enough, where δn is defined in Theorem 2. So, the following result

is true almost surely and uniformly when n is large enough:

I{x>ŝj(m)} − I{x>sj} = 0, when x ∈ D\Dδn,j . (29)

By (28) and (29), the last two conclusions in the first part of the theorem. 150

Proof of part (2). When m ≥ m0, by some similar arguments for (28), we have

f̂m(x)− f(x) =





O

{(
lnn

nhn

)1/2
}

+ dj

{
I{x>ŝj(m)} − I{x>sj}

}
,

x ∈ Dhn/2,j , j = 1, . . . ,m0

O

{(
lnn

nhn

)1/2
}
, x ∈ Dhn/2,1→m0

.

The remaining results can be shown easily by similar arguments to those in the case when m <
m0.

5. PROOF OF THEOREM 3

By Lemma 5, we can find a set A such that P (A) = 1, and for all ω ∈ A the equality (6) holds. 155

By the definition of ∆̂n(m) in Lemma 5, functions ∆̂n and JIC(m) have the same minimizer m̂.

Further, by the formula (4), given any neighbourhood

Wn,ǫ =

(
m0 − ǫ

Rn

Kn
,m0 + ǫ

Rn

Kn

)
,
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where Rn is the same as in Lemma 5 and Kn = min

{
nhn, P (n)

(
nhn
lnn

)γ/2
}

, there exists a

constant Dn > 0 such that

Dn = inf
W c

n

∆n(m)−∆n(m0)

=

⌈
ǫ
Rn

Kn

⌉
[Kn + o (Kn)]

= ǫRn + ǫRno(1) +

(⌈
ǫ
Rn

Kn

⌉
− ǫ

Rn

Kn

)
{Kn + o (Kn)}

≥ ǫRn,

(30)

where the term o (Kn) is positive according to the definition of ∆n, and ⌈x⌉ denotes the mini-160

mum integer larger than or equal to x.

On the other hand, according to Lemma 5 and the definition of m̂, for ω ∈ A, there always

exists a positive integer N = N(ω) such that when n > N ,

∆n(m̂)−∆n(m0) = {∆n(m̂)− ∆̂n(m̂)}+ {∆̂n(m̂)− ∆̂n(m0)}+ {∆̂n(m0)−∆n(m0)}

≤
∣∣∣∆n(m̂)− ∆̂n(m̂)

∣∣∣+ {∆̂n(m̂)− ∆̂n(m0)}+
∣∣∣∆̂n(m0)−∆n(m0)

∣∣∣
< ǫRn/2 + 0 + ǫRn/2 = ǫRn.

(31)

By combining (30) and (31), we have

∆n(m̂) < inf
W c

n

∆n(m),when n > N,ω ∈ A,

which implies that m̂ ∈ Wn,ǫ when n > N and ω ∈ A. The result in the theorem is then proved.165

6. PROOF OF THEOREM 4

The final estimators ŝj , d̂j and f̂(·) can be written as the following compound forms:

ŝj =
∑

m∈M

ŝj(m)I{m̂=m}, (32)

d̂j =
∑

m∈M

d̂j(m)I{m̂=m}, (33)

f̂(·) =
∑

m∈M

f̂m(·)I{m̂=m}, (34)

where M = {0, 1, 2, · · · }. The first two results in Theorem 4 can be proved in the same way as

that in Theorem 2. Next, we will prove the third result.

By Theorems 2-3, we can find a set A satisfying P (A) = 1 such that for all ω ∈ A, the fol-170

lowing two equations hold:

m̂(ω) = m0, n ≥ N(ω), ω ∈ A, (35)
(
nhn
lnn

)1/2 ∥∥∥f̂m0
(x)− f(x)

∥∥∥
L∞(Dδn,1→m0

)
= O(1), (36)
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where N(ω) is a positive integer relying on ω ∈ A. By combining formulas (34) and (35), we

have

f̂(x) =
∑

m∈M

f̂m(x)I{m̂=m} = f̂m0
(x), n > N(ω), ω ∈ A.

By combining this result and the one in the formula (36), we have

(
nhn
lnn

)1/2 ∥∥∥f̂(x)− f(x)
∥∥∥
L∞(Dδn,1→m0

)
= O(1), ω ∈ A.

7. DERIVATION OF THE BAYESIAN INFORMATION CRITERION (15) 175

The Bayesian information criterion was originally suggested for parametric models as an

asymptotic approximation to a transformation of the Bayesian posterior probability of a can-

didate model (cf., Schwarz, 1978; Yao, 1988; Zhang & Siegmund, 2007; Hannart & Naveau,

2012). For the nonparametric jump regression model (1) with an unknown number of jumps, as

shown in Proposition 1 and the related discussion afterwards, it seems impossible to define this 180

criterion in the same way as in parametric cases. So, we define the criterion here for the non-

parametric model (1) by focusing on the jump estimation part alone and by treating the resulting

model as a parametric model, as described below.

As described in Subsection 2.2, our procedure for estimating model (1) consists of three steps

in cases when the number of jumps m is assumed known. First, the jump location estimators 185

ŝj(m) and the corresponding jump size estimators d̂j(m) are defined based on the two one-

sided estimators âl(·) and âr(·). Second, the estimator of the continuity part f̂C,m(x) is obtained

using the data Yi,m, i = 1, . . . , n. Third, the estimator of f(x) is defined as the summation of

the estimated continuity and jump parts obtained in the first two steps. Here, we notice that

estimators ŝj(m) and f̂C,m(x) are based on âj(x), j = l, c, r. By Proposition 1, the resulting 190

model complexity is in the order of O(1/hn). However, if we focus on the estimation of the

jump size dj alone and treating the estimators ŝj(m) and f̂C,m(x) as given beforehand, then the

estimation problem becomes parametric. Next, we will derive the BIC criterion in such cases.

Let Y ∗
i,m = Yi − f̂C,m(x), for each i. Because all estimators ŝj(m) and f̂C,m(x) are consistent

estimators (cf., Theorem 2), we have the following expression: 195

Y ∗
i,m =

m∑

j=1

djI{xi>ŝj(m)} + ǫi,n (i = 1, . . . , n), (37)

where ǫi,n are random errors that may depend on n and have an asymptotic mean of 0. Next,

we partition the interval [0, 1] into M = [1/hn] mutually disjoint intervals Dhn/2,rk = [rk −
hn/2, rk + hn/2], for k = 1, . . . ,M , where there are m intervals containing a true jump point

each. Without loss of generality, we assume that the first m intervals contain jumps and rj = ŝj ,
for j = 1, . . . ,m. So, for design points in the first m intervals, model (37) becomes 200

Y ∗
i,m = g(rj) + djI{xi>rj} + ǫi,n, xi ∈ Dhn/2,rj , j = 1, . . . ,m, (38)

where g(x) =
∑m

j=1 djI{x>ŝj(m)}. In cases when the design points belong to the last M −m

intervals, model (37) becomes

Y ∗
i,m = g(rj) + ǫi,n, xi ∈ Dhn/2,rj , j = m+ 1, . . . ,M. (39)
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It should be pointed out that the dj’s are estimated sequentially. Namely, at the time when we

estimate dj , {d1, . . . , dj−1} have all be estimated. So, in (38), the term g(rj) can be assumed

known.205

Let F be the σ-field expanded from {Y ∗
i,m, ŝj(m), 1 ≤ i ≤ n, 1 ≤ j ≤ m}, B denote the event

that the model (37) is valid, and Bj denote the event that the jth local model defined by (38) and

(39) is true. By the independence among the local models, the posterior probability of B can be

expressed as

pr (B | F) = pr (∩Bj | F) =
M∏

j=1

pr (Bj | F) .

By using the results in Lemma 6 below about the quantity Pr (Bj | F), we have210

−2 log Pr (B | F) =

M∑

j=1

−2 log Pr (Bj | F)

≈
m∑

j=1

{
nhn log(2πσ

2) +
SSRj,1

σ2
+ lognhn

}

+
M∑

j=m+1

{
nhn log(2πσ

2) +
SSRj,0

σ2

}

≈ n log(2πσ2) +
SSR(m)

σ2
+m log(nhn),

where

SSRj,0 =
{
y(j) − g(rj)1Nh

}T {
y(j) − g(rj)1Nh

}
,

SSRj,1 =
{
y(j) − g(rj)1Nh

−Xj d̂j

}T {
y(j) − g(rj)1Nh

−Xj d̂j

}
,

y(j) is the vector of all y observations in Dhn/2,rj , 1Nh
is the Nh-dimensional vector

with all elements equal to 1, Nh is the number of observations in Dhn/2,rj , and Xj =

(I{x1>rj}, . . . , I{xNh
>rj})

T . After a constant is ignored, a Bayesian information criterion can

be defined as215

BIC∗(m) = SSR(m)/σ2 +m log(nhn). (40)

In practice, because σ2 is often unknown, the above definition is usually replaced by the follow-

ing equivalent definition:

BIC(m) = n log {SSR(m)/n}+m log(nhn) (41)

The equivalence between BIC∗(m) and BIC(m) in (40) and (41) can be briefly explained be-

low. Let ∆SSR(j − 1) = SSR(j)− SSR(j − 1), and LR(j, j − 1) = ∆SSR(j − 1)/SSR(j −
1). Then,220

BIC(j)− BIC(j − 1) = n log {1 + LR(j, j − 1)}+ log(nhn)
= n [LR(j, j − 1) + o {LR(j, j − 1)}] + log(nhn)

≈
∆SSR(j − 1)

σ2
+ log(nhn)

= BIC∗(j)− BIC∗(j − 1).

(42)
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In the second equality of the above expressions, results in (12) have been used. Expressions in

(42) guarantee that BIC∗(m) and BIC(m) would have the same asymptotical minimum value m̂
and the same convergence rate of m̂. But, BIC(m) does not depend on σ2 directly, and thus is

more convenient to use in practice.

LEMMA 6. Let y(j) be the vector of observations in Dhn/2,rj , 1Nh
be the Nh-dimensional 225

vector with all elements equal to 1, INh
be the Nh ×Nh identity matrix, Nh is the number

of observations in Dhn/2,rj , and Xj = (I{x1>rj}, . . . , I{xNh
>rj})

T . If we assume that y(j) ∼

NNh
(g(rj)1Nh

+Xjθj , σ
2INh

), where θj = dj , for 1 ≤ j ≤ m, and θj = 0, otherwise. Then,

we have:

(1). when m < j ≤ M , 230

−2 log pr (Bj | F) ≈ nhn(2πσ
2) +

{
y(j) − g(rj)1Nh

}T {
y(j) − g(rj)1Nh

}
/σ2,

(2). when 1 ≤ j ≤ m,

−2 log pr (Bj | F)

≈ nhn(2πσ
2) +

{
y(j) − g(rj)1Nh

−Xj θ̂j

}T {
y(j) − g(rj)1Nh

−Xj θ̂j

}
/σ2 + log(nhn).

Outline of the Proof:

Let ξ(y(j)) be the marginal distribution of y(j). Then pr (Bj | F) = ξ−1(y(j))pr(y(j) | Bj). In

cases when m < j ≤ M , it is easy to obtain (i) from the normality assumption, after ξ−1(y(j))
is ingored. In cases when 1 ≤ j ≤ m, we have 235

pr(y(j) | Bj) =

∫
L(dj | y)π(dj)ddj , (43)

where π(dj) is a prior distribution on dj . First, it can be checked that the maximum likelihood

estimate of dj is d̂j =
∑

xi>rj

yi/(Nh/2)− g(rj), by maximizing the likelihood function

L(dj | y
(j)) =

(
2πσ2

)−Nh/2 exp

[
−

{
y(j) − g(rj)1Nh

−Xjdj
}T {

y(j) − g(rj)1Nh
−Xjdj

}

2σ2

]
.

(44)

By Laplace approximation, we have

logL(dj | y
(j)) ≈ logL

(
d̂j | y

(j)
)
+

{
∂ logL(dj | y

(j))

∂dj

}

dj=d̂j

(
dj − d̂j

)

+
1

2

{
∂2 logL(dj | y

(j))

∂d2j

}

dj=d̂j

(
dj − d̂j

)2

= logL
(
d̂j | y

(j)
)
−

1

2

{
nhnI(d̂j , y

(j))
}(

dj − d̂j

)2
,

where I(d̂j , y
(j)) = 1/σ2. Furthermore, we have the approximation

∫
L(dj | y

(j))π(dj)ddj ≈

∫
L(d̂j | y

(j)) exp

[
−
1

2

{
nhnI(d̂j , y

(j))
}(

dj − d̂j

)2]
π(dj)ddj

= L(dj | y
(j)) (2π)1/2

∣∣∣nhnI(d̂j , y(j))
∣∣∣
−1/2

.

(45)
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After combining formulas (43) and (45), we have240

−2 log pr(y(j) | Bj) ≈ −2 log

{
L(d̂j | y

(j)) ·

(
2π

nhn

)1/2 ∣∣∣I(d̂j , y(j))
∣∣∣
−1/2

}

≈ −2 logL(d̂j | y
(j)) + log(nhn) ≈ −2 log pr(Bj | F).

(46)

In the last approximation of the above expressions, a term only depending on y(j) has been

ignored. Then, the result (ii) can be obtained from the combination of (46) and (44).
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