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Abstract

Multivariate longitudinal data are common in medical, industrial and social science research.

However, statistical analysis of such data in the current literature is restricted to linear or para-

metric modeling, which is inappropriate for applications in which the assumed parametric models

are invalid. On the other hand, all existing nonparametric methods for analyzing longitudinal

data are for univariate cases only. When longitudinal data are multivariate, nonparametric

modeling becomes challenging, because we need to properly handle the association among the

observed data across different time points and across different components of the multivariate

response as well. Motivated by a real data from the National Hearth Lung and Blood Institute,

this paper proposes a nonparametric modeling approach for analyzing multivariate longitudinal

data. Our method is based on multivariate local polynomial smoothing. Both theoretical and

numerical results show that it is useful in various cases.

Keywords: Longitudinal Data, Local Polynomial Regression, Multivariate Regression, Cluster

Data.

1 Introduction

Some nonparametric methods have been proposed in the literature for the analysis of longi-

tudinal data. Most of them restrict their attention to the analysis of one single outcome variable

measured repeatedly over time. However, experiments in medical, industrial and social science

research are often complex and characterized by several outcomes measured repeatedly over time.

This paper focuses on statistical modeling of multivariate longitudinal data that are obtained from

such experiments.

The example that motivates our research is the SHARe Framingham Heart Study of the Na-

tional Hearth Lung and Blood Institute (cf., Cupples et al., 2007), in which 1826 participants were
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followed 7 times each at different ages. Multiple medical indices that are all important risk factors

of stroke, including the systolic blood pressure (mmHg), diastolic blood pressure (mmHg), total

cholesterol level (mg/100ml), and glucose level (mg/100ml), were measured at each time for each

participant, and it was the interest of the medical researchers to know how these indices change

over time. Similar studies have been reported in the literature. See, for instance, Godleski et al.

(2000), Roy and Lin (2000), and Fieuws and Verbeke (2006).

In the literature, there is some existing research about statistical analysis of multivariate lon-

gitudinal data. However, almost all of them assume that the mean response follows a parametric

model (cf. Gray and Brookmeyer, 2000; O’Brien and Fitzmaurice, 2004), or the error term fol-

lows a given parametric distribution (cf. Coull and Staudenmayer, 2004; Fieuws and Verbeke, 2006;

Roy and Lin, 2000). In cases when all the model assumptions are valid, these methods should be

effective. But, in practice, it is often difficult to obtain sufficient prior information for specifying

the parametric models properly. There is some existing research on nonparametric or semipara-

metric modeling of longitudinal data. See, for instance, Liang and Zeger (1986), Lin and Carroll

(2000), Lin and Carroll (2001), Wang (2003), Fitzmaurice et al. (2004), Weiss (2005), Chen and Jin

(2005) and Li (2011). All such existing nonparametric or semiparametric methods are for analyzing

univariate longitudinal data. So far, we have not found any existing research on nonparametric

modeling of multivariate longitudinal data.

In this paper, we develop a nonparametric modeling approach for analyzing multivariate longi-

tudinal data. By our approach, possible correlation among different components of the response is

properly accommodated, along with possible correlation across different time points. Our method

is based on local polynomial kernel smoothing. It is described in detail in Section 2. In section

3, some of its theoretical properties are discussed. In section 4, a simulation study is presented.

Furthermore, our method is applied to the real data of the SHARe Framingham Heart Study in

that section. Some concluding remarks are given in Section 5. Some technical details are provided

in an appendix.

2 Proposed Method

Assume that yij = (yij1, yij2, . . . , yijq)
T are q-dimensional response observed at the jth time

point tij from the ith subject, for j = 1, 2, . . . , J and i = 1, 2, . . . , n. Further, yij is assumed to
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follow the multivariate nonparametric regression model

yij = m(tij) + εij , j = 1, 2, ...J, i = 1, 2, ...n, (1)

where m(tij) = (m1(tij),m2(tij), . . . ,mq(tij))
T denotes the mean of yij , and εij = (εij1, . . . , εijq)

T

is the q-dimensional random error. Let

Yi = (yi1, . . . ,yiJ)
T , εi = (εi1, . . . , εiJ)

T ,

vec(Yi) be a long vector created by connecting all columns of Yi one after another, and vec(εi)

be a long vector created from the columns of εi in the same way. Then, Yi and εi are J × q

matrices, and vec(Yi) and vec(εi) are Jq-dimensional long vectors. In model (1), we assume that,

for i = 1, 2, . . . , n,

E(vec(εi)|ti1, . . . , tiJ) = 0, (2)

and

Cov(vec(εi)|ti1, . . . , tiJ) = Cov(vec(Yi)|ti1, . . . , tiJ) =: Vi, (3)

where Vi is the conditional covariance matrix of vec(Yi) containing q × q sub-matrices. Each sub-

matrix is a J × J matrix. The diagonal sub-matrices measure the correlation among different

components of the response at individual time points for the ith subject, and the off-diagonal sub-

matrices measure the correlation among response vectors at different time points. Therefore, model

(1) is quite general that accommodates the correlation among the observed data across different

time points and across different components of the multivariate response vector as well.

To estimate model (1), we consider using the local polynomial kernel smoothing approach

that has been used in the literature for handling cases with univariate longitudinal data (e.g.,

Lin and Carroll 2001, Wang 2003, Chen and Jin 2005). With multivariate longitudinal data, it

would be much more complicated to use this approach with the possible correlation among different

components of the response accommodated. To this end, let us first define some notations. In this

paper, we use diag{ajl, j = 1, ...J, l = 1, ..., q} to denote a diagonal matrix with the [j + (l− 1)J ]th

diagonal element to be ajl. The inverse of a matrix throughout this paper means the Moore-

Penrose generalized inverse of the matrix, and t denotes an arbitrary but fixed interior point of

the domain of tij . The kernel function is denoted by K(·) which is chosen to be a symmetric

density function with support [-1,1]. Typical choices of K(·) are the Epanechnikov kernel K(u) =

0.75(1 − u2)I(|u| ≤ 1) and the uniform kernel K(u) = 0.5I(|u| ≤ 1), where I(·) is the indicator
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function. Define Kh(u) = K(u/h)/h, where h is a bandwidth. In multivariate setting, we need to

use a q-dimensional bandwidth vector H for the q components of the response to allow different

degrees of smoothing in different components. Let H = (h1, ..., hq)
T ,

KiH = diag{Khl
(tij − t), j = 1, ..., J, l = 1, ...q}

and

Wi =

(
K

− 1
2

iH V̂iK
− 1

2
iH

)−1

= K
1
2
iH

(
ĨiV̂iĨi

)−1
K

1
2
iH ,

where V̂i is an estimator of Vi, and

Ĩi = diag {I (Khl
(tij − t) > 0) , j = 1, ...J, l = 1, ..., q}

= diag {I (|tij − t| ≤ hl) , j = 1, ...J, l = 1, ..., q} .

For a positive integer p, let us consider the pth order local polynomial kernel smoothing procedure

min
vec(β)∈Rq(p+1)

n∑

i=1

[vec(Yi)− (Iq ⊗Xi)vec(β)]
T Wi [vec(Yi)− (Iq ⊗Xi)vec(β)] , (4)

where ⊗ denotes the Kronecker product, and

Xi =




1 (ti1 − t) . . . (ti1 − t)p

...
...

. . .
...

1 (tiJ − t) . . . (tiJ − t)p




J×(p+1)

, β =




β
(1)
0 . . . β

(q)
0

...
. . .

...

β
(1)
p . . . β

(q)
p




(p+1)×q

.

In (4), the possible correlation among different response components has been accommodated by

using Wi =

(
K

− 1
2

iH V̂iK
− 1

2
iH

)−1

. It can be checked that, in cases when we know that the q response

components are independent of each other (i.e., Vi and V̂i are block diagonal matrices), the proce-

dure (4) is equivalent to applying the univariate method by Chen and Jin (2005) to each component

of the response vector.

It can be checked that the solution of (4) is

v̂ec(β) =

[
n∑

i=1

(Iq ⊗Xi)
TWi(Iq ⊗Xi)

]−1 [ n∑

i=1

(Iq ⊗Xi)
TWivec(Yi)

]
. (5)

Then, the pth order local polynomial kernel estimators of m(k)(t) = (m
(k)
1 (t), . . . ,m

(k)
q (t))T , for

k = 0, ..., p, are

m̂(k)(t) = k!v̂ec(β)
T
(Iq ⊗ ek+1), (6)
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where ek+1 is a (p+ 1)-dimensional vector that has the value of 1 at the (k + 1)th position and 0

at all other positions. In the special case when k = 0, (6) becomes to be

m̂(0)(t) = v̂ec(β)
T
(Iq ⊗ e1)

and it is the pth order local polynomial kernel estimator of m(t).

In (4), we need to provide a reasonable estimator V̂i of the covariance matrix Vi. In practice,

for each subject, if there are replicated observations at each time point, then Vi can be estimated

by their empirical estimators (i.e., sample covariance matrices). Otherwise, some assumptions on

Vi are necessary. For instance, if it is reasonable to assume that Vi are the same for all i, then the

common covariance matrix can be estimated by the the method described as follows. First, we use

the local linear kernel smoothing procedure to estimate individual components of m(·) separately,
using the Epanechnikov kernel function and the bandwidths determined by the conventional cross-

validation (CV) procedure. The estimators are denoted as m̃(·) = (m̃1(·), ..., m̃q(·)). Then, we

compute the residuals

ε̃ijl = yijl − m̃l(tij), i = 1, 2, . . . , n, j = 1, 2, . . . , J, l = 1, 2, . . . , q.

The ([(l−1)J+j], [(s−1)J+k])th element of Vi can be estimated by the following kernel estimator

Ĉov(εijl, εiks) =





∑n
v=1 ε̃vjlε̃vksK

(
tvj−tij

gl

)
K
(

tvk−tik
gs

)

∑n
v=1 K

(
tvj−tij

gl

)
K
(

tvk−tik
gs

) , j 6= k or l 6= s;

∑n
v=1 ε̃

2
vjl

K
(

tvj−tij

gl

)

∑n
v=1 K

(
tvj−tij

gl

) , j = k, l = s.

(7)

where gl is the bandwidth for the response component l, j, k = 1, 2, . . . , J , and l, s = 1, 2, . . . , q.

In (7), we can still use the Epanechnikov kernel function, and the bandwidths (g1, ..., gJ)
T can be

chosen as follows. Define new data

y∗ijl = ε̃2ijl, i = 1, 2, . . . , n, j = 1, 2, . . . , J, l = 1, 2, . . . , q.

Then, the mean of y∗
ij = (y∗ij1, y

∗
ij2, . . . , y

∗
ijq)

T is a good approximation of the variance of yij ,

denoted as σ2(tij). Then, we can use the CV procedure to choose the bandwidths for the local

linear kernel smoothing of the new data when the Epanechnikov kernel function is used. The

resulting bandwidths can be used as the chosen values of (g1, ..., gJ)
T . To specify Vi properly, we

can also consider the method to use a time series model (e.g., an ARMA model) for specifying the
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possible correlation of the observed data across different time points, as mentioned by Chen and Jin

(2005) in univariate cases.

In certain applications, it is possible that some response components are not measured, or their

values are missing, at some time points. To handle such cases, our proposed method should be

modified accordingly, described as follows. Let δijl be a binary variable taking the value of 0 when

the observation of the lth component of y(tij) is missing and 1 otherwise. Define

∆i = diag{δijl, j = 1, ..., J, l = 1, ...q}.

Then, the quantity Ĉov(εijl, εiks) in (7) should be changed to

Ĉov
′
(εijl, εiks) =





∑n
v=1 ε̃vjlε̃vksδvjlδvksK

(
tvj−tij

gl

)
K
(

tvk−tik
gs

)

∑n
v=1 K

(
tvj−tij

gl

)
δvjlδvksK

(
tvk−tik

gs

) , j 6= k or l 6= s;

∑n
v=1 ε̃

2
vjl

δvjlK
(

tvj−tij

gl

)

∑n
v=1 δvjlK

(
tvj−tij

gl

) , j = k, l = s.

(8)

The resulting estimator of Vi is denoted as V̂ ′
i . Then, the formula (5) should be modified to

v̂ec(β)
′

=

[
n∑

i=1

(Iq ⊗Xi)
T∆iW

′
i∆i(Iq ⊗Xi)

]−1 [ n∑

i=1

(Iq ⊗Xi)
T∆iW

′
i∆ivec(Yi)

]
, (9)

where

W ′
i =

(
K

− 1
2

iH ∆iV̂
′
i∆iK

− 1
2

iH

)−1

= K
1
2
iH

(
Ĩi∆iV̂

′
i∆iĨi

)−1
K

1
2
iH .

Finally, the pth order local polynomial kernel estimators of m(k)(t), for k = 0, ..., p, can still be

computed by (6), after v̂ec(β) is replaced by v̂ec(β)
′

in (9). The resulting estimators are denoted

as m̂(k)′(t).

3 Asymptotic Properties

In this section, we study the theoretical properties of our proposed method described in the

previous section. These properties requires some regularity conditions on the local distribution of

the design points, which are first described along with the necessary notations.

Let Ωv, for 1 ≤ v ≤ 2J − 1, be the 2J − 1 distinct non-empty subsets of {1, ..., J}, and B(t, δ)

denote the interval [t − δ, t + δ]. Assume that the design points (ti1, ..., tiJ)
T , for i = 1, ..., n, are

independent and identically distributed, and that their partial density at any given point t in the
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design space exists. The concept of partial density was discussed in Chen and Jin (2005), and it

says that there exists a constant δ0 > 0 such that, for all u ∈ B(t, δ0) and all v = 1, ..., 2J − 1, we

have

Pr {t1j ∈ B(u, δ), and the elements in {t1j , j ∈ Ωv} are all equal, and t1j1 6= t1j if j1 /∈ Ωv and j ∈ Ωv}

=
∫ δ

−δ
fv(z + u)dz

= Pr{t1j ∈ B(u, δ) for all j ∈ Ωv, and t1j /∈ B(u, δ) for all j /∈ Ωv}+ o(δ)

for all 0 < δ < 2δ0, where fv(.), for 1 ≤ v ≤ 2J − 1, are nonnegative continuous functions on

B(t0, 2δ0) such that
∑2J−1

v=1 fv(z) > 0 for all z ∈ B(t, 2δ0). This condition ensures that the chance

for two design points to take values both in a small neighborhood of t is negligible unless they

belong to the same Ωv.

Let Sv(0) = {t1j = t for all j ∈ Ωv, and t1j 6= t for all j /∈ Ωv}, and define

ξ(sk)v = E{(ẽs ⊗ 10)
T (Ĩv0V̂1Ĩv0)

−1(ẽk ⊗ 10)|Sv(0)}, for s, k = 1, ..., q,

where Ĩv0 = Iq⊗diag{I(1 ∈ Ωv), ..., I(J ∈ Ωv)} is a qJ×qJ nonrandom matrix, ẽk is a q-dimensional

vector with 1 at the kth position and 0 at all other positions, and 10 is a J-dimensional vector with

all components equal to 1. We further define

V0(t) = Cov(vec(ε1)|t11 = t, . . . , t1J = t)

ξ̃(sk)v (t) = E{(ẽs ⊗ 10)
T (Ĩv0V̂1Ĩv0)

−1V0(t)(Ĩv0V̂1Ĩv0)
−1(ẽk ⊗ 10)|Sv(0)}

ξ̄
(sk)
v,l1l2

(t) = E{(ẽs ⊗ 10)
T (Ĩv0 V̂1Ĩv0)

−1(El1 ⊗ IJ)V0(t)(El2 ⊗ IJ)(Ĩv0 V̂1Ĩv0)
−1(ẽk ⊗ 10)|Sv(0)},

where El is a q×q matrix with a single 1 at the lth diagonal position and with 0 at all other positions,

for l = 1, ..., q. Set hmax = max{h1, ..., hq}, and assume that hl = clhmax, where 0 < cl ≤ 1 are

constants, for l = 1, ..., q. Define

µj(hs, hk) = (hshk)
− 1

2

∫
zjK

1
2 (hmaxz/hs)K

1
2 (hmaxz/hk)dz

νj(hs, hk, hl1 , hl2) = (hshkhl1hl2)
− 1

2

∫
zjK

1
2 (hmaxz/hs)

× K
1
2 (hmaxz/hk)K

1
2 (hmaxz/hl1)K

1
2 (hmaxz/hl2)dz,

ν
(sk)
m+l,v(t) =

q∑

l1,l2=1

ξ̄
(sk)
v,l1l2

(t)νm+l(hs, hk, hl1 , hl2).

Then, it can be checked that µj(hs, hk) = O(h−1
max) and νj(hs, hk, hl1 , hl2) = O(h−2

max) for any

s, k, l1, l2 ∈ {1, ..., q}. Let S and S̄ be both [q(p+1)]×[q(p+1)] matrices with the [(p+1)(s−1)+m+
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1, (p+1)(k−1)+ l+1]th elements equal to
∑2J−1

v=1 fv(t)ξ
(sk)
v µm+l(hs, hk) and

∑2J−1
v=1 fv(t)ν

(sk)
m+l,v(t),

respectively, for s, k,m, l ∈ {1, ..., q}. Then, we have the following results.

Proposition 1 Let Fn denote the σ-algebra generated by (ti1, ..., tiJ), for i = 1, ..., n. Assume

that the design points (ti1, ..., tiJ)
T , for i = 1, ..., n, are independent and identity distributed and

that their partial density exists at any given point t in the design space. The elements of Vi defined

in (3) are assumed to be continuous functions of (ti1, ..., tiJ), and the components of the (p+ 1)th

derivative m(p+1)(t) of m(t) are assumed to be continuous functions of t, for i = 1, ..., n. Moreover,

it is assumed that hl = clhmax, where 0 < cl ≤ 1 are constants, for l = 1, ..., q, hmax = o(1), and

1/(nhmax) = o(1). Then, we have the following results.

(i) The conditional covariance of m̂(k)(t) is

Cov{m̂(k)(t)|Fn} =
k!2

nh1+2k
max

[(Iq ⊗ eTk+1)S
−1S̄S−1(Iq ⊗ ek+1)] + oP

(
1

nh1+2k
max

)
. (10)

(ii) The conditional bias of m̂(k)(t) is

Bias{m̂(k)(t)|Fn} =
k!

(p+ 1)!
hp+1−k
max [(Iq ⊗ eTk+1)S

−1D] + oP (h
p+1−k
max ), (11)

where D = (d10, ..., d1p, ..., dq0, ..., dqp)
T , and

dsk =
2J−1∑

v=1

q∑

l=1

fv(t)m
(p+1)
l (t)ξ(sl)v µk+p+1(hs, hl), for s = 1, ..., q, k = 0, ..., p.

Proposition 1 shows that the conditional covariance and the conditional bias of m̂(k)(t) converge

to 0 with the rates OP

(
1

nh1+2k
max

)
and OP (h

p+1−k
max ), respectively, which are the same as those in

univariate cases provided by Chen and Jin (2005). These results are derived in a quite general

setting. In some special cases, they can have simpler expressions. For instance, in cases when

different components of m(·) have similar smoothness, we can use a bandwidth vector with h1 ∼
· · · ∼ hq ∼ hmax. In such cases, µj(hs, hk) ≈ 1

hmax

∫
ujK(u)du =: 1

hmax
µj , and νj(hs, hk, hl1 , hl2) ≈

1
h2
max

∫
ujK2(u)du =: 1

h2
max

νj , where “≈” means that some higher order terms have been omitted in

the related expressions. Then, define cp = (µp+1, ..., µ2p+1)
T , S1 = (µi+j)0≤i,j≤p, S̄1 = (νi+j)0≤i,j≤p,

and let

C = diag





2J−1∑

v=1

q∑

l=1

fv(t)m
(p+1)
l (t)ξ(1l)v , . . . ,

2J−1∑

v=1

q∑

l=1

fv(t)m
(p+1)
l (t)ξ(ql)v



 ,
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N =




2J−1∑

v=1

fv(t)ξ̄
(sk)
v (t)




q×q

and M =




2J−1∑

v=1

fv(t)ξ
(sk)
v




q×q

,

where ξ̄
(sk)
v (t) =

∑q
l1,l2=1 ξ̄

(sk)
v,l1l2

(t). In such cases, the results in Proposition 1 can be simplified to

those in Corollary 1 below.

Corollary 1 Besides the conditions in Proposition 1, we further assume that h1 ∼ · · · ∼ hq.

Then, we have the following results.

(i) The conditional covariance of m̂(k)(t) is

Cov{m̂(k)(t)|Fn} =
k!2

nh1+2k
max

eTk+1S
−1
1 S̄1S

−1
1 ek+1M

−1NM−1 + oP

(
1

nh1+2k
max

)
. (12)

(ii) The conditional bias of m̂(k)(t) is

Bias{m̂(k)(t)|Fn} =
k!hp+1−k

max

(p+ 1)!
eTk+1S

−1
1 cpM

−1C + oP (h
p+1−k
max ). (13)

In cases when p − k is even, the first term on the right-hand-side of the above expression is

actually 0.

Compared to expressions (10) and (11), the leading terms of expressions (12) and (13) are

much simpler. For practical purpose, we can use h1 = · · · = hq = h for simplicity. Another special

case that deserves our attention is the one when different response components are independent of

each other. In this case, the matrices V̂i are nearly block diagonal. Consequently, our proposed

method is similar to the one that handles individual response components separately. Results of

Proposition 1 in this case can be simplified to the ones in Corollary 2 below.

Corollary 2 Besides the conditions in Proposition 1, we further assume that different response

components are independent of each other. Then, we have the following results.

(i) The conditional covariance of m̂(k)(t) is

Cov{m̂(k)(t)|Fn} =
k!2

n
eTk+1S

−1
1 S̄1S

−1
1 ek+1

×diag

{ ∑2J−1
v=1 fv(t)ξ̃

(ll)
v (t)

{
∑2J−1

v=1 fv(t)ξ
(ll)
v }2

h1+2k
l , l = 1, ..., q

}
+ oP

(
1

nh1+2k
max

)
. (14)
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(ii) The conditional bias of m̂(k)(t) is

Bias{m̂(k)(t)|Fn} =
k!

(p+ 1)!
eTk+1S

−1
1 cp × diag

{
m

(p+1)
l (t)hp+1−k

l , l = 1, ..., q
}
+ oP (h

p+1−k
max ).

(15)

In cases when p − k is even, the first term on the right-hand-side of the above expression is

actually 0.

Next, we discuss the properties of our proposed method in cases when there are missing ob-

servations. First, we intriduce some extra notations. Let ξ
′(sk)
v denote ξ

(sk)
v after the quantity

(Ĩv0V̂1Ĩv0)
−1 is replaced by (Ĩv0∆1V̂1∆1Ĩv0)

−1 in its definition, and ξ̄
′(sk)
v,l1l2

(t) denote ξ̄
(sk)
v,l1l2

(t) af-

ter (Ĩv0V̂1Ĩv0)
−1 and V̂0(t) are replaced by (Ĩv0∆1V̂1∆1Ĩv0)

−1 and ∆1V̂0(t)∆1, respectively, in

its definition. Furthermore, let S′ and S̄′ be both [q(p + 1)] × [q(p + 1)] matrices with their

[(p+ 1)(s− 1) +m+ 1, (p+ 1)(k − 1) + l + 1]th elements to be
∑2J−1

v=1 fv(t)ξ
′(sk)
v µm+l(hs, hk) and

∑2J−1
v=1 fv(t)ν

′(sk)
m+l,v(t), respectively, for s, k,m, l ∈ {1, ..., q}, where

ν
′(sk)
m+l,v(t) =

q∑

l1,l2=1

ξ̄
(sk)
v,l1l2

(t)ν ′m+l(hs, hk, hl1 , hl2).

Then, we have the following results about the estimated model in cases with missing data that is

described at the end of Section 2.

Corollary 3 Assume that the assumptions in Proposition 1 all hold and P (δijl = 0) = pl, for

i = 1, 2, . . . , n, j = 1, 2, . . . , J , and l = 1, 2, . . . , q, where pl ∈ [0, 1) are probablity values that do

not depend on i and j. Then, we have the following results.

(i) The conditional covariance of m̂(k)′(t) is

Cov{m̂(k)′(t)|Fn} =
k!2

nh1+2k
max

[(P−1 ⊗ eTk+1)S
′−1S̄′S′−1(P−1 ⊗ ek+1)] + oP

(
1

nh1+2k
max

)
.

where P = diag{p1, ..., pq}.

(ii) The conditional bias of m̂(k)′(t) is

Bias{m̂(k)′(t)|Fn} =
k!

(p+ 1)!
hp+1−k
max [(P−1 ⊗ eTk+1)S

′−1D′] + oP (h
p+1−k
max ),

where D′ = (d′10, ..., d
′
1p, ..., d

′
q0, ..., d

′
qp)

T , and

d′sk =
2J−1∑

v=1

q∑

l=1

fv(t)m
(p+1)
l (t)ξ′(sl)v µk+p+1(hs, hl), for s = 1, ..., q, k = 0, ..., p.

10



4 Numerical Study

In this section, we investigate the numerical performance of the proposed method using several

simulation examples and one real-data example. We also discuss estimation of the true covari-

ance matrices Vi defined in (3) and selection of the bandwidth vector used in our proposed local

smoothing estimators.

We first consider cases when no missing values are present in the observed data. In such cases,

the simulated data are generated from the model (1) with J = 3, q = 3, and

m1(t) = 2× exp{sin(10t)}, m2(t) = 1− exp{−t}, m3(x) = 1− exp{−t}+ 2 sin(10t).

The error term vec(εi) follows the normal distribution with mean 0. Its correlation matrix is

specified as follows: for j, k, l, s = 1, 2, 3,

corr(ε1jl, ε1ks) =





1, if j = k, l = s

ρ1, if j 6= k, l = s

ρ2, if j = k, l 6= s

ρ1ρ2, if j 6= k, l 6= s,

and the variances of its components are

var(ε111) = var(ε112)/2 = var(ε113)/3 = 0.25,

var(ε121) = var(ε122)/2 = var(ε123)/3 = 0.64,

var(ε131) = var(ε132)/2 = var(ε133)/3 = 0.36.

The design points {tij , j = 1, 2, 3, i = 1, 2, . . . , n} are generated from the uniform distribution

U [−2, 2], and they are independent from the random errors.

From the above definition, we can see that ρ1 specifies the association of individual response

components over different time points, and ρ2 specifies the association among different response

components at a given time point. To demonstrate the effectiveness of our proposed method, we

consider the following three cases:

Case I: ρ1 = 0.8 and ρ2 = 0, in which individual response components are associated across

different time points but the components are independent of each other at a given time point.

11



Case II: ρ1 = 0 and ρ2 = 0.8, in which individual response components are associated at a given

time point but they are independent across different time points.

Case III: ρ1 = 0.8 and ρ2 = 0.8, in which individual response components are associated across

different time points and the components are associated at a given time point as well.

With the multivariate longitudinal data, besides the proposed method described in the pre-

vious two sections, which is denoted as MULTIVARIATE here, there are a number of alternative

approaches. One alternative approach is to apply the univariate method by Chen and Jin (2005)

to each dimension of the multivariate longitudinal data, and obtain estimators of the individual

components of m(·) separately. This method is denoted as INDIVIDUAL in this section. Another

alternative method is to use a simplified version of MULTIVARIATE, in which the same band-

width h is used in all dimensions, as described in Corollary 1 in Section 3. This simplified version

is denoted as SIMPLIFIED here. For each method, we compute the values of the estimator m̂(t)

at 101 grid points {tj = −1.8 + 0.036 × j, j = 0, ..., 100}. Then, the following three performance

measures are computed:

Biasl =
1

101

100∑

j=0

|ml(tj)− m̂l(tj)|

SDl = sample standard deviation of {ml(tj)− m̂l(tj), j = 0, 1, 2, . . . , 100}

MISEl =
4

101

100∑

j=0

(ml(tj)− m̂l(tj))
2 ,

where l = 1, 2, 3 is the index of the response components. To remove some randomness, all presented

values of these measures in this section are averages computed from 100 replicated simulations.

In all three methods considered, the Epanechnikov kernel function described in Section 2 and

p = 1 (i.e., local linear smoothing) are used in the local polynomial kernel smoothing procedures (cf.,

(4)). For a fair comparison, we first use the true covariance matrices Vi, instead of their estimates,

in all methods. The optimal bandwidths of each method are then searched by minimizing the MISE

value. The searched optimal bandwidths and the corresponding values of the three performance

measures in the three cases considered are presented in Tables 1 and 2, respectively, for two sample

sizes n = 100 and n = 200. For each measure, its values corresponding to the three response

components are presented separately, together with their summation, denoted as SUM.

From Table 1, it can be seen that, in case I when the three response components are independent

of each other, the methods MULTIVARIATE and INDIVIDUAL perform exactly the same. As a

12



Table 1: Averaged performance measures Bias, SD, and MISE, based on 100 replicated simulations,
of the methods MULTIVARIATE, INDIVIDUAL, and SIMPLIFIED in the case when n = 100.
The numbers in H are the searched optimal bandwidths.

MULTIVARIATE INDIVIDUAL SIMPLIFIED
Case Components Bias SD MISE Bias SD MISE Bias SD MISE

I H = (0.08, 0.65, 0.11)T H = (0.08, 0.65, 0.11)T H = (0.11, 0.11, 0.11)T

1 0.103 0.224 0.246 0.103 0.224 0.246 0.159 0.199 0.286
2 0.036 0.114 0.057 0.036 0.114 0.057 0.020 0.269 0.267
3 0.140 0.317 0.455 0.140 0.317 0.455 0.117 0.334 0.470

SUM 0.279 0.655 0.758 0.279 0.655 0.758 0.295 0.802 1.023

II H = (0.08, 0.45, 0.11)T H = (0.09, 0.5, 0.11)T H = (0.1, 0.1, 0.1)T

1 0.102 0.186 0.201 0.139 0.211 0.280 0.169 0.196 0.304
2 0.067 0.128 0.080 0.043 0.112 0.056 0.024 0.264 0.259
3 0.119 0.253 0.297 0.151 0.307 0.449 0.127 0.325 0.459

SUM 0.288 0.567 0.578 0.333 0.630 0.785 0.320 0.785 1.022

III H = (0.07, 0.5, 0.11)T H = (0.09, 0.65, 0.12)T H = (0.1, 0.1, 0.1)T

1 0.074 0.208 0.211 0.129 0.217 0.287 0.188 0.193 0.334
2 0.067 0.139 0.091 0.044 0.112 0.058 0.018 0.251 0.232
3 0.105 0.268 0.312 0.159 0.298 0.440 0.133 0.314 0.443

SUM 0.245 0.615 0.615 0.332 0.627 0.785 0.339 0.758 1.009

matter of fact, it can be checked that these two methods are equivalent in such cases. Compared

to the method SIMPLIFIED, their MISE values are smaller across all three response components.

This part of the results demonstrates that when the curvature of the three components of m(·)
are quite different, the method SIMPLIFIED may not be appropriate to use. It also confirms

that the proposed method MULTIVARIATE is appropriate to use even in cases when the response

components are actually independent. In case II when observations across different time points

are independent but different response components are correlated, we can see that the method

MULTIVARIATE performs better than both methods INDIVIDUAL and SIMPLIFIED in terms

of the SUMs of the three performance measures, although it is slightly worse then the method

INDIVIDUAL for estimating m2(·). In case III when observations across different time points are

correlated and different response components are correlated as well, the method MULTIVARIATE

also performs better than both methods INDIVIDUAL and SIMPLIFIED in terms of the SUMs of

the three performance measures. Similar conclusions can be made from results in Table 2.

In practice, the covariance matrices Vi are often unknown and they need to be estimated from

observed data. Next, we investigate the performance of the three methods when Vi, i = 1, ....n, are

assumed to be the same and are estimated by the procedure (7). The estimated Vi by (7) is used in

13



Table 2: Averaged performance measures Bias, SD, and MISE, based on 100 replicated simulations,
of the methods MULTIVARIATE, INDIVIDUAL, and SIMPLIFIED in the case when n = 200.
The numbers in H are the searched optimal bandwidths.

MULTIVARIATE INDIVIDUAL SIMPLIFIED
Case Components Bias SD MISE Bias SD MISE Bias SD MISE

I H = (0.06, 0.5, 0.09)T H = (0.06, 0.5, 0.09)T H = (0.09, 0.09, 0.09)T

1 0.064 0.169 0.127 0.064 0.169 0.127 0.137 0.140 0.171
2 0.031 0.083 0.031 0.031 0.083 0.031 0.015 0.184 0.125
3 0.091 0.227 0.226 0.091 0.227 0.226 0.091 0.227 0.226

SUM 0.185 0.479 0.383 0.185 0.479 0.383 0.242 0.551 0.522

II H = (0.06, 0.4, 0.08)T H = (0.06, 0.45, 0.09)T H = (0.08, 0.08, 0.08)T

1 0.059 0.137 0.091 0.066 0.170 0.132 0.113 0.146 0.151
2 0.041 0.091 0.038 0.035 0.079 0.030 0.017 0.198 0.144
3 0.070 0.200 0.169 0.106 0.228 0.242 0.085 0.244 0.251

SUM 0.170 0.428 0.298 0.207 0.477 0.404 0.214 0.587 0.546

III H = (0.06, 0.45, 0.10)T H = (0.06, 0.55, 0.1)T H = (0.09, 0.09, 0.09)T

1 0.059 0.136 0.087 0.061 0.168 0.123 0.134 0.137 0.164
2 0.054 0.101 0.050 0.031 0.082 0.030 0.019 0.186 0.128
3 0.093 0.191 0.171 0.120 0.221 0.244 0.099 0.233 0.243

SUM 0.206 0.427 0.308 0.212 0.470 0.397 0.252 0.555 0.535

all three methods in place of the true matrices Vi. The corresponding results of the three methods

in cases when n = 200 and when the bandwidths are chosen to be optimal by minimizing the MISE

values are presented in Table 3. From the table, we can see that similar conclusions can be made

here to those from Tables 1 and 2, regarding the relative performance of the three methods. By

comparing the results of MULTIVARIATE in Tables 2 and 3, we can see that they are almost the

same, which implies that the procedure (7) for specifying Vi is quite efficient. Corresponding results

in the case when n = 100 are similar and thus omitted here.

In practice, the optimal bandwidths are also unknown. To implement our proposed method in

such cases, we propose using the cross-validation (CV) procedure to determine the bandwidths as

follows. Let

CVl(hl) =
1

n

n∑

i=1

J∑

j=1

(yl(tij)− m̂l,−i(tij))
2 , for l = 1, 2, 3,

and

CV (H) = CV1(h1) + CV2(h2) + CV3(h3),

where m̂l,−i(·) is the “leave-one-subject-out” estimator of ml(·) obtained when the observations

of the ith subject are not used. Then, the three bandwidths can be determined by minimizing

CV (H) over R3
+. However, this minimization process might be time-consuming. To simplify the
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Table 3: Averaged performance measures Bias, SD, and MISE, based on 100 replicated simulations,
of the methods MULTIVARIATE, INDIVIDUAL, and SIMPLIFIED in the case when n = 200 and
Vi are estimated. The numbers in H are the searched optimal bandwidths.

MULTIVARIATE INDIVIDUAL SIMPLIFIED
Case Components Bias SD MISE Bias SD MISE Bias SD MISE

I H = (0.06, 0.5, 0.09)T H = (0.06, 0.5, 0.09)T H = (0.08, 0.08, 0.08)T

1 0.065 0.170 0.129 0.064 0.170 0.128 0.112 0.147 0.147
2 0.032 0.083 0.032 0.032 0.082 0.032 0.016 0.197 0.143
3 0.092 0.227 0.227 0.092 0.227 0.226 0.072 0.243 0.239

SUM 0.189 0.480 0.387 0.189 0.479 0.386 0.200 0.587 0.529

II H = (0.06, 0.4, 0.09)T H = (0.06, 0.4, 0.09)T H = (0.08, 0.08, 0.08)T

1 0.066 0.138 0.096 0.066 0.171 0.133 0.114 0.147 0.153
2 0.041 0.091 0.038 0.029 0.084 0.030 0.017 0.199 0.146
3 0.091 0.193 0.172 0.107 0.229 0.244 0.086 0.246 0.256

SUM 0.197 0.421 0.306 0.202 0.483 0.407 0.217 0.591 0.555

III H = (0.06, 0.45, 0.09)T H = (0.06, 0.55, 0.1)T H = (0.09, 0.09, 0.09)T

1 0.063 0.138 0.091 0.061 0.168 0.124 0.138 0.138 0.171
2 0.040 0.095 0.040 0.033 0.081 0.031 0.019 0.187 0.130
3 0.084 0.200 0.178 0.122 0.222 0.247 0.101 0.235 0.248

SUM 0.187 0.432 0.309 0.216 0.470 0.402 0.258 0.560 0.549

computation, we suggest using a two-step CV procedure instead, by noticing from results in Tables

1 and 2 that the optimal bandwidths of the two methods MULTIVARIATE and INDIVIDUAL

are actually quite close to each other. In the first step, we determine the individual bandwidths

{hl, l = 1, 2, 3} separately, by applying the CV procedure to the method INDIVIDUAL. The selected

bandwidths from this step are denoted as {hl,0, l = 1, 2, 3}. Then, in the second step, we determine

the three bandwidths by minimizing CV (H) in a small neighborhood of (h1,0, h2,0, h3,0)
T . In our

simulation study, we use the neighborhood {(h1, h2, h3)|h1 = h10 + 0.01δl, h2 = h20 + 0.05δ2, h3 =

h30 + 0.01δ3, δ1, δ2, δ3 = 0,±1,±2}. The method MULTIVARIATE with the bandwidths chosen

by the CV procedure and the covariance matrix estimated by (7) is denoted as MULTIVARIATE-

CV. Its results corresponding to the cases considered in Tables 1 and 2 are presented in Table

4. By comparing the tables, we can see that MULTIVARIATE-CV performs a little worse than

MULTIVARIATE, but it still performs favorably, compared to the methods INDIVIDUAL and

SIMPLIFIED, in cases when the response components are correlated, even if the methods INDI-

VIDUAL and SIMPLIFIED use their optimal bandwidths.

Next, we consider an example in which missing observations are present in the observed data.

The setup of this example is the same as that of Table 4, except that n = 200, the probabilities
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Table 4: Averaged performance measures Bias, SD, and MISE, based on 100 replicated simulations,
of the method MULTIVARIATE-CV in the cases when n = 100 or 200.

Case I Case II Case III
n Components Bias SD MISE Bias SD MISE Bias SD MISE

100 1 0.118 0.236 0.297 0.136 0.192 0.258 0.137 0.197 0.252
2 0.062 0.117 0.075 0.083 0.127 0.093 0.084 0.123 0.094
3 0.157 0.326 0.497 0.151 0.274 0.389 0.144 0.283 0.376

SUM 0.336 0.679 0.870 0.371 0.593 0.740 0.365 0.604 0.722

200 1 0.079 0.165 0.138 0.090 0.130 0.118 0.101 0.125 0.117
2 0.048 0.081 0.041 0.065 0.076 0.046 0.060 0.078 0.041
3 0.109 0.211 0.227 0.117 0.179 0.187 0.121 0.192 0.211

SUM 0.236 0.457 0.407 0.272 0.385 0.351 0.282 0.396 0.369

of missing observations for the three components are assumed to be p1 = p2 = p3 = π, and

π = 0.05, 0.1, or 0.2. The corresponding results are presented in Table 5, which are computed by

(6) after v̂ec(β) is replaced by v̂ec(β)
′

in (9). From the table, it can be seen that (i) the MISE value

increases when p increases, which is intuitively reasonable, and (ii) our proposed method performs

reasonably well in such cases.

Table 5: Averaged performance measures Bias, SD, and MISE, based on 100 replicated simulations,
of the method MULTIVARIATE-CV in the cases when n = 200, the probabilities of missing
observations for the three components are p1 = p2 = p3 = π = 0.05, 0.1, or 0.2.

Case I Case II Case III
π Components Bias SD MISE Bias SD MISE Bias SD MISE

0.05 1 0.061 0.188 0.148 0.059 0.152 0.105 0.052 0.151 0.098
2 0.014 0.123 0.056 0.034 0.124 0.061 0.036 0.131 0.069
3 0.092 0.241 0.251 0.081 0.213 0.195 0.070 0.222 0.203

SUM 0.167 0.552 0.455 0.174 0.489 0.361 0.158 0.504 0.370

0.1 1 0.062 0.193 0.158 0.058 0.158 0.114 0.067 0.151 0.118
2 0.015 0.122 0.056 0.034 0.123 0.061 0.045 0.121 0.069
3 0.094 0.248 0.265 0.078 0.220 0.204 0.079 0.214 0.213

SUM 0.171 0.563 0.479 0.170 0.501 0.379 0.191 0.486 0.400

0.2 1 0.066 0.207 0.182 0.063 0.169 0.132 0.076 0.158 0.128
2 0.014 0.131 0.063 0.034 0.138 0.082 0.049 0.138 0.091
3 0.096 0.268 0.305 0.092 0.237 0.247 0.115 0.224 0.311

SUM 0.176 0.606 0.550 0.189 0.544 0.461 0.240 0.520 0.530

Finally, we apply our proposed method to the real-data example about the SHARe Framingham

Heart Study that is described in Section 1. The raw data can be downloaded from the web page

http : //www.ncbi.nlm.nih.gov/ projects/gap/cgi − bin/study.cgi?study id = phs000007.v4.p2.
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After deleting the patients with missing observations. A total of n = 1028 non-stroke patients with

ages from 14 to 85 are included in our analysis. In this example, the response is 4-dimensional (i.e.,

q = 4), and each patient was followed 7 times (i.e., J = 7). In our proposed method, we consider

using p = 1 (i.e., use the multivariate local linear kernel smoothing in (4)). The covariance matrices

Vi are determined by the procedure (7). The bandwidth vector H is chosen using the two-step

CV procedure described above, and the chosen bandwidth vector is H = (9, 5, 4, 6)T . The four

estimated components of m(·) are shown in the four plots of Figure 1 by the solid curves. After

obtaining the estimator m̂(·), we use the following method to estimate the variance functions of

the components of the multivariate response y(t). First, we compute the residuals

ε̂ijl = yijl − m̂l(tij), i = 1, 2, . . . , n, j = 1, 2, . . . , J, l = 1, 2, . . . , q.

Then, the estimators of the variance functions can be obtained, after we apply the proposed method

described in Section 2 to the new data {ε̂2ijl, i = 1, 2, . . . , n, j = 1, 2, . . . , J, l = 1, 2, . . . , q}. Using

the estimated variance functions, the pointwise 95% confidence bands of the components of m(·)
are constructed and presented in Figure 1 (a)-(d) by the dashed curves, along with the observed

longitudinal data of the first 20 patients shown by little circles connected by thin lines. From the

plots, it can be seen that our estimators describe the observed data reasonably well.

5 Concluding Remarks

In this paper, we have proposed a local smoothing method for analyzing multivariate longi-

tudinal data. Our method can accommodate not only the correlation among observations across

different time points, but also the correlation among different response components. The numerical

results presented in the paper show that our proposed method performs well in applications. Al-

though we focus on cases when the explanatory variable t is univariate in this paper, it is possible

to generalize our proposed method for handling cases with multiple explanatory variables, using

methods similar to the one by Ruppert and Wand (1994).

There are several issues that have not been addressed in this paper yet, which could be good

future research topics. First, our numerical results show that the cross-validation procedure for

choosing the bandwidths works reasonable well. However, as pointed out by Hall and Robinson

(2009), the bandwidths chosen by this approach usually have a larger variability. Hall and Robinson

(2009) proposed two procedures to overcome this limitation. Unfortunately, these procedures are
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Figure 1: Estimated mean components, the pointwise 95% confidence bands of the true mean
response components, and the observed longitudinal data of the first 20 patients in the dataset of
the SHARe Framingham Heart Study. (a) systolic blood pressure, (b) diastolic blood pressure, (c)
cholesterol level, and (d) glucose level.

computationally intensive. Therefore, it still requires much future research to propose an efficient

and computationally simple procedure for choosing the bandwidths. Second, our proposed method

may not be suitable for high-dimensional (e.g., q ≥ 20) multivariate longitudinal data because of the

complexity in computing estimators of Vi and in choosing the bandwidths. It requires much future

research to develop appropriate methods for handling such cases as well. Third, in Corollary 3, it is

assumed that the probabilities of missing observations of the response components are unchanged

over time. In certain applications, this assumption may not be valid. If the probabilities of missing

observations depend on observation times, then variable bandwidths might be more appropriate to

use in our proposed method. At places with more missing observations, the bandwidths should be

chosen larger; they can be chosen smaller at places with less missing observations. This topic is
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not trivial, and is left for our future research.
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Appendix

Proof of Proposition 1

By the definitions of S, S̄ and D, we can show the following results:

S = O(h−1
max), S̄ = O(h−2

max), D = O(h−1
max). (A.1)

By the continuity of Vi and a direct algebraic manipulation, we can get the result that

Cov(v̂ec(β)|Fn) = A−1
n BnA

−1
n {1 + oP (1)}, (A.2)

where An =
∑n

i=1(Iq ⊗Xi)
TWi(Iq ⊗Xi) and

Bn =
n∑

i=1

(Iq ⊗XT
i )K

1
2
iH(ĨiV̂iĨi)

−1K
1
2
iHV0(t)K

1
2
iH(ĨiV̂iĨi)

−1K
1
2
iH(Iq ⊗Xi).

Set H̃ = diag{1, hmax, ..., h
p
max} and cijsm = (tij − t)mK

1
2
hs
(tij − t), for i = 1, ..., n, j = 1, ..., J ,

s = 1, ..., q and m = 0, ..., p. For every fixed v = 1, ..., 2J − 1, let

Sv(hmax) = {t1j ∈ B(t, hmax) for all j ∈ Ωv, and t1,j /∈ B(t, hmax) for all j /∈ Ωv}

Then, the existence condition of the partial density of {tij} ensures that Pr{t1j are all equal for all j ∈
Ωv|Sv(hmax)} = 1+ o(1) on B(t, hmax), as hmax → 0. Let a

(sk)
m+1,l+1 denote the ((s− 1)(p+1)+m+

1, (k− 1)(p+1)+ l+1)th element of An, jv ∈ Ωv, and Cism = (0, ..., 0, ci1sm, ..., ciJsm, 0, ..., 0)T1×qJ .
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Then,

E(a
(sk)
m+1,l+1) =

n∑

i=1

E{CT
ism(ĨiV̂iĨi)

−1Cikl}

= n
2J−1∑

v=1

E{CT
1sm(Ĩ1V̂1Ĩ1)

−1C1kl|Sv(hmax)}Pr{Sv(hmax)}

= n
2J−1∑

v=1

E[(t1jv − t)m+lK
1
2
hs
(t1jv − t)K

1
2
hk
(t1jv − t)I{Sv(hmax)}]

×E{(ẽs ⊗ 10)
T (Ĩv0 V̂1Ĩv0)

−1(ẽk ⊗ 10)|Sv(0)}{1 + o(1)}

= n
2J−1∑

v=1

1√
hshk

∫ t+hmax

t−hmax

(u− t)m+lK
1
2

(
u− t

hs

)
K

1
2

(
u− t

hk

)
fv(u)du

×E{(ẽs ⊗ 10)
T (Ĩv0 V̂1Ĩv0)

−1(ẽk ⊗ 10)|Sv(0)}{1 + o(1)}

= n
2J−1∑

v=1

hm+l+1
max√
hshk

∫ 1

−1
zm+lK

1
2

(
hmax

hs
z

)
K

1
2

(
hmax

hk
z

)
fv(t)dz

×E{(ẽs ⊗ 10)
T (Ĩv0 V̂1Ĩv0)

−1(ẽk ⊗ 10)|Sv(0)}{1 + o(1)}

= nhm+l+1
max µm+l(hs, hk)

2J−1∑

v=1

fv(t)ξ
(sk)
v {1 + o(1)}.

Similarly, we can show that {var(a(sk)m+1,l+1}
1
2 = o(nhm+l

max ). By combining these results, we have

a
(sk)
m+1,l+1 = E(a

(sk)
m+1,l+1) +Op[{var(a(sk)m+1,l+1}

1
2 ]

= nhm+l+1
max µm+l(hs, hk)

∑2J−1
v=1 fv(t)ξ

(sk)
v {1 + o(1)}.

Therefore,

An = nhmax[(Iq ⊗ H̃)S(Iq ⊗ H̃)]{1 + oP (1)}. (A.3)

Let b
(sk)
m+1,l+1 denote the ((s− 1)(p+ 1) +m+ 1, (k− 1)(p+ 1)+ l+ 1)th element of Bn. Then,
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we have

E(b
(sk)
m+1,l+1) =

n∑

i=1

E{CT
ism(ĨiV̂iĨi)

−1K
1
2
iHV0(t)K

1
2
iH(ĨiV̂iĨi)

−1Cikl}

= n
2J−1∑

v=1

E{CT
1sm(Ĩ1V̂1Ĩ1)

−1K
1
2
1HV0(t)K

1
2
1H(Ĩ1V̂1Ĩ1)

−1C1kl|Sv(hmax)}Pr{Sv(hmax)}

= n
2J−1∑

v=1

{
q∑

l1,l2=1

E[(t1jv − t)m+lK
1
2
hs
(t1jv − t)K

1
2
hk
(t1jv − t)

×K
1
2
hl1

(t1jv − t)K
1
2
hl2

(t1jv − t)I{Sv(hmax)}]E{(ẽs ⊗ 10)
T (Ĩv0 V̂1Ĩv0)

−1

×(El1 ⊗ IJ)V0(t)(El2 ⊗ IJ)(Ĩv0 V̂1Ĩv0)
−1(ẽk ⊗ 10)|Sv(0)}}{1 + o(1)}

= n
2J−1∑

v=1

fv(t)h
m+l+1
max {

q∑

l1,l2=1

ξ̄
(sk)
v,l1l2

(t)
1√

hshkhl1hl2

×
∫ 1

−1
zl+mK

1
2 (
hmax

hs
z)K

1
2 (
hmax

hk
z)K

1
2 (
hmax

hl1
z)K

1
2 (
hmax

hl2
z)dz}{1 + o(1)}

= n
2J−1∑

v=1

fv(t)h
m+l+1
max {

q∑

l1,l2=1

ξ̄
(sk)
v,l1l2

(t)νm+l(hs, hk, hl1 , hl2)}{1 + o(1)}

= nhm+l+1
max

2J−1∑

v=1

fv(t)ν
(sk)
m+l,v(t){1 + o(1)}.

Similar to (A.3), we have

Bn = nhmax[(Iq ⊗ H̃)S̄(Iq ⊗ H̃)]{1 + oP (1)}. (A.4)

By combining (A.1)-(A.4), we have

Cov{m̂(k)(t)|Fn} =
k!2

nh1+2k
max

[(Iq ⊗ eTk+1)S
−1S̄S−1(Iq ⊗ ek+1)] + oP

(
1

nh1+2k
max

)
.
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Similar to the asymptotic expansion of Bn in (A.4), we can show that

Bias{m̂(k)(t)} = k!(Iq ⊗ eTk+1)[E(v̂ec(β)|Fn)− vec(β)]

= k!(Iq ⊗ eTk+1)A
−1
n

∑n
i=1(Iq ⊗XT

i )WiE[vec(Yi)− (Iq ⊗Xi)vec(β)]

= k!
(p+1)!(Iq ⊗ eTk+1)A

−1
n

∑n
i=1(Iq ⊗XT

i )Wi




m
(p+1)
1 (t)

...

m
(p+1)
q (t)




⊗




(ti1 − t)p+1

...

(tiJ − t)p+1


 {1 + o(1)}

= nk!hp+2
max

(p+1)! (Iq ⊗ eTk+1){nh−1
max[(Iq ⊗ H̃)S(Iq ⊗ H̃)]{1 + oP (1)}}−1

×[(Iq ⊗ H̃)D]{1 + oP (1)}

= k!
(p+1)!h

p+1−k
max [(Iq ⊗ eTk+1S

−1D] + oP (h
p+1−k
max ).

The last equation holds because D = O(h−1
max), as specified in (A.1). By now, we have proved the

results (10) and (11).

Proof of Corollary 1

Similar to the proof of Proposition 1, we can show that

An = n[M ⊗ H̃S1H̃]{1 + oP (1)} (A.5)

Bn = nh−1[N ⊗ H̃S̄1H̃]{1 + oP (1)} (A.6)
n∑

i=1

(Iq ⊗XT
i )WiE[vec(Yi)− (Iq ⊗Xi)vec(β)] = [C ⊗ H̃cp]{1 + oP (1)}. (A.7)

The results (12) and (13) can be obtained after combining (A.5)-(A.7).

Proof of Corollary 2

In cases when response components are independent, the covariance matrices Vi are block

diagonal. By combining this result with those in (10) and (11) in Proposition 1, the conclusions

(14) and (15) are straightforward.

Proof of Corollary 3

The proof of Corollary 3 is similar to the one of Proposition 1. Thus, it is omitted here.
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